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WASSERSTEIN DECAY OF ONE DIMENSIONAL JUMP-DIFFUSIONS

BERTRAND CLOEZ

ABSTRACT. We are interested by a one dimensional Markov process whichmoves following
a diffusion for some random time and then jumps. It can represent some natural phenomena
like size of cell or data transmission over the Internet. Thepaper begin with some results about
Lipschitz contraction of semigroup. Our approach is connected with the notion of curvature
introduced by Ollivier and Joulin. Our main results for jump-diffusions are quantitative estimates
in Wasserstein distance, when the jump times depend of the space motion. We use different
techniques which are a particular Feynmann-Kac interpretation and a non coalescent coupling.
Several examples and applications are developed, including explicit formulas for the equilibrium,
application to branching measure-valued processes and integrals of compound Poisson process
with respect to a Brownian motion.
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1. INTRODUCTION AND MAIN RESULT

1.1. Introduction and related work. We are interested by a process that models a fragment
which remains stable and moves for some random time and then jumps. It represents some nat-
ural phenomena that can be observed at a great variety of scales. To give just few examples, let
us simply mention the studies of stellar fragments in astrophysics, fractures and earthquakes in
geophysics, degradation of large polymer chains in chemistry, size of cell in biology, fragmen-
tation of a hard drive in computer science. More precisely, This processX = (Xt)t≥0 hasE, a
subinterval ofR, as state space and its infinitesimal generator is given, forany smooth enough
functionf : E 7→ R, by

(1) ∀x ≥ 0, Lf(x) = σ2(x)f ′′(x) + g(x)f ′(x) + r(x)

(∫ 1

0
f (F (x, θ)) − f(x)dθ

)

whereσ, r, g andx 7→ F (x, ·) areC∞, θ 7→ F (·, θ) is measurable,r andσ are non negative.
Betweens the jumps, this process evolves like a diffusion(Yt)t≥0 which satisfies the following
stochastic differential equation :

(2) dYs = g(Ys)ds +
√

2σ(Ys)dBs

where(Bt)t≥0 is a standard Brownian motion. Then, at a random timeT which verifies
∫ T

0
r(Ys)ds ∼ Exp(1) ⇔ P (T > t | Ys, s ≤ t) = exp

(

−
∫ t

0
r(Ys)ds

)

it jumps followingF . IndeedXT = F (XT −,Θ) = F (YT −,Θ) whereΘ is a uniform variable
on [0, 1]. Then, the process evolves like the diffusion and we repeat these steps again and again.
This process is an hybrid process [5] and whenσ = 0 it is a piecewise deterministic Markov
process (PDMP) [14].

Some subclass of this process was studied. For instance, thearticles [3, 10, 15, 17, 18, 26, 25, 32]
study a version which represent the modeling of the famous Transmission Control Protocol
(TCP) used for data transmission over the Internet. And in [1, 2, 13, 24, 31], some others exam-
ples represent the growth of some biological content of the cell (nutriments, parasites,...) which
is shared randomly in the daughter cells when the cell divide. There is again a lot of application,
like reliability theory and queuing [14, 23, 25]. Some theorems about the ergodicity and others
properties are established in these papers. But to find an explicit bound for the speed of conver-
gence is an interesting question which it remains to establish.

Our aim in this paper is to get quantitative estimates for theconvergence to equilibrium of
X. For some particular coefficient, it is ergodic and admits a unique invariant law. We can find
conditions in [23], when the jumps are additive, and in [1, proposition 5.1], when the jumps are
multiplicative. These two results are proved via Lyapunov techniques. Nevertheless, this pro-
cess is, in general, irreversible since time reversed sample paths are not sample paths and it has
infinite support. This makes Lyapunov techniques less efficient for the derivation of quantitative
exponential ergodicity. Furthermore, another main difficulties is that entropy methods fails. In
general, the process do not verify a Poincaré or log-Sobolevinequality.

Using different techniques (gradient estimate via Feynmann-Kac formula and non coalescent
coupling), we arrive to prove different bounds in Wasserstein metric. These bounds are optimal
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in term of curvature of semigroup. The proofs are inspiratedby [9, 10, 27] which gives similar
result for others models or for particular cases. Recently,to find quantitative bounds, Harnack
inequalities, functional inequalities or Wasserstein curvature, for jumps processes, has spurred
an enormous amount of research [3, 4, 9, 12, 16, 17, 22, 23, 37].

The remainder is explained after the main results.

1.2. Lipschitz contraction and Wassertsein curvature. In this section, we present briefly
some basic definition about Lipschitz contraction of Markovprocess. The results presented
here hold in a very general setting. Some of these are new, even if there is some close theorem,
and some others are not new, but we hope our proof is simpler. Let (E, d) be a Polish space,
we denote byPd(E) the set of probability measuresµ onE such that

∫

x∈E d(x, x0)µ(dx) < ∞
for some (or equivalently for all)x0 ∈ E. We recall that the Wasserstein distance between two
probability measuresµ1, µ2 ∈ Pd(E) is defined by

(3) Wd(µ1, µ2) = inf
ν∈Marg(µ1,µ2)

∫∫

E2
d(x, y)ν(dx, dy),

where Marg(µ1, µ2) is the set of probability measures onE2 such that the marginal distributions
areµ1 andµ2, respectively. This infimum is attained [34]. The Kantorovich-Rubinstein duality
[34, Theorem 5.10] gives that we also have the following representation:

(4) Wd(µ1, µ2) = sup
g∈Lip1(d)

∫

E
g dµ1 −

∫

E
g dµ2,

where Lip(d) is the set of Lipschitz functiong with respect to the distanced, i.e.

‖g‖Lip(d) := sup
x,y∈E

x 6=y

|g(x) − g(y)|
d(x, y)

< ∞,

and Lip1(d) = {g ∈ Lip(d) | ‖g‖Lip(d) ≤ 1}. If the semigroup is smooth enough, we have
δxPt ∈ Pd(R+), for all x ∈ E and t ≥ 0. Hence, the semigroup is well defined on Lip(d).
The Wasserstein curvature of(Xt)t≥0 with respect to a given distanced is the optimal (largest)
constantρ in the following contraction inequality:

(5) ‖Pt‖Lip(d)→Lip(d) ≤ e−ρt, t ≥ 0.

Here‖Pt‖Lip(d)→Lip(d) denotes the supremum of‖Ptf‖Lip(d) whenf runs over Lip1(d). It is
actually equivalent to the property that

Wd(µ1Pt, µ2Pt) ≤ e−ρt Wd(µ1, µ2), µ1, µ2 ∈ Pd(R+), t ≥ 0.

This notion of curvature was introduced by Joulin [22] and Ollivier [29] and is connected to
the notion of Ricci curvature of Riemannian manifold. This definition of curvature is relatively
close to the notion of Wasserstein spectral gap (see for instance, [19]) : A semigroup possesses
a Wasserstein spectral gap if there existλ > 0 andC < 0 such that

Wd (δxPt, δyPt) ≤ Ce−λtd(x, y).

