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In this paper, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI). Then, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top order statistics. But these EVIestimators are not location-invariant, contrarily to the peaks over random threshold (PORT)-Hill estimators, which depend on an extra tuning parameter q. On the basis of second-order minimumvariance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators, and propose the use of a heuristic algorithm, for the adaptive choice of k and q. Applications in the fields of insurance and finance will be provided.
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Introduction and preliminaries

Given an underlying distribution function (d.f.) F , and with the notation F ← (y) := inf {x : F (x) ≥ y} for the generalized inverse function of F , let us denote U (t) := F ← (1 -1/t), t ≥ 1, the associated reciprocal quantile function. As usual, the notation RV α will be used for regularly-varying functions with an index of regular variation equal to α, i.e., positive measurable functions g(•) such that for any x > 0, g(tx)/g(t) → x α , as t → ∞. Under a semi-parametric framework, we deal with the estimation of a positive extreme value index (EVI) γ, the primary parameter in statistics of extremes, i.e. we shall consider parents such that

U ∈ RV γ ⇐⇒ F := 1 -F ∈ RV -1/γ ,
the usually called heavy-tailed parents, quite common in the most diversified areas of application, like finance, insurance, bibliometrics and biology. We are then working in

D + M ≡ D M (EV γ ) γ>0
, the domain of attraction for maxima of EV γ , γ > 0, with EV γ denoting the general extreme value (EV) d.f., given by

EV γ (x) =    exp -(1 + γx) -1/γ , 1 + γx > 0 if γ = 0 exp(-exp(-x)), x ∈ R if γ = 0. (1) 
For these heavy-tailed parents, given a sample X n = (X 1 , . . . , X n ) and the associated sample of ascending order statistics (o.s.'s), (X 1:n ≤ • • • ≤ X n:n ), the classical EVI-estimators are Hill estimators [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], here denoted H ≡ H(k), k = 1, 2, . . . , n -1, and given by 

H(k) ≡ H(k; X n ) := 1 k k i=1 {ln X n-i+1:n -ln X n-k:n }, (2) 2 F 
X (q) n := X n:n -X nq:n , . . . , X nq+1:n -X nq:n , with n q := [nq] + 1, (4) 
where [x] denotes, as usual, the integer part of x. We can generally have 0 < q < 1, for d.f.'s with finite or infinite left endpoint x F := inf{x : F (x) > 0} (the random threshold is an empirical quantile), and q = 0, for d.f.'s with finite left endpoint x F (the random threshold is the minimum). These new classes of EVI-estimators are the so-called PORT-Hill estimators, denoted H|q ≡ H (q) ≡ H (q) (k) and given by

H (q) (k) := H(k; X (q) n ) = 1 k k i=1 ln X n-i+1:n -X nq:n X n-k:n -X nq:n , 0 ≤ q < 1, k < n -n q , (5) 
i.e., they have the same functional form of the Hill estimator in (2), but with the original sample X n = (X 1 , . . . , X n ) replaced by the sample of excesses X (q) n in (4). These estimators are now invariant for both changes of scale and location in the data, and depend on the tuning parameter q, that provides a highly flexible class of EVI-estimators, which may even compare favorably with the second-order minimum-variance reduced-bias (MVRB) EVI-estimators described in the following, provided that we adequately choose the tuning parameter q. Indeed, and due to the high bias of the Hill estimator, in [START_REF] Beirlant | Statistics of Extremes[END_REF], for moderate up to large k, several authors have been dealing with bias reduction in the field of extremes, working usually in a slightly more restrict class than D + M , the class of models U (•) such that as t → ∞, where C, γ > 0, ρ < 0 and β = 0. This means that the slowly varying function

U (t) = C t γ 1 + A(t)/ρ + o(t ρ ) , A(t) = γ β t ρ , (6) 
L(t) in U (t) = t γ L(t)
is assumed to behave asymptotically as a constant C. Note that to assume ( 6) is equivalent to saying that we can choose A(t) = γ β t ρ , ρ < 0, in the more general second-order condition

lim t→∞ ln U (tx) -ln U (t) -γ ln x A(t) = x ρ -1 ρ . (7) 
Indeed, the Hill estimator reveals usually a high asymptotic bias, i.e., as n → ∞, and if

