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A quasi resonant laser induces a long-range attractive force within a cloud of cold atoms. We
take advantage of this force to build in the lab a systems of particles with a 1D gravitational-like
interaction, at a fluid level of modeling. We give experimental evidences of such an interaction in a
Strontium cold gas, studying the density profile of the cloud, its size as a function of the number of
atoms and its breathing oscillations.

PACS numbers: 37.10.De, 05.20.Jj, 04.80.Cc, 37.10.Gh,04.40.-b

I. INTRODUCTION

When interactions between the microscopic compo-
nents of a system act on a length scale comparable to
the size of the system, one may call them “long range”:
for instance, the inverse-square law of the gravitational
force between two point masses which is one of the most
celebrated and oldest laws in Physics. In the many parti-
cles world, it is responsible for dramatic collective effects
such as the gravothermal catastrophe [1] or the gravi-
tational clustering which is the main mechanism lead-
ing to the formation of the structure of galaxies in the
present universe. Beyond gravitation, such long range in-
teractions are present in various physical fields, either as
fundamental or as effective interactions: plasma physics,
two dimensional fluid dynamics, degenerated quantum
gases, ion trapping . . . They deeply influence the dynam-
ical and thermodynamical properties of such systems. At
the thermodynamic equilibrium, long range interaction
is at the origin of very peculiar properties, especially for
attractive systems: the specific heat may be negative;
canonical (fixed temperature) and microcanonical (fixed
energy) ensembles are not equivalent. These special fea-
tures have been known for a long time in the astrophysics
community, in the context of self gravitating systems.

After the seminal works of Lynden-Bell and Wood [2]
and Thirring [3], many contributions followed on this
subject (see for instance [4] for a recent review), so that
the equilibrium characteristics of attractive long range in-
teracting systems are theoretically well established. This
situation is in striking contrast with the experimental
side of the problem: there is currently no controllable
experimental system exhibiting the predicted peculiar-
ities. There have been some proposals to remedy to
this situation: O’Dell et al. [5] have suggested to cre-
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ate an effective 1/r potential between atoms in a Bose-
Einstein condensate using off-resonant laser beams; re-
cently, Dominguez et al. [6] have proposed to take ad-
vantage of the capillary interactions between colloids to
mimic two-dimensional gravity, and Golestanian [7] has
suggested experiments using thermally driven colloids.
However, these proposals have not been implemented yet,
and so far the dream of a tabletop galaxy remains elusive.
The key results of this paper are to show some experimen-
tal evidences of a gravitational-like interaction in a quasi
one-dimensional (hereafter 1D) test system consisting in
a cold gas of Strontium atoms in interaction with two
contra-propagating quasi-resonant lasers. The attractive
force coming from the beams absorption, as described in
the following section, is known since the early days of
laser cooling and trapping [14]. Unfortunately, in a 3D
setting this attractive force is usually dominated by the
repulsive force due to photons reabsorption [15], which
in the small optical depth limit may be seen as an ef-
fective repulsive Coulomb force. By contrast, in a 1D
configuration with an elongated cloud along the cooling
laser beams, the probability of photons reabsorption is
reduced by a factor of the order of L⊥/Lz, in compari-
son with the isotropic cloud having the same longitudinal
optical depth; here, L⊥ and Lz are respectively the rms
transverse and longitudinal size of the cold cloud. In our
experiment, the reduction factor is about 2 × 10−2, so
that the repulsive force can be safely ignored. Note that
similar but weaker reduction of the probability of photons
reabsorption is also expected for the 2D geometry, which
opens the possibility of experimental systems analogous
to 2D self-gravitating systems.