The presence or not of the constantC may be important for concentration inequalities. If the
optimal constant is positive, and the process has a stationary probability measureπ then the
semigroup converges exponentially fast in Wasserstein distanceWd to the stationary distribution
(it is enough to takeµ2 = π ). We can notice that an exponential decay is possible even though
the Wasserstein curvature is null:
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Theorem 1.1(Exponential decay whenρ = 0). LetX be a (general) Markov process such that
its Wasserstein curvature defined at (5) is null (or non-negative). If there existst0 > 0 such that

Kt0 = sup
x0,y0∈E

Wd(δx0Pt0 , δy0Pt0)

d(x0, y0)
< 1.

Then there existsκ > 0, such that for allx0, y0 ∈ E,

∀t ≥ t0,Wd(δx0Pt, δy0Pt) ≤ e−tκd(x0, y0).

Furthermore,κ can be chosen as

κ = − ln(Kt0)

t0
.

The Wasserstein curvature is a local characteristic. It corresponds to the worst exponential
decay. In this paper we use two different distances. Whend(x, y) = |x − y| for all x, y ∈ E,
Wd is the standard Wasserstein distance (also called Kantorovich distance). So, in this case, we
denote it byW andd = | · |. WhenE ⊂ R andF1, F2 are the cumulative functions ofµ1 and
µ2, we have

W(µ1, µ2) =

∫

E
|F1(x) − F2(x)|dx = ‖F1 − F2‖L1 .

The convergence in Wasserstein distance is equivalently tothe convergence in law and the con-
vergence of the first moment.
Whend(x, y) = 1{x=y} for all x, y ∈ E, Wd is the standard total variation distance. So, in this
case, we denote it bydTV . The equation (4) becomes

dTV(µ1, µ2) =
1

2
sup

‖f‖∞≤1

∫

E
fdµ1 −

∫

E
fdµ2.

If µ1, µ2 have densityn1, n2 with respect to the Lebesgue measure, we have

dTV(µ1, µ2) =
1

2

∫

E
|n1(x) − n2(x)|dx =

1

2
‖n1 − n2‖L1 .

We finish this section with two results. The first one gives theexistence of an invariant distribu-
tion and the second one describes the link between Wasserstein decay andL2−spectral gap.

Theorem 1.2(Existence and uniqueness of the stationary distribution ). Let(Pt)t≥0 be a Markov
semigroup, if its Wasserstein curvatureρ is positive then there is a unique invariant measureπ.
Furthermore,

∀ν ∈ Pd(E),Wd (µPt, π) ≤ e−ρtWd (ν, π)

We can compare this theorem (and its proof) with [11, Theorem5.23].

Theorem 1.3(Wassertsein contraction impliesL2−spectral gap for reversible semigroup). Let
(Pt)t≥0 be a semigroup of a Markov process. Assume:

• Its Wasserstein curvature,ρ, is positive.
• The semigroup is reversible.
• Lip1(d) ∩ L∞(π) ∩ L2(π) is dense inL2(π).

Then there is aL2−spectral gap. Indeed,

Varπ(Ptf) ≤ e−2ρtVarπ(f).
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Or equivalently,
∥

∥

∥

∥

Ptf −
∫

fdπ

∥

∥

∥

∥

L2(π)
≤ e−ρt

∥

∥

∥

∥

f −
∫

fdπ

∥

∥

∥

∥

L2(π)
.

We can see, in the proof, the importance of the reversibility. Nevertheless, for the most
part of our examples, this condition is never verified. This theorem is just the continuous time
adaptation of [19, Proposition 2.8]. We can compare it (and its proof) with [11, Theorem 5.23]
and [36, Theorem 2.1 (2)] for continuous time version and [29, Proposition 30]. Notice that
the two last theorems are also true when there is a Wasserstein spectral gap instead a positive
curvature. Let us end this section by advertising on a parallel and independent work [33] which
give some related results.

1.3. Main results : Quantitative bounds of jump-diffusions. In this section, we first recall
some properties of the process that we study, then we state our main results. LetPtf(x) =
E[f(Xt)|X0 = x] be the semigroup generated by (1). By the Itô-Dynkin, it means that

(6) Ptf(x) = f(x) +

∫ t

0
PsLf(x)ds = f(x) +

∫ t

0
LPsf(x)ds

for all f smooth enough (see [5] or [14] for the domain of the generator). We can describe the
evolution ofX in terms of stochastic differential equations (SDE). Let(Bs)s≥0 be a standard
Brownian motion, and letQ(ds, du, dθ) be a Poisson point measure onR+ × R+ × [0, 1], of
intensityds du dθ, independent from the Brownian motion. Here,ds, du, dθ are the Lebesgue
measures onR+,R+ and[0, 1]. Then we have,

Xt = X0 +

∫ t

0
g(Xs)ds +

∫ t

0

√
2σ(Xs)dBs(7)

+

∫ t

0

∫

E ×[0,1]
1{u≤r(Xs−)} (F (Xs−, θ) −Xs−)Q(ds, du, dθ).

We are interested by the long time behavior and not by the existence. Hence, in all the paper,
the coefficient are supposed to be smooth. Now, we are able to express our main results.

Theorem 1.4 (Wasserstein curvature for jump-diffusion which conserves the monotonicity).
Assume

∫ 1

0
∂xF (x, θ)dθ 6= 0 andr′(x)

∫ 1

0
x− F (x, θ)dθ ≤ 0.

If

inf
x≥0

(

−g′(x) + r(x)

(

1 −
∫ 1

0
∂xF (x, θ)dθ

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ

)

= ρ > 0.

Then the contraction inequality(5) is satisfied with the optimal constantρ. Indeed, we have

W (µPt, νPt) ≤ e−ρtW (µ, ν)

for all measureµ andν which have a first moment.

In section??, we will see that, under this condition, the process is stochastically monotone.
Indeed, the semigroup preserves the monotonicity. It is easy to see that the conserve is true. In
particular this theorem can be used when

• r is decreasing.
• F (x, θ) < x, for almost allθ ∈ [0, 1].
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• x 7→ F (x, θ) is increasing.

For instance, the jumps can be multiplicative (indeedF (x, θ) = ϕ(θ)x, whereϕ ≤ 1), additive
(indeedF (x, θ) = x − ϕ(θ), whereϕ ≥ 0), or a combination of these two types. We can, of
course, also suppose thatr is increasing, and, for almost allθ ∈ [0, 1], F (x, θ) > x.

In the expression ofρ, we can see the interplay between the drift parameter (indeed g) and
the jump mechanism (indeedr andF ). We also see that the curvature do not depend to the
diffusive termσ. We also give an other criterion to find the Wasserstein curvature, which is just
a generalisation of the result of [10, theorem 2.3]:

Theorem 1.5(Wasserstein curvature whenr is affine). If the following assumptions hold

• E ⊂ R+.
• F (x, θ) < x, for almost allθ ∈ [0, 1].
• x 7→ F (x, θ) is increasing.
• ∂xF (x, θ) ≤ 1.
• r(x) = ax+ b, for all x ≥ 0, wherea, b ≥ 0

Then the contraction inequality(5) verifies

ρ ≥ − sup
z∈E

g′(z) + b

(

1 − sup
z∈E

∫ 1

0
∂xF (z, θ)dθ

)

.

