
HAL Id: hal-00666720
https://hal.science/hal-00666720v2

Preprint submitted on 11 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wasserstein decay of one dimensional jump-diffusions
Bertrand Cloez

To cite this version:

Bertrand Cloez. Wasserstein decay of one dimensional jump-diffusions. 2012. �hal-00666720v2�

https://hal.science/hal-00666720v2
https://hal.archives-ouvertes.fr


WASSERSTEIN DECAY OF ONE DIMENSIONAL JUMP-DIFFUSIONS

BERTRAND CLOEZ

ABSTRACT. This work is devoted to the Lipschitz contraction and the long time behavior of
certain Markov processes. These processes diffuse and jump. They can represent some natural
phenomena like size of cell or data transmission over the Internet. Using a Feynman-Kac semi-
group, we prove a bound in Wasserstein metric. This bound is explicit and optimal in the sense
of Wasserstein curvature. This notion of curvature is relatively close to the notion of (coarse)
Ricci curvature or spectral gap. Several consequences and examples are developed, including an
L

2 spectral for general Markov processes, explicit formulas for the integrals of compound Pois-
son processes with respect to a Brownian motion, quantitative bounds for Kolmogorov-Langevin
processes and some total variation bounds for piecewise deterministic Markov processes.
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1. INTRODUCTION

We are interested by a process which moves continuously for some random time and then
jumps. It can represent some natural phenomena that can be observed at a great variety of
scales. To give just few examples, let us simply mention the modeling of the Transmission
Control Protocol (TCP) used for data transmission over the Internet [BCG+, CMP10, GK09,
GRZ04, LvL08, vLLO09], parasite evolution or size of cell in biology [BDMT, BT11, Clo,
LP09], reliability and queuing [CD08, Dav93, Las04, RT00]. More precisely, this process X =
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2 BERTRAND CLOEZ

(Xt)t≥0 has an interval E ⊂ R as state space and its infinitesimal generator is given, for any
smooth enough function f : E 7→ R by

∀x ∈ E, Lf(x) = σ(x)f ′′(x) + g(x)f ′(x) + r(x)

(∫ 1

0
f (F (x, θ)) − f(x)dθ

)

(1)

where σ, r, g and x 7→ F (x, ·) are smooth (C∞ for instance), θ 7→ F (·, θ) is measurable, r and
σ are non negative. We also assume that this operator generates a non explosive Markov process
(see [Bec07] for sufficient condition). For instance we can assume that r is lower bounded and
there exists K > 0 such that

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ K|x− y|.
Between the jumps, this process evolves like a diffusion which satisfies the following stochastic
differential equation:

dXt = g(Xt)dt +
√

2σ(Xt)dBt

where (Bt)t≥0 is a standard Brownian motion. Then, at a random and inhomogeneous time T
verifying

P (T > t | Xs, s ≤ t) = exp

(

−
∫ t

0
r(Xs)ds

)

,

it jumps. That is XT = F (XT −,Θ) where Θ is a uniform variable on [0, 1]. Then, this process
repeats these steps again. It is a Markov process. It is called an hybrid process in [Bec07]. When
r = 0 it is a diffusion and when σ = 0 it is a piecewise deterministic Markov process (PDMP)
[Dav93].

Some properties are established in the literature. Finding explicit bounds for the speed of con-
vergence is an interesting question which remains open in the general case. Our aim in this
paper is to get quantitative estimates for the convergence to equilibrium of X. Using Lyapunov
techniques, [CD08, Las04, RT00] give some conditions to have a geometric convergence. Never-
theless, this process is, in general, irreversible and it has infinite support. This makes Lyapunov
techniques less efficient for the derivation of quantitative exponential ergodicity. Furthermore,
another main difficulties is that entropy methods fails. In general, the invariant measure of the
process does not verify a Poincaré or log-Sobolev inequality (see remark 4.13 and [Wu10]). In
this work, we use a gradient estimate via a Feynman-Kac formula. We obtain a bound in Wasser-
stein metric. This bound is optimal in the sense of Wasserstein curvature introduced by Joulin
and Ollivier.

The two next subsections introduce the notion of Wasserstein curvature and states our main
results. Section 2 is devoted to the Lipschitz contraction of Markov processes while the quanti-
tative bounds of jumps diffusions are in Section 3. In the last section, we develop some examples
and applications including a Wasserstein bound for Kolmogorov-Langevin processes with non
convex potential, a variation total bound for piecewise deterministic Markov processes, some
explicit formulas for the TCP windows size process and the integral of Lévy processes with re-
spect to a Brownian motion.

Lipschitz contraction and Wasserstein curvature. We present briefly some basic definitions
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and properties about Lipschitz contraction of Markov semigroups. The Wasserstein distance
between two probability measures µ1, µ2 is defined by

W(µ1, µ2) = inf
ν∈Marg(µ1,µ2)

∫∫

E×E
|x− y|ν(dx, dy),

where Marg(µ1, µ2) is the set of probability measures on E2 with marginal distributions are
µ1 and µ2, respectively. This infimum is attained [Vil03, Theorem 1.3]. The Kantorovich-
Rubinstein duality gives [Vil03, Theorem 5.10] the following representation:

W(µ1, µ2) = sup
g∈Lip1

∫

E
g dµ1 −

∫

E
g dµ2, (2)

where Lip1 is the set of Lipschitz function g verifying |g(x) − g(y)| ≤ |x− y| for any x, y ∈ E.
Let (Pt)t≥0 be the semigroup of (Xt)t≥0. It is defined by Ptg(x) = E[g(Xt)|X0 = x], for any
g smooth enough. The Wasserstein curvature of (Xt)t≥0 is the optimal (largest) constant ρ in
the following contraction inequality:

sup
x,y∈E

x 6=y

|Ptg(x) − Ptg(y)|
|x− y| ≤ e−ρt, (3)

for all g ∈ Lip1(d) and t ≥ 0. It is actually equivalent to

W(µ1Pt, µ2Pt) ≤ e−ρt W(µ1, µ2),

for any probability measures µ1, µ2 and t ≥ 0. Here µ1Pt stands for the law of (Xt)t≥0 starting
from a random variable distributed according to µ1. That is,

µ1Ptf(x) =

∫

E
Ptf(x)µ1(dx).

This notion of curvature was introduced by Joulin [Jou07] and Ollivier [Oll10] and is connected
to the notion of Ricci curvature on Riemannian manifolds [vRS05]. It is also a generalisation of
the Dobrushin’s Uniqueness criterion. If the optimal constant ρ is positive, then the process has
a stationary probability measure π and the semigroup converges exponentially fast in Wasser-
stein distance W to the stationary distribution. This result is a direct consequence of [Che04,
Theorem 5.23]. In general, (Xt)t≥0 is not ergodic when ρ ≤ 0 as can be easily checked with
Brownian motion. We can notice that an exponential decay is possible even though the Wasser-
stein curvature is null (see Lemma 2.1). The Wasserstein curvature is a local characteristic. It
takes into account the behavior on all the space and at any time. It corresponds to the worst
possible decay. This notion of curvature is connected with the notion of L2−spectral gap:

Theorem 1.1 (Wassertsein contraction implies L2−spectral gap for reversible semigroup). Let

(Pt)t≥0 be the semigroup of a Markov process with invariant distribution π. If the following

assumptions hold

• the Wasserstein curvature ρ is positive;

• the semigroup is reversible;

• limt→0 ‖Ptf − f‖L2(π) = 0 for all f ∈ L2(π);

• Lip1 ∩ L∞(π) ∩ L2(π) is dense in L2(π);

then it admits an invariant distribution π and

Varπ(Ptf) ≤ e−2ρtVarπ(f),
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where Varπ(f) =
∫

E(f − ∫

E fdπ)2dπ = ‖f − ∫

fdπ‖L2(π).

