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ABSTRACT
We present a novel method for 3D-object retrieval using
Bag-of-Feature (BoF) approaches [8]. The method starts
by selecting and then describing a set of points from the
3D-object. The proposed descriptor is an indexed collection
of closed curves in R3 on the 3D-surface. Such descriptor has
the advantage of being invariant to different transformations
that a shape can undergo. Based on vector quantization, we
cluster those descriptors to form a shape vocabulary. Then,
each point selected in the object is associated to a cluster
(word) in that vocabulary. Finally, a BoF histogram count-
ing the occurrences of every word is computed. In order to
assess our method, we used shapes from the TOSCA and
Sumner datasets. The results clearly demonstrate that the
method is robust to many kind of transformations and pro-
duces higher precision compared with some state-of-the-art
methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.5.3 [Pattern Recognition]: Clus-
tering

General Terms
Experimentation, Performance, Theory

Keywords
3D Shape, retrieval, curve analysis, bag-of-Features.

1. INTRODUCTION
Since a few years, there is an increasing interest in analyz-

ing shapes of three-dimensional (3D) objects. Advances in
3D scanning technologies, hardware-accelerated 3D graph-
ics, and related tools, are enabling access to high quality
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3D data. As technologies are improving, the need for au-
tomated methods for analyzing shapes of 3D-objects is also
growing. Shape matching remains a central scientific issue
for efficient 3D-object search engine design. It plays an im-
portant role in many applications such as computer vision,
shape recognition, shape retrieval and computer graphics.

In recent years, a large number of papers have been con-
cerned in 3D-shape retrieval. Based on the shape descriptors
used, existing methods can be classified into two categories:
global methods and local methods. For more information
about the development of 3D-shape retrieval, we refer the
reader to a recent survey [14].

Bag-of-Features (BoF), which is a popular approach in ar-
eas of computer vision and pattern recognition, have recently
gained great popularity in shape analysis community. Liu
et al. [9] presented a 3D-shape descriptor named “Shape
Topics” and applied it to 3D partial shape retrieval. In
their method, a 3D-object is considered as a word histogram
obtained by vector quantizing Spin images of the object.
Ohbuchi et al. [10] introduced a view-based method using
salient local features. They represented 3D-objects as word
histograms derived from the vector quantization of salient
local descriptors extracted on the depth-buffer views cap-
tured uniformly around the objects. Ovsjanikov et al. [11]
presented an approach to non-rigid shape retrieval similar
in its spirit to text retrieval methods used in search engines.
They used the heat kernel signatures to construct shape de-
scriptors that are invariant to non-rigid transformations.

Inspired by the work presented in [11] and with analogy
to methods using the bag-of-words representation for text
retrieval [3], we propose a new visual similarity based 3D-
shape retrieval approach. An overview of the method is
detailed in section 2. Section 3 presents the experimental
results. Conclusion and future work end the paper.

2. THE METHOD
The general steps for building a BoF representation for

3D-objects are depicted in Figure 1. It starts by selecting
(step a) and then describing (step b) a set of points from the
3D-object. The selection can be done in various ways, the
most typical being the application of interest point selection
algorithm. The proposed descriptor is an indexed collection
of closed curves in R3 on the 3D-surface. Such descriptor has
the advantage of being invariant to different transformations
that a shape can undergo.
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Figure 1: An illustration of our method. a) 3-D object feature extraction b) 3-D local patch construction c)
vector quantizing d,e) a word histogram

Given a set of descriptors, the next step (step c) is to
cluster those points to form the vocabulary by quantization.
Then, each point selected in the object is associated to a
“word” (i.e. a cluster) in the shape vocabulary (step d) and
the BoF histogram counting the occurrences of every word
is computed (step e). Algorithm 1 summarizes this process.

Algorithm 1 : Pseudo-code for building a BOF represen-
tation for 3D-objects.

for all 3D-object do
pointsDesc ←− FeatureExtraction(3D-object)

end for
vocab ←− quantizePoints(pointsDesc)
for all 3D-object do

bofs ←− computeHistogram(vocab, pointsDesc)
end for
Func FeatureExtraction(3D-object), return descriptors
pointsPos ←− FeaturePointExtraction(3D-object)
descriptors←− CurveDescriptors(3D-object, pointsPos)
return descriptors

end Func

2.1 Feature point extraction
Feature points are characteristic of the shape and corre-

spond to points of geometrical and perceptual interests in
3D-objects. These points are the reference points for our
analysis. They are extracted using Tierny et al.’s method
[15]: extremities of prominent components are identified by
intersecting the sets of extrema of two scalar functions based
on the geodesic distances between the two furthest vertices
on the surface mesh representing the 3D-object. The extrac-
tion is invariant to isometric transformations and robust to
noise. Figure 1 (step a) shows the localization of feature
points extracted from a human 3D-object.