The paper is organized as follows. In section II, we
start from the radiation pressure exerted by the lasers
and explain under which circumstances this force be-
comes analog to a 1D gravitational force. We then make
some definite theoretical predictions on the size, density
profile and oscillation frequency of the interacting atomic
cloud. The experimental setup is described in section III.
In the same section, the experimental results are com-
pared with the theory.
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II. MODEL AND THEORETICAL

PREDICTIONS

The gravitational potential U(r) between two par-
ticles can be expressed through the Poisson equation
∇2U(r) = ADGmδ(r), where G is the coupling constant,
m the mass of the particle and AD a numerical constant
which depends on the dimension. The solution of the
Poisson equation for the interpaticle potential U(r) in
3D is the well known

U(r) =
Gm

r
(1)

and in 1D

U(r) = Gm|r| (2)

(for a review on 1D gravitational systems see e.g. [8]).
After using a mean-field approach (see below), we will
show that such a potential should be at play in our ex-
periment, under precise circumstances (see section II B).
We start considering a quasi 1D {cold atomic gas +

1D quasi-resonant laser beams} system; an atomic gas,
with a linear density n(z), is in interaction with two
contra-propagating laser beams. The two beams inten-
sities I+(z) and I−(z), where I+(−∞) = I−(+∞) ≡ I0,
respectively propagating in the positive and negative di-
rection, are much smaller than the atomic line saturation
intensity Is. Thus the atomic dipolar response is linear.
The radiation pressure force of the lasers on an atom,
having a longitudinal velocity vz, is given by [9]:

F±(z, vz) = ±~k
Γ

2

Γ2

4(δ ∓ kvz)2 + Γ2

I±(z)

Is
, (3)

where ~ is the reduced Planck constant, Γ the bare
linewidth of the atomic transition, k the wavenumber
and δ the frequency detuning between an atom at rest
and the lasers. For a cloud of N atoms, the attenuation
of the laser intensity is given by:

dI± = ∓
σ±

2πL2
⊥

Nn(z)dz, (4)

where n(z) is the normalized linear density profile and

σ± =
6π

k2
Γ2

∫

g(vz)

4(δ ∓ kvz)2 + Γ2
dvz (5)

is the absorption cross-section for a cloud of atoms hav-
ing a normalized longitudinal velocity distribution g(vz).
2πL2

⊥ is the transverse section of the cloud. At equilib-
rium g(vz) is an even function so σ− = σ+ ≡ σ. The
optical depth is defined as:

b =
σ

2πL2
⊥

N

∫ +∞

−∞

n(z)dz =
σN

2πL2
⊥

. (6)

Atoms also experience a velocity diffusion due to the ran-
dom photon absorptions and spontaneous emissions. In

experiments, δ < 0 such that the force, given in Eq. (3),
is a cooling force counteracting the velocity diffusion. We
now describe the N atoms by their phase space density
in 1D, f(z, vz, t). As in [10], we write for f a Vlasov
Fokker-Planck equation

∂f

∂t
+ vz

∂f

∂z
− ω2

zz
∂f

∂vz
+

1

m

∂

∂vz
[(F+(z, vz) + F−(z, vz))f ]

= D
∂2f

∂v2z
.

(7)

The second term is an inertial one, whereas the third
one describes a harmonic trapping force, which is a good
approximation of the dipolar trap used in the experiment.
Indeed the dipolar potential, in the longitudinal axe of
interest, can be written as

Udip(z) = −
U0

1 +
(

z
zR

)2 (8)

with zR = 1.2 mm, U0 = 1
2kBTtrap, and Ttrap = 20µK.

The observed rms longitudinal size being Lz . 400µm,
it is reasonable to perform a Taylor expansion around
z = 0 to get the harmonic approximation:

U(z) = −U0

(

1−

(

z

zR

)2
)

. (9)

The dipolar trap is related to the harmonic approxima-
tion by

ω2
z =

kBTtrap

mz2R
. (10)

The fourth term of Eq. (7) contains the mean-field force
F± divided by the atomic mass m. The right hand side
describes a velocity diffusion. The use of a one dimen-
sional model is justified by the fact that the ratio between
the rms transverse and longitudinal size of the cloud mea-
sured in the experiment is about 2 × 10−2. A Vlasov
Fokker Planck equation is a reasonable modeling of the
system in the mean field approximation (which is excel-
lent for long range forces for most of the cases, see e.g.
[11]). Eq. (7) neglects atomic losses and the position and
velocity dependencies of the velocity diffusion coefficient.