(3) and ( 7) hold, √ k (H(k) -γ) is asymptotically normal with variance γ 2 and a non-null mean value, equal to λ/(1 -ρ), whenever √ k A(n/k) → λ = 0, finite, with A(•) the function in [START_REF] Ciuperca | Semi-parametric estimation for heavy tailed distributions[END_REF]. This non-null asymptotic bias, together with a rate of convergence of the order of 1/ √ k, leads to sample paths with a high variance for small k, a high bias for large k, and a very sharp mean squared error (M SE) pattern, as a function of k. A simple class of second-order MVRB EVI-estimators is the one in [START_REF] Caeiro | Direct reduction of bias of the classical Hill estimator[END_REF], used for a semi-parameteric estimation of ln V aR p in [START_REF] Gomes | A simple second order reduced-bias' tail index estimator[END_REF]. This class, here denoted H ≡ H(k), depends upon the estimation of the second-order parameters (β, ρ) in [START_REF] Caeiro | Reduced-bias tail index estimators under a third order framework[END_REF]. Its functional form is

H(k) ≡ H(k; X n ) ≡ H β,ρ (k) := H(k) 1 -β(n/k) ρ/(1 -ρ) , (8) 
with H(k) the Hill estimator in [START_REF] Beirlant | Statistics of Extremes[END_REF], and where ( β, ρ) needs to be an adequate consistent estimator of (β, ρ). Then, under the same conditions as before, i.e., if (3) holds and

√ k A(n/k) → λ = 0, finite, √ k H(k)
-γ is asymptotically normal with variance also equal to γ 2 but with a null mean value. Indeed, it follows from the results of de Haan and Peng (1998) that for models in [START_REF] Caeiro | Reduced-bias tail index estimators under a third order framework[END_REF], and with

H(k) given in (2), √ k (H(k) -γ) d = Normal 0, γ 2 + γ β √ k(n/k) ρ 1 -ρ (1 + o p (1)), (9) 
where the bias 

γ β √ k (n/k) ρ /(
√ k H(k) -γ d = Normal 0, γ 2 + o p ( √ k(n/k) ρ ),
for H(k) in (8), i.e. H(k) outperforms H(k) for all k.

In this paper, we shall consider the new EVI-estimators,

H (q) (k) := H(k; X (q) n ), (10) 
with the same functional form of the MVRB estimators in ( 8), but with the original sample X n replaced by the sample of excesses X (q) n , in (4). The estimators H (q) (k), in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], will be named PORT-MVRB estimators. They are invariant for both changes of location and scale and, similarly to the relationship between H and H, it is obvious that for any q, H (q) (k) outperforms H (q) (k) for all k. A full theoretical study of these PORT-MVRB estimators, with detailed information on the dominant component of bias, is still under investigation, and out of the scope of this paper.

Remark 1. On the basis of (9), the optimal k-value for the EVI-estimation through the Hill estimator in (2), i.e. k H 0 := arg min M SE(H(k)), is thus well approximated by arg min

k 1/k + β 2 (n/k) 2ρ /(1 -ρ) 2 = (1 -ρ) 2 n -2ρ / β 2 (-2ρ) 1/(1-2ρ) . ( 11 
) Remark 2. With the notation b k,n,ρ = 1 + β(n/k) ρ /(1 -ρ), and provided that √ k (n/k) ρ → λ, finite, √ k H(k)/γ -b k,n,ρ
is approximately Normal(0, 1). We can then get approximate 100(1 -α)% confidence intervals (CI s) for γ, given by

H(k)/ b k,n,ρ + ξ 1-α/2 / √ k , H(k)/ b k,n,ρ -ξ 1-α/2 / √ k , (12) 
where ξ p denotes the quantile of probability p of a standard normal d.f. If λ = 0, we can replace in [START_REF] Goegebeur | Kernel estimators for the second order parameter in extreme value statistics[END_REF] the bias summand β(n/k) ρ /(1 -ρ) by 0, i.e., we can take b k,n,ρ = 1.