The proof relies crucially on reversibility. Nevertheless, for most of our examples, this con-
dition is never verified (while in contrast all one dimensional diffusions are reversible). This
theorem is just the continuous time adaptation of [HSV, Proposition 2.8] and is close to [Che04,
Theorem 5.23], [Wan03, Theorem 2.1 (2)], [Vey, Theorem 2], and [Oll10, Proposition 30].

Main results: Quantitative bounds for jump-diffusions. Let (Pt)t≥0 be the semigroup, of the
Markov process (Xt)t≥0, generated by (1). By the Itô-Dynkin Theorem,

Ptf(x) = f(x) +

∫ t

0
PsLf(x)ds = f(x) +

∫ t

0
LPsf(x)ds (4)

for all f smooth enough. See [Bec07, Dav93] for full details on the domain of L. We can
also describe the evolution of X in terms of stochastic differential equation. Let (Bs)s≥0 be a
standard Brownian motion, and letQ(ds, du, dθ) be a Poisson point process on R+×R+×[0, 1],
of intensity ds du dθ, independent from the Brownian motion. Here ds, du, dθ are the Lebesgue
measures on R+,R+ and [0, 1]. Then we have,

Xt = X0 +

∫ t

0
g(Xs)ds+

∫ t

0

√

2σ(Xs)dBs (5)

+

∫ t

0

∫

E ×[0,1]
1{u≤r(Xs−)} (F (Xs−, θ) −Xs−)Q(ds, du, dθ).

Some sufficient conditions for the existence of a solution can be found in [Bec07, Dav93]. Be-
fore expressing our main results, we recall that a Markov process is stochastically monotone
when for any x, y ∈ E, if x ≥ y then there exists a coupling (X,Y ) starting from (x, y) such
that Xt ≥ Yt almost surely for all t ≥ 0.

Theorem 1.2 (Wasserstein curvature for stochastically monotonous jump-diffusion). Let (Xt)t≥0

be a solution of (5), if it is stochastically monotonous and if

ρ = inf
x∈E

(

−g′(x) + r(x)

(

1 −
∫ 1

0
∂xF (x, θ)dθ

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ

)

≥ 0,

then the contraction inequality (3) is satisfied with the optimal constant ρ; namely

W (µPt, νPt) ≤ e−ρtW (µ, ν) (6)

for all probability measures µ, ν.

In particular, the inequality (6) holds when all these conditions are satisfied:

• r is decreasing;
• F (x, θ) < x, for almost all θ ∈ [0, 1];
• x 7→ F (x, θ) is increasing.

For instance, the jumps can be multiplicative (that is F (x, θ) = ϕ(θ)x, where ϕ ≤ 1), additive
(that is F (x, θ) = x − ϕ(θ), where ϕ ≥ 0), or a combination of these two types. We can, of
course, also suppose that r is increasing, and, for almost all θ ∈ [0, 1], F (x, θ) > x.

In the expression of ρ, we can see the interplay between the drift parameter g and the jump
mechanism r, F . We also see that the curvature does not depend on the diffusive term σ. The
proof of this result is based on an expression of the gradient using a Feynman-Kac semigroup
(see for instance [DM04]). This expression gives some rates of convergence when ρ ≤ 0. This
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theorem gives an interesting estimates in Wasserstein distance and is close to [Wu10, Theorem
2.2]. A bound in total variation is given in Section 4.

2. LIPSCHITZ CONTRACTION OF MARKOV PROCESSES

In this section, we give some properties of the Wasserstein curvature. We also prove Theorem
1.1.

2.1. Properties of the curvature. Let (Pt)t≥0 be a Markov semigroup, we denote by ρ its
Wasserstein curvature. Here, we will give two lemmas which give some properties of the cur-
vature. We begin to prove that (Pt)t≥0 can be geometrically ergodic even if its curvature is not
positive. The second lemma is a scaling property.

Lemma 2.1 (Exponential decay when ρ ≤ 0). If ρ ≤ 0 and there exists t0 > 0 such that

Kt0 = sup
x0,y0∈E

W(δx0Pt0 , δy0Pt0)

|x0 − y0| < 1,

then there exists κ > 0 such that, for all x0, y0 ∈ E, we have

∀t ≥ t0,W(δx0Pt, δy0Pt) ≤ e−tκ|x0 − y0|.
Furthermore we can choose

κ = − ln(Kt0)

t0
.

Lemma 2.1 implies the existence of an invariant distribution and the convergence to it. The-
orem 3.5 gives an application of this result. Notice that the conditions of Lemma 2.1 are not
always verified. For instance, if (Lt)t≥0 is a Lévy process then its semigroup (Pt)t≥0 verifies

W(δxPt, δyPt) = |x− y|.
Now, let ω and ω̄ be defined, for all x 6= y, by

ω(t, x, y) =
W (δxPt, δyPt)

|x− y| ,

and
ω̄(t) = sup

x,y∈E
ω(t, x, y).

The proof of the previous lemma is based on the fact that ln(ω̄) is sub-additive.

Proof of Lemma 2.1. First, we have

W(µPt, νPt) ≤ ω̄(t)W(µ, ν).

Then, for any x, y ∈ E and by Markov property, we have

W(δxPt+s, δyPt+s) = W((δxPt)Ps, (δyPt)Ps)

≤ ω̄(t)W(δxPs, δyPs).

We deduce that

ω(t+ s, x, y) ≤ ω̄(t)ω(s, x, y) ⇒ ω̄(t+ s) ≤ ω̄(t)ω̄(s).

Now, the curvature is non-negative, thus

∀t > 0, ω̄(t) ≤ 1.
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So ω̄ is decreasing. But, as there exists t0 > 0 such that ω̄(t0) < 1, we have

∀t ≥ t0, ω̄(t) < 1.

Finally, for all t ≥ t0, there exists n ∈ N such that t ≥ nt0, and then

W(δxPt, δyPt) ≤ ω̄(t) W(δx, δy) ≤ ω̄(nt0) W(δx, δy)

≤ ω̄(t0)n W(δx, δy) ≤ exp

(

t
ln(ω̄(t0))

t0

)

W(δx, δy).

�

If you change the time scale, the new curvature is easily calculable:

Lemma 2.2 (Markov processes indexed by a subordinator). Let (Xt)t≥0 be a Markov process

with curvature ρ and let (τ(t))t≥0 be a subordinator independent of X. If (Qt)t≥0 is the follow-

ing semigroup:

Qtf(x) = E[f(Xτ(t)) | X0 = x],

then its Wasserstein curvature ρQ verifies

ρQ = bρ+

∫ ∞

0
(1 − e−ρz)ν(dz) = ψ(ρ),

where ψ is the Laplace exponent of τ , b its drift term and ν its Lévy measure.