This bound looks like the bound of theorem 1.4 (becauseE ⊂ R+ andF (x, θ) < x implies
infx∈E x−F (x, θ) = 0 ). It will be interesting to prove that this bound is optimal and right for all
r. These two theorems give interesting estimates in Wasserstein distance. It is also interesting to
prove some bounds in total variation distance, but it is moredifficult. For instance, for the TCP
windows size process, between the jumps the trajectories are parallel, thus it seems impossible
to intersect it (see section 4). A first approach is given in [3].

It will be interesting to find the same type of result when we add a discrete component to our
process. It will be generated by

Lf(x, n) = σ(x, n)f ′′(x) + g(x, n)f ′(x) + r(x, n)

(∫ 1

0
f (F (x, n, θ)) dθ − f(x, n)

)

.

In this case,X = (Z,N), andZ may be continuous (see [16], for instance). It is also interesting
to investigate the multidimensional case. The proof of theorem 1.4, is not adaptable in these two
cases.

The papers is organised as follow: The next section is devoted to the proof of theorem about
Lipschitz contraction. The proof of theorem 1.4 and theorem1.5 are in section 3. Many exam-
ples and applications are given in the last section.

2. GENERAL PROPERTIES ABOUTL IPSCHITZ CONTRACTION

In this section we prove the theorems of section 1.2

2.1. Exponential decay whenρ = 0 (proof of theorem 1.1). LetX be a Markov process such
that its Wasserstein curvature defined at (5) is null (or non-negative). Assume there existst0 > 0
such that

Kt0 = sup
x0,y0∈E

Wd(δx0Pt0 , δy0Pt0)

d(x0, y0)
< 1.



WASSERSTEIN DECAY OF JUMP-DIFFUSIONS 7

We will prove that there existsκ > 0, such that for allx0, y0 ∈ E,

∀t ≥ t0,Wd(δx0Pt, δy0Pt) ≤ e−tκd(x0, y0).

Let ω be defined, for allx 6= y, by

ω(t, x, y) =
Wd (L(Xt | X0 = x),L(Xt | X0 = y))

|x− y| ,

and
ω̄(t) = sup

x,y∈E
ω(t, x, y).

Let (Y,Z) be any coupling of the law ofX. IndeedY
d
= Z

d
= X butY andZ are not necessary

independent. The Markov property gives

ω(t, y, z)d(y, z) = sup
f∈Lip1

E [f(Yt+s) | Y0 = y] − E [f(Zt+s) | Z0 = z]

= sup
f∈Lip1

E

[

E

[

f(Ỹt) | Ỹ0 = Ys

]

− E

[

f(Z̃t) | Z̃0 = Zs

]

| Y0 = y, Z0 = z
]

≤ E [ ω̄(t)d(Ys, Zs) | Y0 = y, Z0 = z] ,

where(Ỹ , Z̃) is a coupling of the law ofX. Taking the infimum on all coupling we deduce,

ω(t+ s, x, y) ≤ ω̄(t)ω(s, x, y) ⇒ ω̄(t+ s) ≤ ω̄(t)ω̄(s).

Now, by the hypothesis, the curvature is non-negative, thus

∀t > 0, ω̄(t) ≤ 1.

Hence,ω̄ is decreasing. But, by the assumptions, there existst0 > 0 such that̄ω(t0) < 1, and so

∀t ≥ t0, ω̄(t) < 1.

Finally, for all t ≥ t0, there existsn ∈ N such thatt ≥ nt0, and then

Wd(δxPt, δyPt) ≤ ω̄(t) Wd(δx, δy) ≤ ω̄(nt0) Wd(δx, δy)

≤ ω̄(t0)n Wd(δx, δy) ≤ exp

(

t
ln(ω̄(t0))

t0

)

Wd(δx, δy).

2.2. Existence criterion of the invariant distribution (proof o f theorem 1.2). Let X be a
Markov process and(Pt)t≥0 its semigroup. First, let us assume that

• Wd(µPt, νPt) ≤ e−ρtWd(µ, ν) for all µ, ν ∈ Pd(E).
• C = supt≥0 Wd(δx, δxPt) < +∞ for somex ∈ E.

We will prove that gives the existence of an invariant measure. The proof which follows is
simple and comes from a discussion with D.Villemonais. He has developed the same type of
criterion, for the existence of Quasi-stationary distribution, with the help of P. Del moral in a
work still to be completed (see [35, chapter 5]). Consider the sequence(δxPt)t≥0, it verifies

∀t, s ≥ 0, Wd(δxPt+s, δxPt) ≤ e−ρsWd(δxPs, δx)

≤ e−ρsC.
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Furthermore, the space(Pd(E),Wd) is known to be complete [11, theorem 5.4] thus the se-
quence(∂xPt)t≥0 converges to a measureπ ∈ Pd(E). Then

lim
t→+∞

Wd(ηPt+s, ηPt) = Wd(πPs, π) = 0.

Thusπ is invariant, and the Lipschitz contraction gives the uniqueness and the exponential decay.
Now, it rest to prove thatsupt≥0 Wd(δx, δxPt) < +∞ for somex ∈ E. We have

sup
‖f‖Lip1

≤1
d(Ptf(x), Ptf(y)) ≤ e−ρtd(x, y).

HencePt remains stable the space of Lipschitz function. As we haveWd(δx, δxPt) = Ptfx(x),
wherefx(y) = d(x, y), the mappingx 7→ Wd(δx, δxPt) is continuous and for allx ∈ E and
ε > 0 we have

(8) sup
t∈[0,ε+1]

Wd(δx, δxPt) < +∞.

And we have for allk ∈ N
∗ andt ∈ [ε, ε + 1],

Wd(δx, δxPkt) ≤
k−1
∑

j=1

Wd(δxPjt, δxP(j+1)t)

≤
k−1
∑

j=1

e−jρtWd(δx, δxPt)

≤ Wd(δx, δxPt)
1

1 − e−ερ

The last inequalities and (8) gives the needed boundedness.

2.3. Lipschitz contraction and L2−Spectral Gap (proof of theorem 1.3).The proof of this
result is a continuous-time adaptation to [19, Proposition2.8 ]. Letf be a non-negative, Lips-
chitz and bounded function such that

∫

E fdπ = 1. Using the reversibility, we have,

Varπ(Ptf) =

∫

E
fP2tfdπ −

(∫

E
fdπ

)2

≤ ‖f‖Lip(d)Wd (P2tfdπ, π)

whereP2tfdπ is the measure which verifies, for all smoothϕ
∫

E
ϕP2tfdπ =

∫

E

∫

E
ϕ(x)f(y)P2t(x, dy)π(dx)

=

∫

E

∫

E
ϕ(x)f(y)P2t(y, dx)π(dy).

Becauseπ is reversible. Hence,

Varπ(Ptf) ≤ ‖f‖Lip(d)Wd ((fπ)P2t, π)

≤ Cfe
−2ρt.(9)
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By translation/dilatation, the last inequality holds for all Lipschitz and boundedf , and by
density, for allf ∈ L2(π). Now, letf be a measurable function such that,

∫

E
f(x)π(dx) = 0 and

∫

E
f(x)2π(dx) = 1.

Applying spectral theorem, Jensen inequality and (9), we find

Varπ(Ptf) =

∫

Ptf
2dπ =

∫

E

∫ ∞

0
e−λtdEλ(f)dπ

≤
(∫

E

∫ ∞

0
e−λ(t+s)dEλ(f)dπ

) t
t+s

≤ C
t

t+s

f e−ρt

Taking the limits → +∞, we conclude the proof.