Remark (q) in (10), for adequate values of q, and for this same type of levels k, we get the following 100(1 -α)% approximate CI for γ,

H(k)/ 1 + ξ 1-α/2 / √ k , H(k)/ 1 -ξ 1-α/2 / √ k .
Algorithms for the estimation of (β, ρ) are provided in [START_REF] Gomes | A simple second order reduced-bias' tail index estimator[END_REF], among others, and such estimation will be only briefly reformulated in Section 2 of this paper. In Section 3, we describe the results associated with a large-scale Monte-Carlo simulation study of the new PORT-MVRB EVI-estimators, in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. Section 4 is dedicated to a data-driven choice of the tuning parameters k and q, inspired in the heuristic choice considered in (q) , in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], for adequate values of q, we provide an algorithm for the choice of k, whenever we use H, in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF], as well as for the choice of k and q, whenever we use H (q) , in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], as estimators of the EVI. Such algorithm is based on the bias pattern of the estimators as a function of k.

Finally, in Section 4.2, we provide applications of the adaptive methodology to data in the fields of insurance and finance, as well as to a simulated sample from a Student underlying parent.

Estimation of second-order parameters

All reduced-bias EVI-estimators, like the ones in ( 8) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], require the estimation of shape and scale second-order parameters, β and ρ, respectively. Also, the estimation of the optimal sample fraction (OSF) for classical EVI-estimators, like the Hill estimator, in (2), i.e. the sample fraction k H 0 /n, with k H 0 defined in Remark 1, depends on the estimation of β and ρ, in [START_REF] Caeiro | Reduced-bias tail index estimators under a third order framework[END_REF]. Indeed, on the basis of [START_REF] Goegebeur | Linking Pareto-tail kernel goodness-of-fit statistics with tail index at optimal threshold and second order estimation[END_REF] and with ( β, ρ) any consistent estimator of (β, ρ), we can use [START_REF] Hall | On some simple estimates of an exponent of regular variation[END_REF]. Such an estimation will next be briefly discussed. 

kH 0 := (1 -ρ) 2 n -2ρ -2ρ β2 1/(1-2ρ) (13) 
) := min 0, 3(T (0) n (k; X n ) -1) T (0) n (k; X n ) -3 , (14) 
dependent on the statistics

T (0) n (k; X n ) := ln M (1) n (k; X n ) -1 2 ln M (2) n (k; X n )/2 1 2 ln M (2) n (k; X n )/2 -1 3 ln M (3) n (k; X n )/6
, where

M (j) n (k) := 1 k k i=1 {ln X n-i+1:n -ln X n-k:n } j , j = 1, 2, 3. (15) 
In the simulations we shall however also consider the estimator in Fraga [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF],

associated with τ = 1, i.e. ρ1 (k) ≡ ρ1 (k; X n ) := min 0, 3(T (1) n (k; X n ) -1) T (1) n (k; X n ) -3 , (16) 
where, with M (j) n (k) given in [START_REF] Gomes | A simple second order reduced-bias' tail index estimator[END_REF],

T (1) n (k; X n ) := M (1) n (k; X n ) -M (2) n (k; X n )/2 1/2 M (2) n (k; X n )/2 1/2 -M (3) n (k; X n )/6 1/3 .
Distributional properties of the estimators in ( 14) and ( 16) can be found in Fraga [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. Consistency is achieved in the class of models in ( 6), for intermediate k-values, i.e., k-values such that (3) holds, and also such that

√ k A(n/k) → ∞, as n → ∞.
As already suggested in previous papers, we have here decided for the computation of ρτ (k), 