The proof is straightforward. Let us end this subsection with a remark about the notion of
Wasserstein spectral gap [HSV] which is close to our Wasserstein curvature.

Remark 2.3 (Wasserstein spectral gap). A semigroup possesses a positive Wasserstein spectral

gap [HSV] if there exist λ > 0 and C > 0 such that for all x, y ∈ E and t ≥ 0,

W (δxPt, δyPt) ≤ Ce−λtd(x, y).

If C ≤ 1 then λ is the Wasserstein curvature. This difference may be important for concentration

inequalities [Jou07, Oll10]. Almost all our results are generalisable in the case of positive

Wasserstein curvature.

2.2. Proof of Theorem 1.1: Lipschitz contraction implies L2−Spectral Gap. The proof of
this result is the continuous-time adaptation to [HSV, Proposition 2.8 ].

Proof of Theorem 1.1. Let f be a non-negative, Lipschitz and bounded function such that
∫

E fdπ =
1. Using the reversibility and the invariance of π, we have,

Varπ(Ptf) =

∫

E
fP2tfdπ −

(∫

E
fdπ

)2

≤ ‖f‖Lip(d)W (P2tfdπ, π) .

The measure P2tfdπ verifies, for all smooth ϕ,
∫

E
ϕP2tfdπ =

∫

E

∫

E
ϕ(x)f(y)P2t(x, dy)π(dx)

=

∫

E

∫

E
ϕ(x)f(y)P2t(y, dx)π(dy).
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Thus,

Varπ(Ptf) ≤ ‖f‖Lip(d)W ((fπ)P2t, π)

≤ Cfe
−2ρt. (7)

By translation and dilatation, the last inequality holds for all Lipschitz and bounded f . Now,
let f ∈ L2(π) be a Lipschitz and bounded function such that,

∫

E
f(x)π(dx) = 0 and

∫

E
f(x)2π(dx) = 1.

Applying spectral Theorem, Jensen inequality and (7), we find

Varπ(Ptf) =

∫

Ptf
2dπ =

∫

E

∫ ∞

0
e−λtdEλ(f)dπ

≤
(∫

E

∫ ∞

0
e−λ(t+s)dEλ(f)dπ

) t
t+s

≤ C
t

t+s

f e−2ρt.

Taking the limit s → +∞, we conclude the proof. �

This result can not be generalised in the non reversible case as can be viewed in the remark
4.13 below.

Remark 2.4 (Another approach). We can give an alternative proof, using Inequality (7) and

[CGZ10, Lemma 2.12]. This lemma is based on the convexity of the mapping t 7→ ln ‖Ptf‖L2(π)

which is also a consequence of the reversibility.

3. WASSERSTEIN DECAY OF JUMP-DIFFUSIONS

In this section, we will prove Theorem 1.2.

3.1. Proof of Theorem 1.2: gradient estimate via Feynman-Kac formula. In this section
we follow the approach of [CJ10]. Let X be generated by (1) and be stochastically monotone.
Let (Pt)t≥0 be its semigroup. We begin by estimating the derivative of our semigroup. More
precisely, we prove, for any smooth enough function f , the following formula:

∀x ≥ 0, (Ptf)′(x) = E

[

f ′(Yt)e
−
∫ t

0
V (Ys)ds | Y0 = x

]

. (8)

Where Y is a Markov process generated by

LSf(x) = σ(x)f ′′(x) +
(

σ′(x) + g(x)
)

f ′(x)

+ r(x)

∫ 1

0
∂xF (x, θ)dθ

(

1
∫ 1

0 ∂xF (x, θ)dθ

∫ 1

0
∂xF (x, θ)f(F (x, θ))dθ − f(x)

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ

(

1
∫ 1

0 x− F (x, θ)dθ

∫ 1

0

∫ x

F (x,θ)
f(u)du dθ − f(x)

)

.

Here, we have used the convention 0 × 1
0 = 0. The denominators are not null because of

the stochastic monotonicity. And also because we can assume, without less of generality, that
F (x, ·) 6= x almost surely.
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Lemma 3.1 (Intertwining relation and gradient estimate). If we have

∀x ∈ E, E

[

exp

(

−
∫ t

0
V (Ys)ds

)

| Y0 = x

]

< +∞,

where

V (x) = −g′(x) + r(x)

(

1 −
∫ 1

0
∂xF (x, θ)dθ

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ,

then (8) holds.

Proof. As (Lf)′ = (LS − V ) f ′, Itô-Dynkin Formula gives

(Ptf)′(x) = f ′(x) +

∫ t

0
(LPsf)′(x)ds

= f ′(x) +

∫ t

0
(LS − V ) (Psf)′(x)ds.

But, it is known that the following semigroup verifies also the previous equation:

Stf(x) = E

[

f(Yt)e
−
∫ t

0
V (Ys)ds

]

where Y is generated by LS . As there is a unique (weak) solution, we get (Ptf)′ = Stf
′. �

We deduce that:
f ′ ≥ 0 ⇒ Ptf

′ ≥ 0.

Corollary 3.2 (Propagation of monotonicity). Under the same assumptions, if f is non-increasing

then Ptf is also non-increasing.

This property is known to be equivalent to the stochastic monotonicity. It implies that this
Feynman-Kac representation of the gradient is reserved to the monotonous process. We can not
prove it in another context. This explain why this approach fails for a general class of parameters
(and in particular of a large class of jumps rates). This proof seems also not be generalisable to
higher dimension (except if the process have a radial behavior).

Proof of Theorem 1.2. Let f be a Lipschitz and smooth function. By the intertwining identity
(8) and for any x, y ≥ 0, we have

|Ptf(x) − Ptf(y)| ≤ sup
z≥0

|(Ptf)′(z)||x − y|

≤ sup
z≥0

E

[

|f ′(Yt)|e−
∫ t

0
V (Ys)ds|Y0 = z

]

|x− y|

≤ sup
z≥0

E

[

e−
∫ t

0
V (Ys)ds|Y0 = z

]

|x− y|.

So that dividing by |x− y| and taking suprema entail the following inequality

sup
x,y∈E

x 6=y

|Ptf(x) − Ptf(y)|
|x− y| ≤ sup

z≥0
E

[

exp

(

−
∫ t

0
V (Ys) ds

)

| Y0 = z

]

.

Finally, taking f(x) = x, we show that the supremum is attained. It achieves the proof. �
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Remark 3.3 (h−transform and first eigenvalue). Assume that LS −V has a first eigenvalue λ >
0 such that its eigenvector ψ is positive. Using an h−transform with the space-time harmonic

function h = e−λtψ, we get for any Lipschitz function f ,

E

[

f ′(Yt)e
−
∫ t

0
V (Ys)ds

]

= e−λtψ(x)E

[

f ′(Zt)

ψ(Zt)

]

≤ e−λt
E

[

ψ(Z0)

ψ(Zt)

]

,

where (Zt)t≥0 is another Markov process. Then, if ψ is smooth enough, the Wasserstein decay

is in order to e−λt. Section 4.2 gives an application for Kolmogorov-Langevin processes with

non convex potential.