3. EXPONENTIAL DECAY FOR JUMP-DIFFUSIONS

In this section, we prove the announced results about jumps-diffusion and add some remark
or corollary.

3.1. Gradient estimate (proof of theorem 1.4). In this section we follow the same approach
to [9]. Using a Feynmann-Kac semigroup, we estimate the derivative of our semigroup. So, we
begin to prove, for any smooth enough functionf ,

(10) ∀x ≥ 0, (Ptf)′(x) = E

[

f ′(Yt)e
−
∫ t

0
V (Ys)ds

]

.

WhereY is a Markov process generated by

LSf(x) = σ2(x)f ′′(x) +
(

2σ(x)σ′(x) + g(x)
)

f ′(x)

+ r(x)

∫ 1

0
∂xF (x, θ)dθ

(

1
∫ 1

0 ∂xF (x, θ)dθ

∫ 1

0
∂xF (x, θ)f(F (x, θ))dθ − f(x)

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ

(

1
∫ 1

0 x− F (x, θ)dθ

∫ 1

0

∫ x

F (x,θ)
f(u)du dθ − f(x)

)

.

Lemma 3.1(Gradient estimate via Feynmann-Kac formula). Assume
∫ 1

0
∂xF (x, θ)dθ 6= 0 andr′(x)

∫ 1

0
x− F (x, θ)dθ ≤ 0.

If

∀x ∈ E, E

[

exp

(

−
∫ t

0
V (Ys)ds

)

| Y0 = x

]

< +∞.

where

V (x) = −g′(x) + r(x)

(

1 −
∫ 1

0
∂xF (x, θ)dθ

)

− r′(x)

∫ 1

0
x− F (x, θ)dθ.

Then(10)holds.
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Proof. First, we have(Lf)′ = (LS − V ) f ′. Then, by the Itô-Dynkin formula (6),

(Ptf)′(x) = f ′(x) +

∫ t

0
(LPsf)′(x)ds

= f ′(x) +

∫ t

0
(LS − V ) (Psf)′(x)ds

Thust 7→ (Ptf)′ verifies this partial differential equation:∂tu = (LS − V ) u. But, it is known
that the following semigroup verify this equation too:

Stf(x) = E

[

f(Yt)e
−
∫ t

0
V (Ys)ds

]

whereY is generated byLS. As there is a unique solution, we get(Ptf)′ = Stf
′. �

Corollary 3.2 (Propagation of monotonicity). Under the same assumption, iff is non-increasing
thenPtf is also non-increasing.

This corollary implies that, for allx < y, there exists a coupling(Xx,Xy), such that the
marginals are generated byL, which start from(x, y), and

∀t ≥ 0, Xx
t ≤ Xy

t a.s..

It is why this type of formula is available only for a non general class ofr.

proof of theorem 1.4.Let f be a Lipschitz and smooth function. For anyx, y ≥ 0, we have by
the intertwining identity (10),

|Ptf(x) − Ptf(y)| ≤ sup
z≥0

|(Ptf)′(z)||x − y|

≤ sup
z≥0

E

[

|f ′(Yt)|e−
∫ t

0
V (Ys)ds|Y0 = z

]

|x− y|

≤ sup
z≥0

E

[

e−
∫ t

0
V (Ys)ds|Y0 = z

]

|x− y|.

so that dividing by|x− y| and taking suprema entail the inequality:

‖Pt‖Lip→Lip ≤ sup
z≥0

E

[

exp

(

−
∫ t

0
V (Ys) ds

)

| Y0 = z

]

.

Finally, the right-hand-side of the latter inequality is nothing but‖Pt(id)‖Lip, showing that the
supremum over Lip is attained for the functionid : x 7→ x. It achieves the proof. �

Remark 3.3 (h−transform and first eigenvalue). Assume thatLS − V have a first eigenvalue
such that its eigenvectorψ is positive. Using anh−transform withh = e−λtψ, we get for any
Lipschitz functionf ,

E

[

f ′(Yt)e
−
∫ t

0
V (Ys)ds

]

= e−λtψ(x)E

[

f ′(Zt)

ψ(Zt)

]

≤ e−λt
E

[

ψ(Z0)

ψ(Zt)

]

.

Then, ifψ is smooth enough, the Wasserstein spectral gap isλ. See section?? for an application.
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Theorem 3.4 (Exponential decay when the curvature is null). Under the assumption of the
previous lemma and ifY is irreducible,V ≥ 0, and there existO = (a, b) andε > 0 such that
Oc is compact and

∀x ∈ O, V (x) ≥ ε.

Then there existt0 ≥ 0 andκ > 0 such that

∀t ≥ t0, W(µPt, νPt) ≤ e−κt W(µ, ν)

for anyµ, ν ∈ P|.|(R+).

a andb may be infinite if there is not in the same time. Notice that, ifthere existx ∈ E, such
thatV (x) = 0 then the curvature is null.

Proof. The proof is adapted to [27, section 5.1]. Let

D(t, x) = Ex

[

exp

(

−
∫ t

0
V (Ys)ds

)]

andD̄(t) = supx≥0 D(t, x). It is easy to see that for allx ∈ E, D(·, x) andD̄ are decreasing.
Furthermore,D(t, x) = 1 if and only if, starting fromx, Ys ∈ Oc almost surely, for almost all
s ≤ t. Then, asY is irreducible, we have

(11) ∀x ≥ 0, ∀t > 0,D(t, x) < 1.

If x ∈ O, then it is also right fort = 0. We begin to prove that there existt0 such that

∀t ≥ t0, D̄(t) < 1.

Then, we will prove the assertion of the theorem. Forx ∈ O, setτ = inf{t ≥ 0 | Yt ∈ Oc}. We
have,

D(t, x) = Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

+ Ex

[

1τ≥t exp

(

−
∫ t

0
V (Ys)ds

)]

≤ Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

+ e−εt

And

Ex

[

1τ<t exp

(

−
∫ t

0
V (Ys)ds

)]

≤ Ex

[

1τ<te
−εt

Ex

[

exp

(

−
∫ t

τ
V (Ys)ds

)

| Fτ

]]

≤ Ex

[

1τ<te
−εt max

c∈{a,b}
(D(t− τ, c))

]

≤ Ex

[

1τ<t/2e
−εt max

c∈{a,b}
(D(t − τ, c))

]

+ Ex

[

1t/2≤τ<te
−εt max

c∈{a,b}
(D(t− τ, c))

]

≤ max
c∈{a,b}

(D(t− τ, c)) + e−εt/2
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whereF is the filtration associates toY . Thus,

sup
x∈O

D(t, x) ≤ max
c∈{a,b}

(D(t− τ, c)) + e−εt + e−εt/2.

Then we deduce thatlim supt→+∞ supx∈O D(t, x) < 1 and then the existence oft0 such that
for all t ≥ t0,

sup
x∈O

D(t, x) < 1.