2.2 Curve descriptors
As mentioned earlier, the proposed descriptor is a collec-

tion of closed curves. These curves are extracted around
each feature point previously extracted. The descriptor in-
trinsically invariant is able to capture the geometry of ob-
ject patches using the geometries of the associated curves.
Curves are defined as level curves of an intrinsic distance
function on the 3D-part surface. Their geometries in turn
are invariant to the rigid transformations of the 3D-part sur-
face. These curves jointly contain all the information about
the surface and it is possible to go back-and-forth between
the surface and the curves without any ambiguity. In order
to study the geometry of curves, we used Riemannian met-
rics on curve spaces and we adopt the Joshi et al’s approach

[5] because it simplifies the elastic shape analysis. The main
steps are: (i) define a space of closed curves of interest,
(ii) impose a Riemannian structure on this space using the
elastic metric, and (iii) compute geodesic paths under this
metric. These geodesic paths can then be interpreted as
optimal elastic deformations of curves.

We start by considering a closed curve β in R3. Since it
is a closed curve, it is parameterizable using β : S1 → R3.
We will assume that the parameterization is non-singular,
i.e. ‖β̇(t)‖ 6= 0 for all t. The norm used here is the Eu-
clidean norm in R3. Note that the parameterization is not
assumed to be arc-length; we allow a larger class of param-
eterizations for improved analysis. To analyze the shape
of β, we shall represent it mathematically using a square-
root velocity function (SRVF), denoted by q(t), according

to: q(t)
.
= β̇(t)√

‖β̇(t)‖
.

q(t) is a special function that captures the shape of β
and is particularly convenient for shape analysis, as we de-
scribe next. Firstly, the squared L2-norm of q, given by:
‖q‖2 =

∫
S1 〈q(t), q(t)〉 dt =

∫
S1 ‖β̇(t)‖dt , which is the length

of β. Therefore, the L2-norm is convenient to analyze curves
of specific lengths. Secondly, as shown in [5], the classical
elastic metric for comparing shapes of curves becomes the
L2-metric under the SRVF representation. This point is
very important as it simplifies the calculus of elastic met-
ric to the well-known calculus of functional analysis un-
der the L2-metric. In order to restrict our shape analy-
sis to closed curves, we define the set: C = {q : S1 →
R3|

∫
S1 q(t)‖q(t)‖dt = 0} ⊂ L2(S1,R3) . Here L2(S1,R3)

denotes the set of all functions from S1 to R3 that are square
integrable. The quantity

∫
S1 q(t)‖q(t)‖dt denotes the total

displacement in R3 as one traverses along the curve from
start to end. Setting it equal to zero is equivalent to having
a closed curve. Therefore, C is the set of all closed curves in
R3, each represented by its SRVF. Notice that the elements
of C are allowed to have different lengths. Due to a non-
linear (closure) constraint on its elements, C is a nonlinear
manifold. We can make it a Riemannian manifold by using
the metric: for any u, v ∈ Tq(C), we define:

〈u, v〉 =

∫
S1
〈u(t), v(t)〉 dt . (1)

We have used the same notation for the Riemannian met-
ric on C and the Euclidean metric in R3 hoping that the
difference is made clear by the context. For instance, the
metric on the left side is in C while the metric inside the
integral on the right side is in R3. For any q ∈ C, the tan-
gent space: Tq(C) = {v : S1 → R3| 〈v, w〉 = 0, w ∈ Nq(C)} ,
where Nq(C), the space of normals at q is given by: Nq(C) =
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span{ q
1(t)
‖q(t)‖q(t) + ‖q(t)‖e1, q

2(t)
‖q(t)‖q(t) + ‖q(t)‖e2, q

3(t)
‖q(t)‖q(t) +

‖q(t)‖e3} , and where {e1, e2, e3} form an orthonormal
basis of R3.