Remark 3.4 (A proof by coupling). The stochastically monotony can be described in coupling

term. Indeed, for all x < y, there exists a coupling (Xx,Xy), such that the marginals are

generated by L, which start from (x, y), and

∀t ≥ 0, Xx
t ≤ Xy

t a.s.

Using this coupling (Xx,Xy), we have

W(δxPt, δyPt) ≤ E[|Xx
t −Xy

t |]
≤ E[Xy

t ] − E[Xx
t ]

≤ Pt(id)(y) − Pt(id)(x)

≤ sup
z∈E

(Pt(id))′ (z)|x − y|.

The bound for supz∈E (Pt(id))′ (z) can be found using the generator. Nevertheless, this proof

did not give any information about the optimality. Our approach confirms the optimality of this

coupling. This coupling is the same as [CMP10]. It favours the simultaneous jumps.

Now, we give an application of Lemma 2.1 which is a criterion for an exponential convergence
when ρ = 0.

Theorem 3.5 (Exponential decay when the curvature is null). Under the same assumptions of

the previous lemma and if V ≥ 0, Y is irreducible, there exist a compact set K = [a, b] and a

constant ε > 0 such that

∀x /∈ K,V (x) ≥ ε,

then there exist t̃ ≥ 0 and κ > 0 such that

∀t ≥ t̃, W(µPt, νPt) ≤ e−κt W(µ, ν),

for any probability measure µ, ν.

Notice that, if there exist x ∈ E such that V (x) = 0 then the Wasserstein curvature is null.

Proof. The proof is adapted to [MT06, Section 5.1]. Let

D(t, x) = Ex

[

exp

(

−
∫ t

0
V (Ys)ds

)]

,

and D̄(t) = supx∈E D(t, x). Here Ex[·] stands for E[·|Y0 = x]. It is easy to see that for all
x ∈ E, D(·, x) and D̄ are non increasing. Furthermore, if D(t, x) = 1 and Y0 = x then
V (Ys) = 0 almost surely, for all s ≤ t. Then, as Y is irreducible, there exists t0 > 0 such that
we have

∀x ∈ E, ∀t > t0,D(t, x) < 1. (9)
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Now, we begin to prove the existence of t1 ≥ 0 such that

∀t ≥ t1, D̄(t) < 1.

If x /∈ K then we set τ = inf{t ≥ 0 | Yt ∈ K}. We have,

D(t, x) = Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

+ Ex

[

1τ≥t exp

(

−
∫ t

0
V (Ys)ds

)]

≤ Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

+ e−εt.

And

Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

≤ Ex

[

1τ<te
−ετ

Ex

[

exp

(

−
∫ t

τ
V (Ys)ds

)

| Fτ

]]

≤ Ex

[

1τ<te
−ετ max

c∈{a,b}
D(t− τ, c)

]

≤ Ex

[

1τ<t/2e
−ετ max

c∈{a,b}
D(t− τ, c)

]

+ Ex

[

1t/2≤τ<te
−ετ max

c∈{a,b}
D(t− τ, c)

]

≤ max
c∈{a,b}

D(t/2, c) + e−εt/2,

where F = (Ft)t≥0 is the natural filtration associated to Y . Thus,

sup
x/∈K

D(t, x) ≤ max
c∈{a,b}

D(t/2, c) + e−εt + e−εt/2.

We deduce that lim supt→+∞ supx/∈K D(t, x) < 1 and the existence of t1 such that for all
t ≥ t1,

sup
x/∈K

D(t, x) < 1.

The Feynman-Kac semigroup is continuous on K . So, we deduce that D̄(t) < 1 for all t ≥ t̃ =
max(t0, t1). Lemma 2.1 ends the proof. We can also use the argument to [MT06] (which is very
similar). That is, the Markov property ensures that

D(t + s, x) = Ex

[

exp

(

−
∫ t

0
V (Yu)du

)

EYt

[

exp

(

−
∫ t

0
V (Yu)du

)]]

≤ Ex

[

exp

(

−
∫ t

0
V (Yu)du

)

D̄(s)

]

= D(t, x)D̄(s)

≤ D̄(t)D̄(s),

and then D̄(t + s) ≤ D̄(t)D̄(s). For all t > t̃, there exists n ∈ N such that t ≥ nt̃. Thus, we
have

W(µPt, νPt) ≤ D̄(t) W(µ, ν) ≤ D̄(nt̃) W(µ, ν)

≤ D̄(t̃)n W(µ, ν) ≤ exp

(

t
ln(D̄(t̃))

t̃

)

W(µ, ν).
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Remark 3.6 (A link with the quasi-stationary distribution (QSD) ). If V ≥ 0 then we have

another representation of the gradient of (Pt)t≥0. Indeed we have

∂xPtf(x) = E[f ′(Yt)1t<τ | Y0 = x],

where Y is a Markov process generated by LS and τ verifies

P(τ > t | Ys, s ≤ t) = exp

(

−
∫ t

0
V (Ys)ds

)

.

If Y admits a Yaglom limit, that is, there exists µ such that

lim
t→+∞

E[f ′(Yt) | Y0 = x, t < τ ] =

∫

fdµ,

then we have P(τ > t) ∼ e−θt, for some θ > 0. And then, if π is the invariant distribution of X,
∣

∣

∣

∣

Ptf(x) −
∫

E
fdπ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

E

∫

[x,y]
E[f ′(Yt) | Y0 = u]du dπ(y)

∣

∣

∣

∣

∣

≤ Ce−θt.

Remark 3.7 (On the usage of an other gradient). Another way to prove an exponential decay in

the case of non positive curvature is to change the distance. Let a be a positive and increasing

function, the following mapping defines a distance:

∀x, y ∈ E, da(x, y) = |a(x) − a(y)|.
Our proof is generalisable for this distance. It is enough to commute L and ∇a = a∇ instead

of L and ∇. This method is efficient for the M/M/1 in [CJ10]. We have not followed this

approach. Nevertheless it can improve the rate of convergence, it do not generalise the field of

concerned processes; that are the stochastically monotonous processes.

�

4. EXAMPLES AND APPLICATIONS

In this section we develop several examples. In Subsection 4.1, our main results are simply
applied to some models with biological applications. In Subsection 4.2, we use our intertwining
relation and an h−transform to obtain a rate of convergence for Kolmogorov-Langevin pro-
cesses. In the section that follows, we use our main theorem to find a bound in total variation for
some PDMP. We finish by several remarks for the example of the TCP process.