Whenx ∈ Oc, we see that he Feynmann-Kac semigroup is continuous because Y verifies the
Feller property, then, the supremum ofsupx∈Oc D(t, x) is attained. And finally, by (11), we
haveD̄(t) < 1 for all t ≥ t0. Now, we can use theorem 1.1 to conclude. We can also use the
argument to [27]. That is, the Markov property ensures that

D(t + s, x) = Ex

[

exp

(

−
∫ t

0
V (Yu)du

)

EYt

[

exp

(

−
∫ t

0
V (Yu)du

)]]

≤ Ex

[

exp

(

−
∫ t

0
V (Yu)du

)

D̄(s)

]

= D(t, x)D̄(s)

≤ D̄(t)D̄(s)

and thenD̄(t+ s) ≤ D̄(t)D̄(s). For all t > t0, there existsn ∈ N such thatt ≥ nt0. Hence, we
have

W(µPt, νPt) ≤ D̄(t) W(µ, ν) ≤ D̄(nt0) W(µ, ν)

≤ D̄(t0)n W(µ, ν) ≤ exp

(

t
ln(D̄(t0))

t0

)

W(µ, ν).

�

3.2. Contraction by coupling (Proof of theorem 1.5). As in [10], we make a coupling which
favour the simultaneous jumps. Because, by the properties of F , during a simultaneous jump,
the distance is decreasing. More precisely, this couple is generated by

Gf(x, y) = σ(x)∂xxf(x, y) + σ(y)∂yyf(x, y) + g(x)∂xf(x, y) + g(y)∂yf(x, y)

+ r(y)

∫ 1

0
f (F (x, θ), F (y, θ)) dθ

+ (r(x) − r(y))

∫ 1

0
f (F (x, θ), y) dθ − r(x)f(x, y)

if x ≥ y, and

Gf(x, y) = σ(x)∂xxf(x, y) + σ(y)∂yyf(x, y) + g(x)∂xf(x, y) + g(y)∂yf(x, y)

+ r(x)

∫ 1

0
f (F (x, θ), F (y, θ)) dθ

+ (r(y) − r(x))

∫ 1

0
f (x, F (y, θ)) dθ − r(y)f(x, y)

in the other case. The first line describe the space motion between the jumps and the second line
the jump mechanism. The dynamics of the couple of componentsis as follows:
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(1) After an "appropriate" time which depends of the two trajectories (or only one in some
cases). The upper coordinate jumps.

(2) Simultaneously, the other one "tosses an appropriate coin" whose probability of success
depends on the positions on the two components to decide whether or not it jumps too.

(3) In the case of joint jumps, both components use the same uniform variable.
(4) Then, we repeat these three first steps again and again...

Let α be defined byα(x,y)(t) = E[|Xt − Yt|], where(X,Y ) is generated byG and starting
from (x, y). It verifiesα′

(x,y)(0) = Gf(x, y) wheref : (u, v) 7→ |u − v|. Assumex > y, we
have,

α′
(x,y)(0) = g(x) − g(y) + (ay + b)

∫ 1

0
(F (x, θ) − F (y, θ))dθ

+ a(x− y)

∫ 1

0
|F (x, θ) − y| dθ − (ax+ b)(x− y)

≤ (x− y)[sup
z∈E

g′(z) + (ay + b) sup
z∈E

∫ 1

0
∂xF (z, θ)dθ

+ a

∫ 1

0
|F (x, θ) − y| dθ − (ax+ b)]

≤ (x− y)[sup
z≥0

g′(z) + b

(

sup
z∈E

∫ 1

0
∂xF (z, θ)dθ − 1

)

+ a

∫ 1

0

(

F (x, θ) − x+ y(1 − sup
z∈E

∫ 1

0
∂xF (z, θ)dθ)

)

1F (x,θ)≥y

+

(

(y − x) + y(1 − sup
z∈E

∫ 1

0
∂xF (z, θ)dθ)

)

1F (x,θ)<ydθ]

≤ (x− y)

[

sup
z≥0

g′(z) + b

(

sup
z∈E

∫ 1

0
∂xF (z, θ)dθ − 1

)]

Then, by the Markov property,

α′
(x,y)(t) ≤

(

sup
z≥0

g′(z) + b

(

sup
z∈E

∫ 1

0
∂xF (z, θ)dθ − 1

))

α(x,y)(t)

⇒α(x,y)(t) ≤ exp

(

sup g′ + b

(

sup
z∈E

∫ 1

0
∂xF (z, θ)dθ − 1

)

t

)

|x− y|.

The end of the proof is standard.

4. EXAMPLES AND APPLICATIONS

We begin by the easier example. This example show the interplay between the growth and
the jump rate. After, we consider five examples. The first one represents a process, which grows
linearly, and jumps additively. Then, the three next examples are different growth-fragmentation
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processes. We called growth-fragmentation process, a process generated by

(12) Lf(x) = σ2(x)f ′′(x) + g(x)f ′(x) + r(x)

(∫ 1

0
f(hx)H(dh) − f(x)

)

.

The state space can beE = R or E = R+. And we finish by an example of structured-
population.

4.1. Straightforward consequences.

4.1.1. Jumps independent of the current state.AssumeF (x, θ) = F (θ) for almost allθ ∈ [0, 1].
It means that, when a jump occurs, the new position of the process do not depend of the previous
position. This process forgets its origin just after its first jump. We can find an expression of
the invariant distribution in [25]. In this case, the theorem 1.4, is valid whenr increases before
∫ 1

0 F (θ)dθ and decreases after. And we have that the curvatureρ verifies

ρ ≥ inf
z∈E

r(z) − sup
z∈E

g′(z).

4.1.2. Feller diffusion with multiplicative jumps : The Bansaye-Tran process.Let us consider
the process studied in [2]. It evolves like a Feller diffusion between the jumps. Indeed, it moves
following the E.D.S.:

∀t ≥ 0, dYt = gYtdt +
√

2σYtdBt.

Whereg areσ are two positive numbers. And, when it jumps fromx, this new state isHx
parasite, whereH ∼ H, andH is a measure supported in[0, 1]. This process models the rate
of parasite in a cell population. The parasites grow in each cell and, sometimes, the cells divide.
These two phenomena do not unwind in the same time scale. The parasite are born and die faster
than the cell divide. Hence, the rate of parasite is modelledby a Feller diffusion. This one can
be understood as the limit of birth and death process. The jumps models the division of cells. In
this setting, we have

Corollary 4.1 (Exponentially decreasing to0). If r is decreasing or affine and

g < inf
x≥0

r(x)

∫ 1

0
hH(dh)

then

E[|Xt|] ≤ exp

(

−t
(

inf
x≥0

r(x)

∫ 1

0
hH(dh) − g

))

E[X0].

Proof. Under theorem 1.4 and theorem 1.5, the Wasserstein curvature is positive. Furthermore,
δ0 is invariant andW(δxPt, δ0) = PtId(x) = E[Xt | X0 = x]. �

The results of [2] are better even if this corollary gives a bound for theL1-convergence. To
compare, for instance, [2, proposition 3.1]) tells us

Theorem 4.2(Extinction criterion whenr is constant). We have the following duality.
(i) If g ≤ −r

∫ 1
0 log(h)H(dh), thenP(∃t > 0, Yt = 0) = 1.