A. Fluid approximation

In order to solve Eq. (7) we assume that the system can
be described using a fluid approach: we assume that the
velocity distribution at time t does not depend on the
position, except for a macroscopic velocity u(z, t). We
write then the one point distribution function f as

f(z, vz, t) = mNn(z, t)
1

∆(t)
g

(

vz − u(z, t)

∆(t)

)

. (11)
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The velocity distribution g(vz) is assumed to be even,
centered around u; the velocity dispersion is character-
ized by a time modulation ∆(t). Integrating Eq. (7) over
dvz and over vz dvz, we obtain the fluid equations:

∂n

∂t
+

∂

∂z
(nu) = 0 (12)

∂(nu)

∂t
+

∂

∂z

[(

u2 +∆(t)2
∫

v2zg(vz)dvz

)

n

]

+ ω2
zzn

−
1

m
n

∫

(F+ + F−)g

(

vz − u(z, t)

∆(t)

)

∆(t)dvz = 0. (13)

B. Stationary solution

We first look for a stationary solution; this imposes
u = 0. Eq. (12) is then automatically satisfied; Eq. (13)
for the stationary density n(z) reads:

v̄2z
∂n

∂z
+ ω2

zzn−
1

m
n

∫

[F+ + F−]g(vz)dvz = 0 ,(14)

where we have used the notation
∫

v2zg(vz)dvz = v̄2z .
Eq. (4) is easily integrated, yielding:

I+(z) = I0e
−b

∫
z

−∞
n(s)ds (15)

I−(z) = I0e
−b

∫
+∞

z
n(s)ds (16)

The exponentials are expanded up to first order, accord-
ing to the small optical depth hypothesis b ≪ 1:

I+(z) ≃ I0

(

1− σ̄

∫ z

−∞

n(s)ds

)

(17)

I−(z) ≃ I0

(

1− σ̄

∫ +∞

z

n(s)ds

)

. (18)

Introducing these expressions for I± into Eq. (14), we
obtain finally

v̄2z
∂n

∂z
+ ω2

zzn−NCn

∫ +∞

−∞

sgn(s− z)n(s)ds = 0 , (19)

where

C =
3~Γ

2mkL2
⊥

I0
Is

(

σ
k2

6π

)2

. (20)

Eq. (19) is identical to the equation describing the sta-
tionary density of an assembly of N trapped particles of
mass m, with gravitational coupling constant G, in an
external harmonic trap of frequency ωz, in a heat bath
at temperature T , with the correspondence:

v̄2z ↔
kBT

m
(21a)

NC ↔ Gm , (21b)

where kB is the Boltzmann constant. Two characteristic
lengths are identified;

Lni =

√

kBT

mω2
z

(22)

is the characteristic size of the non-interacting gas in its
external harmonic holding potential. Using Eq. (10) we
get

Lni =

√

T

Ttrap

zR. (23)

The other characteristic length Li is associated with the
interaction strength:

Li =
kBT

NCm
. (24)

Using these notations we write Eq. (19) as

∂n

∂z
+

zn

L2
ni

−
n

Li

∫ +∞

−∞

sgn(s− z)n(s)ds = 0 . (25)

The first term of (25) favors the density spreading. In
contrast with the 2D and 3D cases, it always prevents the
collapse of the cloud [12]. The second term describes an
external harmonic confinement coming from the dipole
trap in the experiment. The third term is the attractive
interaction due to laser beams absorption. It corresponds
to an 1D gravitational potential expresses in Eq. (2). If
the inequality Li ≪ Lni is fulfilled, Eq. (25) is the one
expected for a 1D self-gravitating gas at thermal equilib-
rium [13]. It yields the profile:

n(z) =
1

4Li

sech2
(

z

2Li

)

. (26)

A generalization of Eq. (25) is written as:

∂n

∂z
+

1

kBT

∂Udip

∂z
n−An

∫ +∞

−∞

|s−z|−αsgn(s−z)n(s)ds = 0 ,

(27)
including the exact form of the dipole trap (8), and the
variation of the interaction exponent α of a 1/rα attrac-
tive force. This expression is used to compare theory
with experiments in section III. A is a free parameter
controlling the interaction strength, and thus the width
of the equilibrium profile.