4.1. Stochastic models for population dynamics.

4.1.1. Feller diffusion with multiplicative jumps: The Bansaye-Tran process. Let us consider
the process studied in [BT11]. It lives on E = R+ and evolves according to a Feller diffusion;
namely

dXt = gXtdt+
√

2sXtdBt,

where g and s are two positive numbers. When it jumps from x, this new state is Hx, where
the random variable H is distributed according to a probability measure H on [0, 1]. We assume

that H
d
= 1 − H . This process models the rate of parasite in a cell population. The number

of parasite grows in each cell and, sometimes, the cells divide. These two phenomena do not
unwind in the same time scale. The parasites born and die faster than the cells divide. Thus, the
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rate of parasite is modelled by a Feller diffusion. This one can be understood as the limit of birth
and death process. The jumps model the division of cell. In this setting, we have

Corollary 4.1 (Exponentially decreasing to 0 when r is decreasing). If r is decreasing and

ρ = E[H]

(

inf
x≥0

r(x) − xr̄′

)

− g > 0,

where r̄′ = supx≥0 r
′(x), then for any t ≥ 0,

E[|Xt|] ≤ e−tρ
E[|X0|].

Proof. Using theorem 1.2, we deduce that Wasserstein curvature ρ is positive. Furthermore, δ0

is invariant and W(δxPt, δ0) = PtId(x) = E[Xt | X0 = x]. �

In [BT11], it is proved that if r is monotonous then X convergences, almost surely, to zero.
They do not give an explicit bound for the convergence. Our corollary gives a (new) bound for
the L1-convergence. To compare, for instance, [BT11, Proposition 3.1] says

Theorem 4.2 (Extinction criterion when r is constant). We have the following duality.

(i) If g ≤ −r ∫ 1
0 log(h)H(dh), then P(∃t > 0, Yt = 0) = 1.

Moreover if g < −r ∫ 1
0 log(h)H(dh),

∃α > 0, ∀x0 ≥ 0, ∃c > 0,∀t ≥ 0, P(Xt > 0 | X0 = x0) ≤ ce−αt. (10)

(ii) If g > −r ∫ 1
0 log(h)H(dh), then P(∀t ≥ 0, Xt > 0) > 0.

Furthermore, for every 0 ≤ α < g + r
∫

log(h)H(dh),

P

(

lim
t→+∞

e−αtYt = ∞
)

= {∀t, Xt > 0} a.s.

The point (10) can be written as

dT V (δx0Pt, δ0) ≤ ce−αt.

And the second point (ii) implies that

limt→+∞dT V (δx0Pt, δ0) > 0.

But when r is constant and the curvature ρ is positive, we have g < −r ∫ 1
0 log(h)H(dh). Thus

X converges almost surely to 0, and

E[|Xt|] ≤ e−ρt
E[|X0|].

More precisely, a rapidly calculation gives

E[Xt] = e−ρt
E[X0].

So, if
∫ 1

0
− log(h)H(dh) >

g

r
> κ = 1 −

∫ 1

0
hH(dh),

then

lim
t→+∞

Xt = 0 a.s. but lim
t→+∞

E[Xt] = +∞.
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4.1.2. Rate of convergence for branching measure-valued processes. Let us consider a model
of structured population. We observe a Markov process indexed by a supercritical continuous
time Galton Watson tree. Along the branches of the tree, the process evolves as a diffusion. The
branching event is nonlocal; namely the positions of the offspring are described by a random
vector (Fj,K(x,Θ))j≤K . They depend on the position x of the mother just before the branching
event and on the number K of offspring. The randomness of these positions is modelled via
Θ; it is a uniform variable on [0, 1]. This process can be described with the following empirical
measure:

Zt =
∑

u∈Vt

δXu
t
,

where Xu
t lives in the branch u at time t and Vt is the set of branch at time t. It was proved in

[BDMT] and [Clo] that

1

E[Zt(E)]
E

[∫

E
f(x)Zt(ds)

]

=
1

E[card(Vt)]
E





∑

u∈Vt

f(Xu
t )



 = E [f(Yt)] ,

where Y is generated by (1), with biased parameter. With this formula, we can deduce the long
time behavior and the contraction properties of the mean measure. A similar formula holds when
r is not constant [Clo]. It will be interesting to capture the speed of convergence to Z instead of
E[Z]. A first approach is given in [Clo, Theorem 1.2].

4.2. Kolmogorov-Langevin processes. Let us consider the process which verifies

dXt =
√

2dBt − q′(Xs)ds,

where q is C∞ and B is a standard Brownian motion. It is already known that, under suitable
assumptions, this process converges to the Gibbs (or Boltzmann) measure π(du) = e−q(u)du/Z ,
where Z is a renormalizing constant. Theorem 1.2 shows that the curvature is equal to ρ =
infz∈R q

′′(z). It is trivial but we can hope an exponential decay to the invariant measure when
ρ < 0. In particular, ρ = 0 was studied in [MT06, Section 5]. We have

Theorem 4.3 (Wasserstein exponential ergodicity). Assume that

lim
|x|→+∞

q′′(x) = +∞,

then there exists λ > 0 such that

∀x, y ∈ R, ∃Cx,y > 0, ∀t ≥ 0, W (δxPt, δyPt) ≤ Cx,ye
−λt.

Furthermore for all x ∈ R there exists Cx such that

∀t ≥ 0,W (π, δxPt) ≤ Cxe
−λt.

Notice that λ is "explicit". It is the first eigenvalue to the operator

f :7→ −f ′′ + f(q′′/2 + q′2/4).

Or equivalently it is also the first eigenvalue to f :7→ −f ′′ + q′(x)f ′(x).

Proof. Let (Pt)t≥0 be the semigroup of X. By Lemma 3.1, we have, for all f smooth enough,

∂xPtf = Stf
′,
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where (St)t≥0 is the Feynman-Kac semigroup generated by LS defined by,

LSf = f ′′(x) − q′(x)f ′(x) − q′′f(x).

As said in Remark 3.3, we will do an h−transform. Let H be the closure on L2 of the operator
defined by

Hf = −f ′′ + f

(

q′′

2
+
q′2

4

)

.

There exists a unique positive function ϕ ∈ L2 ∩ C∞ and a real number λ > 0 such that
Hϕ = λϕ. Indeed, It is known from [BS83, Theorem 3.1 p. 57] that if

lim
|x|→+∞

q′′(x)

2
+
q′2(x)

4
= +∞,

then H has a discrete spectrum. Furthermore, there exists a unique positive eigenvector. It
corresponds to the smaller eigenvalue λ > 0 and we denote it by ϕ [BS83, chapter 2]. The
regularity of ϕ comes from the regularity of q. Let (Qt)t≥0 be defined for all smooth enough f
by

Qt(f) =
eλt

ϕ
e−q/2St(fϕe

q/2). (11)

We have

∂tQt(f) = λ
eλt

ϕ
e−q/2St(fϕe

q/2) +
eλt

ϕ
e−q/2St(LS(fϕeq/2))

=
eλt

ϕ
e−q/2St(fe

q/2Hϕ) +
eλt

ϕ
e−q/2St(−eq/2H(fϕ))

=
eλt

ϕ
e−q/2St(e

q/2ϕGf)

= Qt(Gf),

where

Gf = f ′′ + 2
ϕ′

ϕ
f ′.

The relation (11) gives

∂xPtf(x) = e−λteq(x)/2ϕ(x)E

[

f ′(Yt)

ϕ(Yt)
e−q(Yt)/2 | Y0 = x

]

,

where Y is a Kolmogorov-Langevin process generated by G and starting from x. Thus, if f is
Lipschitz then,

|∂xPtf(x)| ≤ e− infz∈R q(z)/2e−λteq(x)/2ϕ(x)Qt

(

1

ϕ

)

(x).