Moreover ifg < −r ∫ 1
0 log(h)H(dh),

∃α > 0, ∀x0 ≥ 0, ∃c > 0, P(Xt > 0 | X0 = x0) ≤ ce−αt (t ≥ 0).
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(ii) If g > −r
∫ 1

0 log(h)H(dh), thenP(∀t ≥ 0, Xt > 0) > 0.
Furthermore, for every0 ≤ α < g + r

∫

log(h)H(dh),

P

(

lim
t→+∞

e−αtYt = ∞
)

= {∀t, Xt > 0} a.s.

Whenr is constant andg < rκ, we haveg < −r
∫ 1

0 log(h)H(dh). ThusX converges almost
surely to0, and

E[|Xt|] ≤ e−(rκ−g)
E[|X0|].

More precisely, a rapidly calculation (which is given in themore general case hereafter) gives

E[Xt] = e(g−rκ)t
E[X0].

So, if
∫ 1

0
− log(h)H(dh) >

g

r
> κ = 1 −

∫ 1

0
hH(dh)

then

lim
t→+∞

Xt = 0 a.s. but lim
t→+∞

E[Xt] = +∞.

These two convergences explain why our criterion is not applicable and why the convergence is
slow in this case.

4.1.3. Speed of convergence for branching measure-valued processes. Consider a model of
structured population. We observe a contentY of a cell which evolves following the stochastic
differential equation (2) and after an exponential timeT , the cell dies and is replaced by a ran-
dom number of offspringK. The content of the mother is shared in each new cells. Indeed, the
offspringj ≤ K have the contentF (YT ,Θ) . Consider the measure defined, for allt ≥ 0, by

Zt =
∑

u∈Vt

δXu
t

whereXu
t is the content of the cellu at timet, andVt the set of individual alive. It was proved

in [1] and [13] that

E

[∫

E
f(x)Zt(ds)

]

= E [f(Xt)] .

WhereX is generated by (1), with biased parameter. Hence, we deducethe long time behavior,
and the contraction properties of the mean measure. A same formula holds whenr is not constant
(see [13]). It will be interesting to capture the speed of convergence toZ instead ofE[Z]. A first
approach is given in [13, theorem 1.2].

4.1.4. Stress release, repairable system and workload models.Assume thatE = R, and let us
define

L1f(x) = gf ′(x) + r(x)

∫ 1

0
f (x−G(x, θ)) − f(x)dθ,

whereg is a positive number andG is a non-negative and measurable function. The process
generated byL1 was studied in [23]. This class represents a generic model ofapplied probability
and is of importance in earthquake modeling, reliability theory and queuing. We have
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Corollary 4.3 (Wasserstein curvature whenr is decreasing). If r is decreasing,x 7→ G(x, ·) is,
almost surely, increasing, we have

ρ ≥ inf
z∈R

(

r(z)

∫ 1

0
∂xG(x, θ)dθ

)

− sup
z∈R

r′(z)
∫ 1

0
G(x, θ)dθ.

In particular, ifG do not depend tox, then we have

ρ = − sup
z∈R

r′(z)
∫ 1

0
G(θ)dθ.

This corollary implies a bound to the Wasserstein curvatureof the virtual waiting time (also
workload) process. Indeed, this process is generated by

L2f(x) = −g1x≥0f
′(x) + r(x)

∫ 1

0
f (x+G(x, θ)) − f(x)dθ

whereg is a positive number andG is non-negative. IfW is generated byL2, it is a lipschitz
transformation of a process generated byL1. Indeed, we can write

∀t ≥ 0,Wt = max(Xt, 0).

whereX is generated byL1 (with an otherG).

4.2. Kolmogorov-Langevin processes.Let us consider the process which verifies the follow-
ing S.D.E.:

dXt =
√

2dBt − q′(Xs)ds

whereq isC∞ andB is a standard Brownian motion. It is already known, under suitable assump-
tion, that this process converges to the Gibbs (or Boltzmann) measureπ(du) = e−q(u)du/Z
(whereZ is a renormalizing constant). The theorem 1.4 shows that thecurvature is equal to
ρ = infz∈R q

′′(z). This result was already known but we can hope an exponentialdecay to the
invariant measure whenρ < 0. The case whereρ = 0 was studied in [27]. Our main example
of interest is

q(x) = x4 − x2.

We begin by a preliminary lemma

Lemma 4.4(Existence of eigenelements of a certain operator). Let us defineH the closure on
L2 of the operator defined by

Hf = −f ′′(x) + f
q′′

2
for all smooth enoughf . If q isC∞ and

lim
|x|→+∞

q′′(x) = +∞,

there exist a unique positive functionϕ ∈ L2∩C∞ and a real numberλ > 0 such thatHϕ = λϕ.

Proof. It is know from [6, theorem 3.1 p. 57] that if

lim
|x|→+∞

q′′(x)

2
= +∞

thenH has a discrete spectrum. Furthermore, there exist a unique positive eigenvector. It
corresponds to the smaller eigenvalueλ > 0 and we denote it byϕ (see [6, chapter 2]). The
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regularity ofϕ comes from the regularity ofq and the uniqueness of the solution of the linear
equation. �

Theorem 4.5(Rates of convergence). Under the same assumption of the previous lemma, we
have for allx, y ∈ R,

W (δxPt, δyPtf) ≤ e−λt sup
z∈[x,y]

eq(z)/2
(

C1 + C2β
t 1

ϕ(z)

)

|x− y|

whereC1, C2 are two positives constants (C1 is explicit) andβ ∈ (0, 1).

Proof. Let (Pt)t≥0 be the semigroup ofX. As can be view in the proof of theorem 1.4, we have,
for all f smooth enough,

∂xPtf = Stf
′

where(St)t≥0 is a Feynamnn Kac semigroup generated byL̃ defined by,

L̃f = f ′′(x) − q′(x)f ′(x) − q′′f(x).

Let (Qt)t≥0 be defined for all smooth enoughf by

Qt(f) =
eλt

ϕ
e−q/2St(fϕe

q/2)

We have

∂tQt(f) = λ
eλt

ϕ
e−q/2St(fϕe

q/2) +
eλt

ϕ
e−q/2St(L̃(fϕeq/2))

=
eλt

ϕ
e−q/2St(fe

q/2Hϕ) +
eλt

ϕ
e−q/2St(−eq/2H(fϕ))

=
eλt

ϕ
e−q/2St(e

q/2ϕGf)

= Qt(Gf).

Where

Gf = f ′′ + 2
ϕ′

ϕ
f ′.

This relation can be understood as

∂xPtf(x) = e−λteq(x)/2ϕ(x)E

[

f ′(Yt)

ϕ(Yt)
e−q(Yt)/2 | Y0 = x

]

whereY is a Kolmogorov-Langevin process generated byG and starting fromx. Hence,

|∂xPtf(x)| ≤ e− infz∈R q(z)/2e−λteq(x)/2ϕ(x)Qt

(

1

ϕ

)

(x).

But

G
1

ϕ
=

−ϕ′′

ϕ2
=
λ− q′′

ϕ
.