C. Breathing oscillations

To probe the dynamics of the system, we now go back
to Eqs. (12,13). We linearize the equations with respect
to u and ∆ − 1: for small amplitude oscillations, this is
much less restrictive than to linearize with respect to the
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velocity vz. We then compute
∫

[F++F−]fdvz using this
approximation:
∫

[F+ + F−]fdvz ≃ c1(I+ − I−)n+ c2(I+ + I−)nu

+ c3(∆− 1)(I+ − I−)n ,

(28)

where the constants ci involve integrations with respect
to vz. The first term is the gravitational-like force, as
in (19) with n(z) replaced by the time-dependent den-
sity n(z, t). The second one is a friction, which a priori
depends weakly on z through I+ + I−. Since I+ − I−
is of order b ≪ 1, the third term, of order b(∆ − 1), is
neglected. We assume that the dynamics is captured by
a single parameter λ(t), using the ansatz [19]:

f(z, vz, t) = mNn(z/λ)g(λvz − λ̇z). (29)

When compared with (11), this amounts to assume: u =
λ̇
λ
z, ∆ = 1/λ. We introduce the notations 〈.〉 and 〈.〉0

for the spatial average of a quantity over the density at
time t and the stationary density respectively. Then

〈z2〉 = λ2〈z2〉0 , 〈zu〉 = λλ̇〈z2〉0 , 〈u2〉 = λ̇2〈z2〉0 . (30)

We note that Eq. (12) is automatically satisfied by the
ansatz (29). To obtain an equation for λ, we integrate
Eq. (13) over z dz. We obtain, for λ close to 1 (small
amplitude oscillations):

λ̈+ κλ̇+ ω2(λ− 1) = 0 (31)

with κ an effective friction and

ωbr = ωz (3(p− 1) + 4)
1
2 , (32)

where p measures the compression of the cloud:

p =
L2
ni

L2
z

. (33)

In experiments where the effective friction is rather small,
Eq. (32) is expected to be a fair approximation for the
breathing oscillation frequency. More generally, assum-
ing a power law two-body interaction force in the gas
1/rα, the simple relation for ωbr in the weak damping
limit becomes [19]:

ωbr = ωz ((3 − α)(p− 1) + 4)
1
2 . (34)

This formula relates ωbr to α and p, and will be used
in section III D. Eq. (34) was derived in [19] assuming
a velocity independent interaction term, which would be
obtained by linearizing the radiation pressure force (3)
in velocity. This is not a reasonable approximation in
our experiments [20], but we have shown here that (34)
is still expected to provide a reasonable approximation
for the breathing frequency in the limit of small optical
depth.

III. EXPERIMENTS

A. Experimental setup

The sample preparation is done in the same way as de-
picted in [16]. More details about laser cooling of Stron-
tium in a magneto-optical trap (MOT) can be found in
[17]. After laser cooling, around 105 atoms at T ≃ 3µK
are loaded into a far detuned dipole trap made of a
120 mW single focused laser beam at 780 nm. Analy-
sis are performed using in-situ images taken with a CCD
at different instant of the experimental sequence. The
longitudinal profile is obtained averaging over the irrele-
vant remaining transverse dimension. We directly mea-
sure the longitudinal trap frequency ωz = 6.7(0.5) Hz
from relaxation oscillations of the cold cloud (see exam-
ple of temporal evolutions in Fig. 1). The radial trap
frequency ω⊥ = 470(80)Hz is deduced from cloud size
measurements. The beam waist is estimated at 23(2)µm
leading to a potential depth of Ttrap ≃ 20µK.
50 ms after loading the dipole trap (corresponding to