But

G
1

ϕ
=

−ϕ′′

ϕ2
=

1

ϕ

(

λ− q′′

2
− q′2

4

)

.

So, by [MT93, Theorem 6.1] with V = 1/ϕ, we have
∣

∣

∣

∣

Qt

(

1

ϕ

)

(x) − π̃

(

1

ϕ

)∣

∣

∣

∣

≤ Bβt
(

1 +
1

ϕ(x)

)

,
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for all x ∈ R, where β ∈ (0, 1), B ≥ 0 and π̃(dx) = e
∫ x

2ϕ′/ϕdx/Z = ϕ(x)2dx/Z (Z is a
renormalizing constant). Notice that we also have

π̃

(

1

ϕ

)

=

∫

R

ϕ(x)dx < +∞.

Finally,

|∂xPtf(x)| ≤ e− infz∈R q(z)/2e−λteq(x)/2ϕ(x)

(

π̃

(

1

ϕ

)

+Bβt
(

1 +
1

ϕ(x)

))

.

Thus, the first inequality of the theorem holds with

C(x, y) = C × sup
z∈[x,y]

eq(z)/2 (1 + ϕ(z)) |x− y|.

Furthermore the Cauchy-Schwarz inequality gives that for all x ∈ R, we have
∫

R
C(x, y)π(dy) <

+∞. �

Remark 4.4 (h−transform and Schödinger equation). The transformation (11) is usual in the

study of schrödinger equation [Pin95]. It has many applications in the study of absorbed pro-

cesses (to estimate the law of the Q-process), of branching measures [Clo], but to our knowledge

our approach is new.

Remark 4.5 (Ornstein-Uhlenbeck process). If q(x) = µx2/2 then the assumptions of the theo-

rem do not hold. But we can follow the proof step by step. The mapping ϕ : x 7→ e−µx/2 is an

eigenvector of H with respect to the eigenvalue µ. So, we find that G = L and

W (δxPt, δyPt) ≤ e−µt|x− y|.
In fact, it easy to see that it is an equality. This example points the sharpness of our method.

4.3. Total variation decay of PDMP. Let X be a piecewise deterministic Markov process
(PDMP) on E ⊂ R; that is, it is generated by

Lf(x) = g(x)f ′(x) + r(x)

(∫

E
f(y)K(x, dy) − f(x)

)

,

where K is a Markov kernel and g, r was described below. By Theorem 1.2, if X is stochasti-
cally monotonous then its Wasserstein curvature is given by

ρ = inf
x∈E

(

−g′(x) + r(x)

(

1 − ∂x

(∫

E
yK(x, dy)

))

+ r′(x)

∫

E
(y − x)K(y, dx)

)

.

If ρ is positive and K "contracts in total variation" then we are able to prove an exponential
decay in total variation distance. Let us recall that, for any probability measure µ1, µ2, the total
variation distance is defined by

dT V (µ1, µ2) = inf P(X1 6= X2),

where the infimun is taken over all couple (X1,X2) such thatX1,X2 are respectively distributed
according to µ1, µ2. Hereafter, we will use the following notations:

ḡ′ = sup
z∈E

g′(z) and r = inf
z∈E

r(z).

Theorem 4.6 (Total variation decay for monotonous PDMP). If the following assumptions hold:

i) the Wasserstein curvature is lower bounded ρ ≥ κ > 0;
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ii) r is "sufficiently" lower bounded; namely r > 0 ∧ ḡ′;

iii) there exists C > 0 such that

∀x, y ∈ E, dT V (K(x, ·),K(y, ·)) ≤ C|x− y|;
then

dT V (µPt, νPt) ≤ Kµ,νe
−θt, (12)

where θ = κr
κ+r and

Kµ,ν =

(

κ

(

C +
r̄′

r

)

r

r − ḡ′
W (µ, ν)

)

r

r+κ

+ κ
κ

r+κ

((

C +
r̄′

r

)

r

r − ḡ′
W (µ, ν)

)

r+2κ

r+κ

.

Notice that, if X do not jump before t then its trajectory is deterministic. If r is constant
then we have dT V (δxPt, δyPt) ≥ ert. The point ii) provides that the first jump comes before a
time which is exponentially distributed. The point iii) is the main assumption of this theorem. It
means that we can stick the two marginals of a coupling if they are close.

Remark 4.7 (A storage model). Let (Xt)t≥0 be the Markov process, on E = R
∗
+, generated by

Lf(x) = −gxf ′(x) + r(x)

(

∫

R+

f(x+ u)λe−λudu− f(x)

)

.

Here g, λ > 0, r > 0. It models a stock. The current stock decreases exponentially, and

increases at inhomogeneous random times by a random amount (distributed following an expo-

nential variable). We deduce directly, from our main theorem, that if r is increasing then for any

x, y ≥ 0,

∀t ≥ 0,W (δxPt, δyPt) ≤ e−(g+ 1
λ

infx≥0 r′(x))t|x− y|.
On this example, the constants of the previous theorem are

Kµ,ν =

(

ρ

(

1

λ
+

r̄′

r(0)

)

r(0)

r(0) − g
W (µ, ν)

)

r(0)
r(0)+ρ

+ ρ
ρ

r(0)+ρ

((

1

λ
+

r̄′

r(0)

)

r(0)

r(0) − g
W (µ, ν)

)

r(0)+2ρ

r(0)+ρ

.

and

θ =
ρr(0)

ρ+ r(0)
.

For instance, if r is constant, we have

dT V (µPt, νPt) ≤ e−t gr

g+rKµ,ν .

This rate is not optimal [BCG+]. Our approach is similar to [BCG+], we build a coupling such

that the components are closer on [0, s] and we change the coupling to stick the components on

[t − s, t]. In [BCG+], the time s is random while in our proof, it is deterministic. Here, s is not

random because when r is not constant the countable process associated at the jumps is not a

Poisson process.
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The proof is based on the following lemma, proved via coupling argument:

Lemma 4.8 (Local total variation estimate). Let x > y and t ≥ 0, under the same assumption

of Theorem 4.6, we have

dT V (δxPt, δyPt) ≤ e−tr + |x− y|
(

C +
r̄′

r

)

r

r − ḡ′
.

Here r̄′ = supz∈E r
′(z).

Proof of Theorem 4.6. The previous expression is equivalent to

dT V (µPt, νPt) ≤ e−tr +

(

C +
r̄′

r

)

r

r − ḡ′
W(µ, ν),

for any µ and ν which have a first moment. As ρ > 0, we deduce that, for all s ≤ t,

dT V (µPt, νPt) = dT V ((µPs)Pt−s, (νPs)Pt−s)

≤ e−(t−s)r + e−ρs

(

C +
r̄′

r

)

r

r − ḡ′
W (µ, ν) .