So, by [28, theorem 6.1] withV = 1/ϕ, we have
∣

∣

∣

∣

Qt

(

1

ϕ

)

(x) − π̃

(

1

ϕ

)∣

∣

∣

∣

≤ Bβt
(

1 +
1

ϕ(x)

)
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for all x ∈ R, whereβ ∈ (0, 1), B ≥ 0 and π̃(dx) = e
∫ x

2ϕ′/ϕdx/Z = ϕ(x)2dx/Z (Z is a
renormalizing constant). Finally,

|∂xPtf(x)| ≤ e− infz∈R q(z)/2e−λteq(x)/2ϕ(x)

(

π̃

(

1

ϕ

)

+Bβt
(

1 +
1

ϕ(x)

))

.

�

Example 4.6(Ornstein-Uhlenbeck). If q(x) = µx2/2 then the theorem is not available. But we
see thatϕ = 1 is an eigenvector ofH with respect to the eigenvalueµ/2. It is the smaller eigen-
value such that the eigenvector is positive. With a same computation to the previous theorem,
we can prove

W (δxPt, δyPt) ≤ e−µt/2|x− y|.
We can compare this result with the one of theorem 1.4:

W (δxPt, δyPt) ≤ e−µt|x− y|.
In fact, it easy to see that it is an equality.

This example prove the non-optimality to the previous theorem. But as can be viewed by the
following example, this techniques can be useful for more complicated example.

Example 4.7(An example whereq is not convex). Let us consider

q(x) = x4 − x2.

Henceq′′(x)/2 = 6x2 − 1 andHϕ(x) = λϕ(x), when

λ =
√

6 − 1 and ϕ(x) = exp
(

−x2
√

6/2
)

.

So, asπ, the invariant measure, integrates1/ϕ we have,

W (µPt, π) ≤ Cµ,πe
−(

√
6−1)t

whereµ is a measure which integrate1/ϕ andCµ,π a constant which depend toµ andπ.

4.3. TCP Windows size process.

4.3.1. An ideal model for the TCP windows size.Now, we study some model which represent
the TCP congestion. The first one was developed in [30]. Before a jump, the process evolves as

∂tXt =
g

Xm
t

.

The jumps arise following a Poisson process of intensityr with points (Tk)k≥0. And the
jumps are multiplicative, indeed,XTk

= hXTk−. The parameters verify

0 < h < 1, m > −1, g > 0 and r > 0.

In [30], the proof of the ergodicity and an explicit formula for the invariant measure is proved:

Theorem 4.8(Convergence to equilibrium). For any initial condition,X converges in law to a
measureπ which has a density defined by

x 7→ rxm

g

∑

k≥0

ak(h) exp

(

−h−k(m+1)r

g(m+ 1)
xm+1

)
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where

ak(h) =
(−1)kh

k(k−1)
2

(m+1)

∏+∞
j=1(1 − hj(m+1))

∏k
j=1(1 − hj(m+1))

.

By theorem 1.4, ifm ≥ 0, the Wasserstein curvature isρ = r(1 − h).

Corollary 4.9 (Wasserstein exponential ergodicity). Assumem ≥ 0 , for any probability mea-
sureµ ∈ P|·|(R+) (indeed, which has a first moment), we have

W(µPt, π) ≤ e−r(1−h)tW(µ, π).

4.3.2. A more realistic model.Now, we consider that the jumps depend of the position and the
growth is linear. Let(Xt)t≥0 be the Markov process generated by

(13) ∀x ≥ 0, Lf(x) = f ′(x) + r(x)

(∫ 1

0
f(hx)H(dh) − f(x)

)

.

To fix an idea,r(x) = x is an interesting value [3, 15, 18], but, the case wherer is constant, is
often used for its simplicity [26, 30]. The invariant measure is known whenr(x) = rxα(it is
explain in the following). We have:

Corollary 4.10 (Wasserstein curvature). If r is decreasing, we have thatρ, defined at(5), verifies

ρ =

(

1 −
∫ 1

0
hH(dh)

)

inf
x≥0

(

r(x) − xr′(x)
)

.

If otherwise,r(x) = ax+ b, we have

ρ ≥
(

1 −
∫ 1

0
hH(dh)

)

b =

(

1 −
∫ 1

0
hH(dh)

)

inf
x≥0

(

r(x) − xr′(x)
)

.

.

In particular, whenr(x) = x, we haveρ ≥ 0. When the process is near than0, the jump rate
is null. Hence the process evolves liket 7→ X0 + t which have a null curvature. So we see that
ρ = 0. A recent work [3] prove that, nevertheless the curvature isnull, this process converges
exponentially rapidly to its invariant distribution.

4.3.3. The embedded chain.We always consider a process generated by (13). Let(X̂n)n≥0 be
the embedded chain. It is defined by,

(14) X̂n = XTn where Tn = inf{t ≥ Tn−1 | Xt+ 6= Xt−} for n ≥ 1 and T0 = 0.

This Markov chain is easier to study than the continuous timeprocess. For instance, forr(x) =
axα, it is easy to see that

R(X̂Tn+1) = R(Hn(R−1(En +R(X̂Tn)))) = Hα+1
n (En +R(X̂Tn))

whereR is the antiderivative ofr. Then, it is ergodic and its limit̂X∞ verifies

R(X̂T∞)
d
= Hα+1

n (En +R(X̂∞)).

Now, using [18, proposition 5], we deduce thatX̂∞ have a density given by

x 7→ 1
∏

n≥1(1 − h(α+1)n)

∑

n≥0

n
∏

k=1

h−(α+1)(n+1)

1 − h−(α+1)k
axαe−h−(α+1)(n+1)a(α+1)−1x(α+1)

.
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Now, applying [14, theorem 34.31], we can deduce the invariant law of the continuous time
process. This result generalises [10, Theorem 2.1] but it isalready known via others techniques
[32]. For this Markov chain, we arrive to bounded all Wasserstein distance. Indeed, recall that
for everyp ≥ 1, theW(p) Wasserstein distance between two lawsµ1 andµ2 onE with finite pth

moment is defined by

W(p)(µ1, µ2) = inf
{X∼µ1,Y ∼µ2}

(E [|X − Y |p])1/p

where the infimum runs over all coupling ofµ1 andµ2.

Theorem 4.11(Wasserstein exponential ergodicity for the embedded chain). Assume thatL(X0)

andL(Y0) have finitepth moment for some realp ≥ 1 andr is increasing. LetX̂ and Ŷ be the
embedded chains ofX andY . Then, for anyn ≥ 0, with a random variableH ∼ H,

W(p)(L(X̂n),L(Ŷn)) ≤ E(Hp)n/pWp(L(X0),L(Y0)).

In particular, if π̂ is the invariant law ofX̂ then

W(p)(L(X̂n), π̂) ≤ E(Hp)n/pWp(L(X0), π̂).

Proof. It is sufficient to provide a good coupling. Letx ≥ 0 andy ≥ 0 be two non-negative
real numbers, and let(En)n≥1 and (Hn)n≥1 be two independent sequences of i.i.d. random

variables with respective laws the exponential law of unit mean and the lawH. Let X̂ andŶ be
the discrete time Markov chains on[0,∞) defined by

X̂0 = x and X̂n+1 = Hn+1R
−1(R(X̂n) + En+1) for anyn ≥ 0

Ŷ0 = y and Ŷn+1 = Hn+1R
−1(R(Ŷn) + En+1) for anyn ≥ 0.

the law of X̂ (respectivelyŶ ) is the law of the embedded chain of a process generated by
L and starting fromx (respectivelyy). Now, let a be a non-negative number, ifϕa : x 7→
R−1(a+R(x)) then

(15) ϕ′
a(x) =

r(x)

r(a+ x)
⇒ |ϕa(x) − ϕa(y)| ≤ |x− y|.