τ = 0, 1, at k = k 1 , given by k 1 = n 1-, = 0.001, (17) 
√ k 1 A(n/k 1 ) → ∞, we get ρ -ρ := ρτ (k 1 ) -ρ = o p (1/ ln n),
a condition needed, in order not to have any increase in the asymptotic variance of the bias-corrected Hill estimators in equations ( 8) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. Note that with the choice of k 1 in (17), we get For the estimation of the scale second-order parameter β, in ( 6), and again on the basis of a sample X n , we shall here consider

√ k 1 A(n/k 1 ) → ∞ if and only if ρ > 1/2 -1/(2 ) = -
βρ (k) ≡ βρ (k; X n ) := k n ρ d ρ(k) D 0 (k) -D ρ(k) d ρ(k) D ρ(k) -D 2ρ (k) , (18) 
dependent on the estimator ρ = ρτ (k 1 ; X n ), τ = 0 or 1, suggested before and where, for any α ≤ 0, 

d α (k) := 1 k k i=1 i k -α and D α (k) := 1 k k i=1 i k -α U i , U i := i ln X n-i+1:n X n-i:n , with U i , 1 ≤ i ≤ k,

Remarks

• As mentioned before, bias reduction is really needed when |ρ| ≤ 1, a common situation in practice. Hence the fundamental role played by the tuning parameter τ = 0, and the estimators in [START_REF] Gomes | The bootstrap methodology in Statistics of Extremes: choice of the optimal sample fraction[END_REF].

• In the simulation study, the EVI-estimators in ( 8) and (10) will be denoted 3 Finite sample behaviour: a Monte-Carlo simulation In this section, for q = 0, 0.1 and 0.25, we are interested in the finite-sample behaviour of the PORT-MVRB EVI-estimators, H (q) (k), in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], comparatively with the classical Hill EVI-estimators, H(k), in ( 2) and the MVRB EVI-estimators H(k), in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF]. We have performed a large-scale multi-sample simulation with size 5000 × 20, i.e., 20 replicates with 5000 runs each. For details on multi-sample simulation refer to [START_REF] Gomes | The bootstrap methodology in Statistics of Extremes: choice of the optimal sample fraction[END_REF].

The patterns of mean values (E) and root mean squared errors (RMSE) are based on the first replicate. As an illustration, we shall present in this article the results associated with the following underlying parents, all with a shape second-order parameter equal to -0.5: 

I. the Burr model, with d.f. F (x) = 1 -(1 + x -ρ/γ ) 1/ρ , x ≥ 0, γ > 0, with γ = 0.
f tν (t) = Γ((ν + 1)/2) 1 + t 2 /ν -(ν+1)/2 /( √ πν Γ(ν/2)), t ∈ R (ν > 0),
with ν = 4 degrees of freedom (γ = 0.25 and ρ = -0.5);

III. the general EV γ model, in [START_REF] Santos | Peaks over random threshold methodology for tail index and quantile estimation[END_REF], with γ = 0.5 (ρ = -0.5).

Mean values and mean squared errors paterns

In Figures 1, 2 and3, for the models in I., II. and III., respectively, we show the simulated patterns of mean value, E(•), and root mean squared error, RMSE(•), of the EVI-estimators

H(k), H (q) (k), H 0 (k) and H (q)
0 (k), with H, H (q) , H and H (q) defined in (2), ( 5), ( 8) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], respectively. For the sake of simplicity, we denote these estimates by H, H|q, H 0 and H 0 |q, respectively. These parents were chosen just to illustrate the fact that:

! E • ( ) ! RMSE • ( ) ! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1 0.2 0.3 0.4 0.5 0 200 400 0 0.1 0.2 0.3 0 200 400 ! E • ( ) ! RMSE • ( ) ! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1
• The PORT-MVRB EVI-estimators can be not able to improve the performance of H 0 , as happens also with the PORT-Hill estimators when compared with the Hill estimator H (see Figure 1, associated with the Burr model). Indeed, this hapens for all models with a left endpoint greater than or equal to zero.

• The PORT-Hill estimators can outperform the MVRB-estimator H 0 (see Figure 2, associated with a Sudent t 4 underlying parent). For this type of models, with a left endpoint equal to infinity, the value q = 0 should be discarded due to inconsistency (see the patterns of H|0 and H 0 |0 in Figure 2, and Gomes et al., 2008a, for further details on the subject).