And thus, dT V (µPt, νPt) ≤ Kµ,νe
−θt

�

Proof of Lemma 4.8. Let us consider the coupling (X,Y ), starting from (x, y), and generated
by

Gf(x, y) = g(x)∂xf(x, y) + g(y)∂yf(x, y)

+ r(x) ∧ r(y)

(∫

E×E
f(u, v)K((x, y), d(u, v)) − f(x, y)

)

+ (r(x) − r(y))+
(∫

E
f(u, y)K(x, du) − f(x, y)

)

+ (r(y) − r(x))+
(∫

E
f(x, u)K(y, du) − f(x, y)

)

.

K is choose such that
∫

E×E
1u 6=vK((x, y), d(u, v)) = dT V (K(x, ·),K(y, ·)) .

The dynamics of this coupling is as follow.

• It start from (X0, Y0) = (x, y) and for all t < T , X ′
t = g(Xt) and Y ′

t = g(Yt).
• The time T verifies

P(T > t) = exp

(

−
∫ t

0
r(xs) ∨ r(ys)ds

)

,

where x0 = x, y0 = y and x′
t = g(xt), y

′
t = g(yt).

• At time T , we toss a coin B such that

P(B = 0 | T ) =
r(xT ) ∧ r(yT )

r(xT ) ∨ r(yT )
and P(B = 1 | T ) =

|r(xT ) − r(yT )|
r(xT ) ∨ r(yT )

.

If B = 0 then the two trajectories jump simultaneously and if B = 1 only one compo-
nent jumps.

• If the two trajectories jump in the same time then we stick them.
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• We repeat these steps starting from (XT , YT ).

We would like to stick the trajectories at the first jump (to stick them before is impossible),
and so maximise the quantity P (Xt = Yt) i.e.

P (Xt = Yt) ≥ P (XT = YT , t ≥ T,B = 0) .

And as we have
|xt − yt| = xt − yt ≤ eT supz∈E g′(z)|x− y|,

we deduce,

P (XT = YT , t ≥ T,B = 0) ≥E [1t≥T,B=0P (XT = YT | (T,B))]

≥E

[

1t≥T,B=0

(

1 − C|x− y|eT ḡ′
)]

≥E

[

1t≥T

(

1 − C|x− y|eT ḡ′
)

P (B = 0 | T )
]

≥E

[

1t≥T

(

1 − C|x− y|eT ḡ′
)

(

1 − r̄′

r
|x− y|eT ḡ′

)]

.

Finally, as we can upper bounded T by an exponential variable E with parameter r, we conclude
that

dT V (δxPt, δyPt) ≤ P(Xt 6= Yt)

≤ E

[

1t<T + 1t≥T |x− y|eT ḡ′

(

C +
r̄′

r

)]

≤ P(t < E) + |x− y|
(

C +
r̄′

r

)

E

[

1t≥T e
T ḡ′
]

≤ e−tr + |x− y|
(

C +
r̄′

r

)

r

r − ḡ′
.

�

We can give similar results when the curvature is null:

Corollary 4.9 (A bound when ρ = 0). Assume that ii) and iii) hold, X is stochastically monot-

onous and irreducible, ρ = 0 and there exist [a, b] ⊂ E and ε > 0 such that for all x /∈ [a, b]
(

−g′(x) + r(x)

(

1 − ∂x

∫

E
yK(x, dy)

)

+ r′(x)

∫

E
y − xK(y, dx)

)

≥ ε.

Then there exist K > 0 and θ > 0 such that

dT V (µPt, νPt) ≤ K(1 + W(µ, ν))e−θt.

For any starting distribution µ, ν.

Proof. It is a direct application of Theorem 3.5. �

Remark 4.10 (Total variation decay and jump-diffusions). We can prove a similar result if the

process have a diffusive part. Nevertheless, if X diffuses then the convergence will be faster.
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Remark 4.11 (A better criterion?). The main assumption of this theorem is a contraction of the

kernel in total variation (point iii)). This assumption is natural but not always interesting in the

applications. For instance, we can have

K(x, dy) = δF (x),

for some F . It is the case for the TCP process [BCG+].

4.4. TCP window size process.

4.4.1. The continuous time process. Now, we consider a process which represent the TCP con-
gestion. This Markov process, (Xt)t≥0 is generated, for any smooth enough function f and
x ≥ 0, by

Lf(x) = f ′(x) + r(x)

(∫ 1

0
f(hx)H(dh) − f(x)

)

. (13)

The invariant probability measure is explicit when r(x) = rxα. It is explain in the following.
Our main result gives

Corollary 4.12 (Wasserstein curvature). If r is non increasing, we have that ρ, defined at (3),
verifies

ρ =

(

1 −
∫ 1

0
hH(dh)

)

inf
x≥0

(

r(x) − xr′(x)
)

. (14)

In [CMP10], it was proved that

r(x) = x+ a ⇒ ρ ≥ a

2
.

But when the process is near to 0, the jump rate is a so you have ρ = a/2. This bound is the
same to (14). It seems to be a coincidence. A recent work [BCG+] prove that, nevertheless the
curvature is null when r(x) = x, this process converges exponentially to its invariant distribution
in Wasserstein and total variation distance. If r is non increasing and ρ = 0, Theorem 3.5 tell us
that we can have an exponential decay in Wasserstein distance.

Remark 4.13 (Poincaré or log-Sobolev inequality and the Bakry-Emery criterion). Our ap-

proach is based on a commutation formula as well as the Bakry-Emery calculus [BÉ85]. Never-

theless, in general, our processes do not verify a Poincaré or a log-Sobolev inequality. That is,

for the first one,

λVarπf ≤
∫

Γfdπ,

where Γf = 1
2L(f2) − fLf and λ > 0. Indeed, in the case of the TCP window size, we have

Γf(x) = r(x)

(∫ 1

0
f(hx)H(dh) − f(x)

)2

.

And if H = δ1/2, we easily construct a lot of functions f such that Γf = 0 (see [LP09]). Thus,

we have an example where the process have a positive Wasserstein curvature and which do not

verify a Poincaré inequality. Note that X is not reversible, thus it do not contradict Theorem

1.1.
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4.4.2. The embedded chain. Let (X̂n)n≥0 be the embedded chain of the TCP process. That is
defined by

X̂n = XTn where Tn = inf{t > Tn−1 | Xt+ 6= Xt−} for n ≥ 1 and T0 = 0. (15)

This Markov chain is often easier to study than the continuous time process. For instance, if
r(x) = axα, it is easy to see that

R(X̂Tn+1) = R(Hn(R−1(En +R(X̂Tn)))) = Hα+1
n (En +R(X̂Tn)),

where R is the antiderivative of r and Hn = XTn/XTn−. This autoregressive relation gives the
ergodicity. Furthermore, the limiting random variable X̂∞ verifies

R(X̂T∞)
d
= Hα+1

1 (E1 +R(X̂∞)).

Now, using [GRZ04, Proposition 5], we deduce that X̂∞ have a density given by

x 7→ 1
∏

n≥1(1 − h(α+1)n)

∑

n≥0

n
∏

k=1

h−(α+1)(n+1)

1 − h−(α+1)k
axαe−h−(α+1)(n+1)a(α+1)−1x(α+1)

.