And we get

∀p ≥ 1, E[|X̂n+1 − Ŷn+1|p] = E[Hp
n+1|ϕEn+1(X̂n) − ϕEn+1(Ŷn)|p]

≤ E[Hp
n+1|X̂n − Ŷn|p] = E[Hp

n+1]E[|X̂n − Ŷn|p]

A straightforward recurrence leads to

E[|X̂n − Ŷn|p] ≤ E[Hp
1 ]n|x− y|p.

This gives the desired inequality when the initial laws are Dirac masses. The general case follows
by integrating this inequality with respect to couplings ofthe initial laws. �

The fact that, between the jumps, the growth is linear is fundamental in this proof. It is why,
we do not generalise it. So, we arrive to prove a convergence criterion for the continuous time
process whenr decreases and for the embedded chain whenr increases. We are not able to
associate these two approaches.
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4.4. Integral of Lévy processes with respect to a Brownian motion. Before to talk about
integral of Lévy process, we give an example of growth-fragmentation processes, where some
calculates are explicit.

4.4.1. Generator which conserves the polynomial functions.Consider the process generated by
(12) with the following parameters:

g(x) = g0 + g1x, σ(x) = σ0 + σ1x+ σ2x
2.

And r is constant. In this case, the generator conserves the polynomial functions and their
degree. We then deduce,

Theorem 4.12(Moments estimates). Let t ≥ 0 andx ≥ 0, we have

E[Xt | X0 = x] =

(

x+
g0

g1 − rκ1

)

e(g1−rκ)t − g0

g1 − rκ

and

∀n ≥ 2, E[Xn
t | X0 = x] = A

(n)
0 +

n
∑

k=1

A
(n)
k e(σ2k(k−1)+g1k+rκk)t

whereκn = 1 −
∫

hnH(dh) and for allk ∈ {1, .., n − 1} we have

A
(n)
0 =

−1

σ2n(n− 1) + g1n− rκn
(σ0n(n− 1)A

(n−2)
0 + (σ1n(n− 1) + g0n)A

(n−1)
0 ).

A
(n)
k =

1

1 − (σ2n(n− 1) + g1n− rκn)
(σ0n(n− 1)A

(n−2)
k + (σ1n(n− 1) + g0n)A

(n−1)
k ).

A
(n)
n−1 =

1

1 − (σ2n(n− 1) + g1n− rκn)
((σ1n(n− 1) + g0n)A

(n−1)
n−1 ).

A(n)
n = x−

n−1
∑

k=0

A
(n)
k .

Proof. Let t ≥ 0, n ∈ N andαn(t) = E[Xn
t ], we get,

α0(t) = 1, α′
1(t) = g0 + (g1 − rκ1)α1(t)

and,

α′
n(t) = σ0n(n− 1)αn−2(t) + (σ1n(n− 1) + g0n)αn−1(t) + (σ2n(n− 1) + g1n− rκn)αn(t).

Then the result follows by a straightforward reccurence. �

Remark 4.13 (Convergence to the equilibrium). This result gives the convergence of the mo-
ments wheng1 − rκ < 0. In this case, thenth moment converges toA(n)

0 which is easily
calculable. When this sequence verifies the Carleman criterion, that is

∑

n≥0

(A
(n)
0 )−1/2n = +∞

We have the convergence, in law, ofX to a measure with moments defined by the sequenceA0.

Example 4.14(A first link with the Lévy process). The Ifσ1 = σ2 = 0 and g0 = 0, thenX
is the exponential of a Levy processL. The conditiong1 − rκ < 0 implies thatX converges
to 0 almost surely. The Wasserstein decay of the theorem 1.4 gives a speed of convergence in
L1-norm.
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This example is near to the example of theorem 4.2. In the following, we give an other link
with the Lévy processes and an other example which have a different behaviour.

4.4.2. Integral of Lévy processes with respect to a Brownian.Heuristically, if you take the log-
arithm of a growth-fragmentation process, you transform the multiplicative jumps on additive
jumps. Then, as the jump times are Poissonian, we can obtain acontinuous process by renor-
malising our process with a Lévy process. Formally, let(Lt) be the Lévy process defined by,

Lt = −
∫

R+ ×[0,1]
1{u≤r} ln(h)Q(ds, du, dh) = − ln





Nt
∏

j=1

Hj





and letX̄ the continuous process defined byX̄t = Xte
Lt . We get,

Lemma 4.15(Stochastic differential equation for̄X andX). If X is generated by (12) then, for
any non negative numbert, we get

X̄t = X0 +

∫ t

0
eLsg(Xs)ds +

∫ t

0
eLsσ(Xs)dBs

and,

Xt = X0e
−Lt +

∫ t

0
e−Lsg(Xt−s)ds +

∫ t

0
e−Lsσ(Xt−s)dBs.

Proof. All the stochastic integrals that we write are well defined aslocal martingales. Using
Itô’s formula with jumps [20, Theorem 5.1, p.67] (see also [21, Theorem 4.57, p.57]) and since
X̄ is continuous, we get:

X̄t = X0 +

∫ t

0
eLs (g(Xs)ds + σ(Xs)dBs)

+

∫ t

0
Xs−e

Ls− −Xse
Ls1{u≤r}Q(ds, du, dh)

= X0 +

∫ t

0
eLs (g(Xs)ds + σ(Xs)dBs) .

Then, we deduce,

Xt = X0e
−Lt +

∫ t

0
eLs−Lt (g(Xs)ds + σ(Xs)dBs)

= X0e
−Lt +

∫ t

0
e−Lt−s (g(Xs)ds + σ(Xs)dBs)

= X0e
−Lt +

∫ t

0
e−Lsg(Xt−s)ds +

∫ t

0
e−Lsσ(Xt−s)dBs.

�

This lemma is a generalisation of the relation of [2, lemma 3.2] and [26, section 6]. In [2], it
is a preliminary for the proof of theorem 4.2 and in [26], theydeduce that wheng is constant,
andσ = 0, we get,

lim
t→+∞

Xt = g

∫ +∞

0
e−Lsds.

The behavior of the right hand side was studied in [7] and [8] for general Lévy processes. We
give an other application:
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Theorem 4.16(Long time behavior of Integral of Lévy process with respectto a Brownian
motion). If

Yt =

∫ t

0
e−LsdBs

whereLt =
∑Nt

k=1Hj is a lévy process independent of the Brownian motionB. Then it con-
verges to a measureπ such that

∫

xnµ(dx) =
n!

rn/2
∏n/2

k=1 κ2k

for all n ∈ 2Z and
∫

xnµ(dx) =
n!

r(n+1)/2
∏(n+1)/2

k=1 κ2k−1

otherwise. Furthermore, for allt ≥ 0,

W (L(Yt), π) ≤ e−κtW(δ0, π),

whereκ = r
(

1 −
∫ 1

0 hH(dh)
)

.

Proof. In this case, we have thatY is generated by (12), where,g = 0, σ = 1, r is constant and
X0 = 0. The result is an application of the results of the previous sections. �
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