t = 0 in Fig. 1), a contra-propagating pair of laser beams,
red-detuned with respect to the 1S0 → 3P1 intercombina-
tion line at 689 nm (radiative lifetime: 21µs), are turned
on for 400 ms. These beams, aligned with respect to the
longitudinal axis of the cloud, generate the effective 1D
attractive interaction. When the 1D lasers are on, we
apply a B = 0.3 G magnetic bias field, for two impor-
tant reasons: First, the Zeeman degeneracy of the excited
state is lifted such that the lasers interact only with a two-
level system made out of the m = 0 → m = 0 transition
which is insensitive to the residual magnetic field fluc-
tuation. Second, the orientation of magnetic field bias,
with respect to the linear polarization of the dipole trap
beam, is tuned to cancel the clock (or transition) shift
induced by the dipole trap on the transition of interest
[16].
The temperature along the 1D laser beams, in our ex-

perimental runs, is found to be in the range of 1− 3µK.
Even at such low temperatures, and in sharp contrast
with standard broad transitions, the frequency Doppler
broadening kv̄z remains larger than Γ. As a direct con-
sequence, the optical depth b depends on the exact longi-
tudinal velocity distribution g(vz) (see Eqs. (5) and (6))
which are not necessarily gaussian [16]. Since we mea-
sure only the second moment of the distribution g(vz),
namely: v̄z or T , one has enough control to assert the
b ≪ 1 limit, thus the occurrence of the self-gravity
regime. However we can perform only qualitative tests
of our theory described in section II B.
At t = −50ms, the MOT cooling laser beams are

turned off, leaving the trapped atomic cloud in an out-
of-equilibrium macroscopic state. Without the 1D lasers,
we observed a weakly damped oscillation of the breath-
ing mode and of the center of mass position (blue circles
in Fig. 1). One notes that damping is caused by anhar-
monicity of the dipole trap and not by thermalization of
the gas which is negligible on the experimental timescale.
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FIG. 1: Upper part: Typical temporal evolutions of Lz the
rms longitudinal size of the atomic cloud for three different 1D
beam intensities. The laser detuning is δ = −5Γ for all curves.
Lower part: The center of mass position of the atomic gas
without the 1D lasers (I = 0). The y axis origin is arbitrary.

In presence of the 1D laser beams, overdamped or under-
damped oscillations of the cloud are observed.

B. Stationary state’s density profile

Let us first consider the stationary state in the over-
damped situation (red circles in Fig. 1). After the tran-
sient phase (t < 30 ms), the rms longitudinal size of
the atomic gas reaches a plateau at a minimal value of
Lz ≃ 120µm with T ≃ 2µK. The slow increase of the
cloud’s size after the plateau (t > 150 ms) goes with
an increase of the temperature up to 4µK at the end of
the time sequence. The origins of the long time scale
evolution are not clearly identified, but it is most likely
due to coupling of the longitudinal axis with the un-
cooled transverse dimensions because of imperfect align-
ment of the 1D laser beams with the longitudinal axis
of the trap and nonlinearities of the trapping forces. At
the plateau where temperature is around 2µK the non-
interacting gas is expected to have a rms longitudinal size
of Lz = Lni ≃ 370µm. Hence, a clear compression of the
gas by a factor of three is observed. It is due to the
attractive interaction induced by the absorption of the
1D laser beams. Moreover, the estimated optical depth
is b < 0.6. We then approach the two previously men-
tioned conditions — b ≪ 1 and Lz ≪ Lni — for being in
the 1D self-gravitating regime. In Fig. 2, where b ≃ 0.4,
we test the effective interaction in the gas by assuming
a power law two-body interaction force in the gas 1/rα

and fitting the experimental linear density distribution
for different values of α in the presence of a dipolar trap;

FIG. 2: Density linear distribution. The black circles are the
experimental data with I = 0.02Is, δ = −6Γ and b ≃ 0.4. The
profiles were symmetrized to improve the signal to noise ratio.
The curves are least square fits of the data using Eq. (15)
of the Supplementary material, which is a straightforward
generalization of Eq. (25) containing the exact form of the
dipole trap and a two-body interaction force 1/rα. The fits are
performed for each α by fixing the normalization and varying
the interaction strength.