It is easy to see that several elements of C can represent
curves with the same shape. For example, if we rotate a
curve in R3, we get a different SRVF but its shape remains
unchanged. Another similar situation arises when a curve is
re-parameterized; a re-parameterization changes the SRVF
of curve but not its shape. In order to handle this vari-
ability, we define orbits of the rotation group SO(3) and
the re-parameterization group Γ as the equivalence classes
in C. Here, Γ is the set of all orientation-preserving dif-
feomorphisms of S1 (to itself) and the elements of Γ are
viewed as re-parameterization functions. For example, for
a curve β : S1 → R3 and a function γ : S1 → S1, γ ∈ Γ,
the curve β(γ) is a re-parameterization of β. The corre-

sponding SRVF changes according to q(t) 7→
√
γ̇(t)q(γ(t)).

We set the elements of the set: [q] = {
√
γ̇(t)Oq(γ(t))|O ∈

SO(3), γ ∈ Γ} , to be equivalent from the perspective of
shape analysis. The set of such equivalence classes, denoted
by S .

= C/(SO(3) × Γ) is called the shape space of closed
curves in R3. S inherits a Riemannian metric from the larger
space C and is thus a Riemannian manifold itself. The main
ingredient in comparing and analyzing shapes of curves is
the construction of a geodesic between any two elements of
S, under the Riemannian metric given in Eqn. 1. Given any
two curves β1 and β2, represented by their SVRFs q1 and
q2, we want to compute a geodesic path between the orbits
[q1] and [q2] in the shape space S. This task is accomplished
using a path straightening approach which was introduced in
[7]. The basic idea here is to connect the two points [q1] and
[q2] by an arbitrary initial path α and to iteratively update
this path using the negative gradient of an energy function
E[α] = 1

2

∫
s
〈α̇(s), α̇(s)〉 ds. The interesting part is that the

gradient of E has been derived analytically and can be used
directly for updating α. As shown in [7], the critical points
of E are actually geodesic paths in S. Thus, this gradient-
based update leads to a feature point of E which, in turn, is
a geodesic path between the given points. We will use the
notation d(β1, β2) to denote the geodesic distance, or the
length of the geodesic in S, between the two curves β1 and
β2.

We extend the curve distance analyzing procedure to com-
pute a distance between patches. Let D denotes the global
distance between two patches. Given any two surfaces patches
P1 and P2, and their collection of curves {β1

λ, λ ∈ [0, L]} and
{β2

λ, λ ∈ [0, L]}, respectively, we compare the curves β1
λ and

β2
λ, and we accumulate these distances over all λ values.

Formally, we define a distance: D : C[0,L] × C[0,L] → R≥0,
given by

D(P1, P2) =

∫ L

0

d(β1
λ, β

2
λ)dλ. (2)

2.3 Shape vocabulary construction
In our method, the vocabulary is a way of construct-

ing a feature vector for classification that relates descrip-
tors in 3D-object query to descriptors of 3D-objects in the
database. One extreme of this approach is to compare each
query descriptor to all indexed descriptors: this seems im-
practical given the huge number of indexed descriptors in-
volved. Another extreme is to try to identify a small num-
ber of large “clusters” that are good at discriminating a

Figure 2: Geodesic path between two curves (last
level) of cowhead part and horse-head part

given class. Most clustering or vector quantization algo-
rithms are based on iterative square-error partitioning or
on hierarchical techniques. Square-error partitioning algo-
rithms attempt to obtain the partition which minimizes the
within-cluster scatter or maximizes the between-cluster scat-
ter. Hierarchical techniques organize data in a nested se-
quence of groups which can be displayed in the form of a
tree. They need some heuristics to form clusters and hence
are less frequently used than square-error partitioning tech-
niques in pattern recognition. In our case we chose to use
the simplest square-error partitioning method: k-means [4].
This algorithm proceeds by iterated assignments of points
to their closest cluster centers and re-computation of the
cluster centers. The centers of cluster are 3D-patch whose
parameter values are the mean of the parameter values of
all the patches in the cluster. To calculate mean of 3D-
patches parametrized by curves, we use Karcher means [12].
In fact, the Riemannian structure defined on the manifold
of 3D-patch surfaces enables us to perform some statistical
analysis for computing 3D-surfaces mean and variance. The
Karcher mean is based on the intrinsic geometry of the man-
ifold to define and compute a mean on that manifold. It is
defined as follows. Let D(Pi, Pj) denotes the length of the
geodesic from Pi to Pj . To calculate the Karcher mean of
3D-patch surfaces {P1, ..., Pn}, we define the variance func-

tion ϑ : C[0,L] −→ R, ϑ(P ) =
∑n
i=1D(P, Pi)

2. The Karcher
mean is then defined by :

T = argminP∈C[0,L]ϑ(P ) (3)

The intrinsic mean may not be unique, i.e. there may be
a set of points in C[0,L] for which the minimizer of ϑ is ob-
tained. To interpret geometrically, T is an element of C[0,L],
that has the smallest total deformation from all given 3D-
patch surfaces. The final set of Karcher means represents
the codebook. Each element in this codebook is called a
keyshape.