Now, applying [Dav93, Theorem 34.31], we can deduce the invariant law of the continuous
time process. This result generalises [GRZ04], but it is already known via others techniques
[vLLO09]. For this Markov chain, we arrive to bound all Wasserstein distance. Recall that for
every p ≥ 1, the W(p) Wasserstein distance, between two laws µ1 and µ2 on E with finite pth

moment, is defined by

W(p)(µ1, µ2) = inf
{X∼µ1,Y ∼µ2}

(E [|X − Y |p])1/p ,

where the infimum runs over all coupling of µ1 and µ2. We have

Theorem 4.14 (Wasserstein exponential ergodicity for the embedded chain). Assume that L(X0)

and L(Y0) have finite pth moment for some real p ≥ 1 and r is increasing. Let X̂ and Ŷ be the

embedded chains of X and Y . Then, for any n ≥ 0, with a random variable H ∼ H,

W(p)(L(X̂n),L(Ŷn)) ≤ E(Hp)n/pWp(L(X0),L(Y0)).

In particular, if π̂ is the invariant law of X̂ then

W(p)(L(X̂n), π̂) ≤ E(Hp)n/pWp(L(X0), π̂).

This result generalises [CMP10, Theorem 2.1] but the proof is exactly the same and we give
it for sake of completeness.

Proof. It is sufficient to provide a good coupling. Let x ≥ 0 and y ≥ 0 be two non-negative
real numbers, and let (En)n≥1 and (Hn)n≥1 be two independent sequences of i.i.d. random

variables with respective laws the exponential law of unit mean and the law H. Let X̂ and Ŷ be
the discrete time Markov chains on [0,∞) defined by

X̂0 = x and X̂n+1 = Hn+1R
−1(R(X̂n) + En+1) for any n ≥ 0

Ŷ0 = y and Ŷn+1 = Hn+1R
−1(R(Ŷn) + En+1) for any n ≥ 0.
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The law of X̂ (respectively Ŷ ) is the law of the embedded chain of a process generated by
L and starting from x (respectively y). Now, let a be a non-negative number, if ϕa : x 7→
R−1(a+R(x)) then

ϕ′
a(x) =

r(x)

r (R−1(a+R(x)))
≤ 1 ⇒ |ϕa(x) − ϕa(y)| ≤ |x− y|. (16)

And we get

∀p ≥ 1, E[|X̂n+1 − Ŷn+1|p] = E[Hp
n+1|ϕEn+1(X̂n) − ϕEn+1(Ŷn)|p]

≤ E[Hp
n+1|X̂n − Ŷn|p] = E[Hp

n+1]E[|X̂n − Ŷn|p].

A straightforward recurrence leads to

E[|X̂n − Ŷn|p] ≤ E[Hp
1 ]n|x− y|p.

It gives the desired inequality when the initial laws are Dirac masses. The general case follows
by integrating this inequality with respect to couplings of the initial laws. �

This theorem gives a bound of the coarse Ricci curvature [Oll10], which is the discrete time
equivalent of the Wasserstein curvature. We can compare the curvature of this Markov chain and
its continuous time equivalent.

4.5. Integral of Lévy processes with respect to a Brownian motion. Let us consider a frag-
mentation process i.e.

∫ 1
0 f(F (x, θ))dθ =

∫

f(hx)H(dh) where H is a probability measure on
[0, 1]. As mentioned below, X is solution to

Xt = X0 +

∫ t

0
g(Xs)ds+

∫ t

0
σ(Xs)dBs

−
∫ t

0

∫

E ×[0,1]
1{u≤r}θXs−Q(ds, du, dθ).

The jump times T1, ... are distributed following a Poisson process Nt. Between these times, the
process evolves like a diffusion. At these times, we have XTj

= HjXTj−, where (Hj) is a i.i.d.
sequence of law H. we assume that H1 ∈ (0, 1) almost surely. If you take the logarithm of X
then the multiplicative jumps become additive jumps. Then, as the jump times are Poissonian,
we can obtain a continuous process by renormalising our process with a Lévy process. Formally,
let (Lt) be the Lévy process defined by

Lt = −
∫

R+ ×[0,1]
1{u≤r} ln(h)Q(ds, du, dh) = − ln





Nt
∏

j=1

Hj



 ,

and let X̄ be the continuous process defined by X̄t = Xte
Lt . We have

Lemma 4.15 (Stochastic differential equation for X̄ and X). For any t ≥ 0,

X̄t = X0 +

∫ t

0
eLsg(Xs)ds+

∫ t

0
eLsσ(Xs)dBs

and,

Xt = X0e
−Lt +

∫ t

0
e−Lsg(Xt−s)ds+

∫ t

0
e−Lsσ(Xt−s)dBs.
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Proof. All the stochastic integrals that we write are well defined as local martingales. Using
Itô’s formula with jumps [IW89, Theorem 5.1, p.67] (see also [JS03, Theorem 4.57, p.57]) and
since X̄ is continuous, we get

X̄t = X0 +

∫ t

0
eLs (g(Xs)ds + σ(Xs)dBs)

+

∫ t

0
Xs−e

Ls− −Xse
Ls1{u≤r}Q(ds, du, dh)

= X0 +

∫ t

0
eLs (g(Xs)ds + σ(Xs)dBs) .

Then, we deduce,

Xt = X0e
−Lt +

∫ t

0
eLs−Lt (g(Xs)ds + σ(Xs)dBs)

= X0e
−Lt +

∫ t

0
e−Lt−s (g(Xs)ds + σ(Xs)dBs)

= X0e
−Lt +

∫ t

0
e−Lsg(Xt−s)ds +

∫ t

0
e−Lsσ(Xt−s)dBs.

�

This lemma is a generalisation of the relation of [BT11, Lemma 3.2] and [LvL08, Section 6].
In [BT11], it is a preliminary for the proof of Theorem 4.2. In [LvL08], they deduce that when
g is constant, and σ = 0, we have

lim
t→+∞

Xt = g

∫ +∞

0
e−Lsds.

The behavior of the right hand side was studied in [BY05] and [CPY01] for general Lévy pro-
cesses. We give another application. Let Y be defined, for all t ≥ 0, by

Yt =

∫ t

0
e−LsdBs,

where Lt =
∑Nt

k=1 ln(Hj) is independent from the Brownian motion B, and (Hj)j≥0 are i.i.d.
and distributed according to H. Let us define for all n ∈ N, κn = 1 − ∫ 1

0 hH(dh), we have

Theorem 4.16 (Long time behavior of Integral of compound Poisson process with respect to an
independent Brownian motion). Y converges in law to a measure π such that

∫

xnπ(dx) =
n!

rn/2
∏n/2

k=1 κ2k

for all n ∈ 2Z, and
∫

xnπ(dx) =
n!

r(n+1)/2
∏(n+1)/2

k=1 κ2k−1

otherwise. Furthermore all its moments converges and for all t ≥ 0,

W (L(Yt), π) ≤ e−κ1tW(δ0, π).
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Proof. By the previous lemma, we know that Y is generated by (1), where, g = 0, σ = 1,
r is constant and Y0 = 0. This process is positively curved thus it admits a unique invariant
probability measure and converges exponentially to it. Furthermore, applying the generator on
the functions αn : x 7→ xn gives the moments of π (we can use the Carleman criterion to prove
that Y converges also to a measure with this moment).

�
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