α = 0 corresponds to 1D gravity. We see that the best
fit seems to be for α ∈ [0, 1/2].
In absence of the 1D laser beams, we have checked

that the experimental linear density distribution have the
expected profile of a non interacting gas in our dipole trap
having a zR = 1.2(1) mm Rayleigh length.

C. Cloud’s longitudinal size

In the self-gravitating regime a 1/N dependency of Lz

is expected at fixed temperature (see (26) and the def-
inition of Li). Fig. 3 shows that the cloud’s size Lz is
in agreement with this prediction for two temperature
ranges: 1.5(2)µK (blue circle) and 2.1(2)µK (red star).
Fits correspond to the blue dashed line for 1.5(2)µK and
the red dashed line for 2.1(2)µK. The fitting expression
is

N = a(1/Lz − Lz/L
2
ni) , (35)

where a and Lni are free parameters depending on the
temperature of the gas. If Lni ≫ Lz, the self-gravitating
regime is recovered in the fitting expression. However
Eq. (35) takes into account the presence of a harmonic
trap. Eq. (35) can be simply derived using the gener-
alized virial theorem (see Eq. (11) in Ref. [18]) and it
is in perfect agreement with numerical integrations of
Eq. (25). The fits give Lni ≃ 0.5 mm, slightly larger than
the expected value of Lni at these temperatures. The
1/N dependency of Lz in the self-gravitational regime
is consistent with a long range interaction with α = 0.
Unfortunately as discussed above, the residual Doppler
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FIG. 3: Dependency of the longitudinal size of the cloud with
the number of atoms for δ = 5.7(5)Γ and I = 0.3Is. The
blue circle (red star) data points correspond to temperature
1.5(2) µK (2.1(2) µK). The optical depth is in the range of
0.6-0.2 according to atoms number variations. The blue and
the red dashed lines are fits using Eq. (35).

FIG. 4: Comparison for α = 0, 1 and 2 of the experimental
ratio (ωbr/ωz)

2 and the predictions deduced from the relation
(34). The values of p are measured on the experiment.

effect prevents a quantitative comparison with the pre-
diction of our model.

D. Breathing oscillations

Let us now consider the evolution of the trapped cold
cloud in the underdamped situation (as an example see

green circles in Fig. 1). Without the 1D lasers, the ratio
of the eigenfrequencies of the breathing mode ωbr and
the center of mass ωz is found to be close to two, as
expected for a non-interacting gas in a harmonic trap.
As an example the blue curve, shown in Fig. 1, gives
ωbr/ωz = 1.9(1). If now the attractive long-range inter-
action is turned on, ωbr is expected to follow Eq. (34)
whereas ωz should remain unchanged.

Fig. 4 summarizes the comparisons between the mea-
sured ratio (ωbr/ωz)

2 and the predictions deduced from
the relation (34). p is computed from the experimental
data in the stationary state. We expect α = 0, however to
judge the nature of the long-range attractive interaction,
three plots respectively for α = 0, 1 and 2 are shown.
If the α = 2 case can be excluded, the experimental un-
certainties does not allow to clearly discriminate between
α = 0 and α = 1. In conjunction with Fig. 2, we con-
clude that the system is reasonably well described by a
gravitational-like interaction, α = 0.

IV. CONCLUSION

In this paper, we give some experimental evidences
of an 1D gravitational-like interaction in a Strontium
cold gas, induced by quasi resonant contra-propagating
laser beams. First, we show that in the self-gravitating
limit, the density distribution follows the theoretically
expected profile. Moreover, the scaling of the cloud size
with the number of atoms follows the predicted 1/N law.
Finally, the modification of breathing frequency of the
cloud, due to the long range interaction, is correctly de-
scribed by a self-gravitating model. This suggests inter-
esting consequences: by contrast with the 1D case, a 2D
self-gravitating fluid undergoes a collapse at low enough
temperature, or strong enough interaction. Hence, it is
conceivable that an experiment similar to the one pre-
sented in this paper, in a pancake geometry, would show
such a collapse.
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