Figure 3 shows the shape of the Karcher mean of four
3D-objects. The mean shape is located at the center of the
figure.

2.4 Shape histogram computing
The final step of the BoF method is the computing of the

dissimilarity between two objects. To this end, we compute
the cumulative occurrences of keyshapes in both objects.
Curve descriptors in the 3D-objects are assigned to the near-
est neighbor keyshapes in the codebook. Then each object
is represented using an histogram whose ith bin contains the
number of ith keyshapes in that object. Finally, the dissim-
ilarity between two objects can be computed using several

5



Figure 3: The shape of the Karcher mean of four
3D-objects and its associated sets of curves

metrics, as DMax, DMin, etc. We use the L2 distance to
measure the distance between two objects.

3. EXPERIMENTS
In this section, we present the experimental results, some

state-of-the-art shape-matching algorithms to compare with.
The robustness to shape deformations is discussed in the
sequel. The algorithms, described in the previous sections,
have been implemented using Matlab software. The frame-
work encloses an off-line feature extraction algorithm and a
vector quantization algorithm, and an on-line retrieval pro-
cess.

The proposed approach has been tested on database com-
posed of shapes from the TOSCA and the Sumner datasets.
The TOSCA dataset has been proposed by Bronstein et al.
[1] for non-rigid shape correspondence measures. The Sum-
ner dataset has been proposed by Sumner and Popovic [13]
for deformable shape correspondence. The total set size is
450 shapes.

3.1 Results
In order to assess our method, we performed shape re-

trieval experiments. From a qualitative point of view, Fig-
ure 4 gives a good overview of the framework efficiency. This
figure visualizes some examples of retrieved objects, ordered
by relevance, which is inversely proportional to the distance
from the query. We can note, in this figure, all top-results
are relevant to the queries.

3.2 Comparison with related work
From a more quantitative point of view, we compare the

Precision vs Recall plot of our approach with some well-
known stat-of-the-art methods:

• Spherical Harmonic Descriptor (SHD) [6]. A method
describing a 3D-object as a feature vector consisting
of spherical harmonic coefficients extracted from three
spherical functions giving the maximal distance from
center of mass as a function of spherical angle.

• LightField Descriptor (LFD) [2]. A well-known view-
based 3D-retrieval method. 10 silhouettes are used to
describe a 3D-object.

Figure 4: Retrieved results, ordered by relevance,
using our method

Figure 5: Precision vs Recall plots for the proposed
method and some state-of-the-art methods

Figure 5 shows the Precision vs Recall plots. Such a plot
is the average of the set of Precision vs Recall plots corre-
sponding to the models of the query-set. As the curve of our
approach is higher than the other ones, it is obvious that it
outperforms related methods.

3.3 Robustness under shape deformations
In this section, we discuss the robustness of the retrieval

method under deformed instances of the query shapes. For
this end, we conduct similar experiments as in [11]. First, we
choose shapes in one of the four transformation categories
(shown in Figure 6) as a query set, and we kept the remain-
ing transformation with the objects in the dataset. The re-
sults of this experiment are shown in Figure 7 as Precision vs
Recall plots. The method is robust under isometry and par-
tiality deformations, however it is less robust to topological
ones. This is due to the feature point extraction step of the
framework, which is based on geodesics. In practice, with
the TOSCA and the Sumner datasets, feature extraction
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(a) (b)

(c) (d)

Figure 6: Examples of some transformations of 3D-
object

turns out to be homogeneous within most classes. However,
the geodesic metric is known to be very sensitive to topology
changes which makes the overall framework quite sensible to
topology variations as well.

4. CONCLUSIONS
In this paper, we have presented a novel method for re-

trieving 3D-objects based on a BoF approach. We have pro-
posed a new feature extraction algorithm based on curve
analysis. We have presented results for retrieving 3D-objects
from the TOSCA and the Sumner datasets. These results
show the effectiveness of our approach and clearly demon-
strate that the method is robust to non-rigid and deformable
shapes.
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