• We can often find a value of q that provides the best estimator of γ, regarding for instance minimum MSE, through the use of the new class of estimators H (q) (k), in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF] (the value q = 0.1, in Figure 2, and the value q = 0, in Figure 3). 

! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1 ! E • ( ) ! RMSE • ( ) 0 
! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1 ! E • ( ) ! RMSE • ( )
! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1 ! E • ( ) ! RMSE • ( )
! H 0 | 0.1 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 ! H 0 | 0 ! H 0 | 0.25 ! H ! H | 0 ! H | 0.1 ! H | 0.25 ! H 0 | 0.25 ! H 0 ! H 0 | 0 ! k ! k ! H 0 | 0.1 ! E • ( ) ! RMSE • ( )

Relative efficiencies and mean values at optimal levels

Given a sample X n = (X 1 , . . . , X n ), let us denote S(k) = S(k; X n ) any statistic or r.v. dependent on k, the number of top o.s.'s to be used in an inferential procedure related with a parameter of extreme events. Just as mentioned before for the Hill estimator H(k), in(2), 

REF F S 0 := M SE {H(k H 0 )} M SE {S(k S 0 )} =: RM SE H 0 RM SE S 0 .
Among the estimators considered, and for all n, the one providing the smallest squared bias and smallest MSE, or equivalently, the highest REF F is underlined and in bold. Tables 1, 2 and 3 are related with the underlying parents in I., II, and III., respectively, and 95% confidence intervals are associated with all the estimates provided in the tables.

For an easier visualization, we present, in Figure 4, the REFF-indicators of the new PORT-MVRB EVI-estimators, in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], as well as of the PORT-Hill EVI-estimators in (5) and the MVRB EVI-estimators in ( 8), all at optimal levels, comparatively with the classical EVIestimators, in (2), also at their optimal level, for the underlying parents in I., II. and III. Regarding the REFF-indicators, we would like to draw the following comments:

! H 0 | 0 ! H 0 ! H 0 | 0.1 ! n ! H 0 | 0.25 ! H | 0 ! H | 0.25 ! REFF 0 • ! H | 0.1
• For models like the Burr, with a left endpoint equal to zero, we cannot acchieve any improvement with the shifted estimators. • For a model like the Student t ν , here illustrated for ν = 4, the PORT-MVRB EVIestimators have the best performance for all n, if q = 0.1. However, even the PORT-Hill EVI-estimators associated with q = 0.1 exhibit also a high efficiency.

! n ! E 0 • ! " = 0.25 ! H 0 | 0 ! H 0 ! H 0 | 0.1 ! H | 0 ! H ! H | 0.25 ! H | 0.1 ! H 0 | 0.
! E 0 • ! " = 0.5 ! H 0 | 0 ! H 0 ! H 0 | 0.1 ! H | 0 ! H ! H | 0.25 ! H | 0.1 ! H 0 | 0.25 ! n
• For an underlying EV model, we reach a clear improvement in the estimation of γ, whenever we consider the PORT estimators, based on the MVRB EVI-estimator.

The REFF-indicators of the PORT-MVRB EVI-estimators associated with q = 0 are the highest ones for all n. Note however that even the PORT-Hill estimators provide REFF-indicators higher than one for all n, with the highest indicator associated with q = 0 (a shift induced by the minimum of the available sample).

It is also clear from Figures 4 and5 that there is not a full agreement between REFF and BIAS indicators, but the discrepancies are moderate. Regarding bias at optimal levels, we can draw the following comments:

• For the simulated Burr model the MVRB EVI-estimators exhibit the smallest bias for all n, but not a long way from the PORT EVI-estimator associated with q = 0, as expected.

• For the Student t 4 model, the PORT-MVRB EVI-estimator based on q = 0.1 has a quite interesting bias pattern, practically equal to zero for all n.

• For an EV model with γ = 0.5 and for all n, the smallest bias is achieved by the This also happens for other values of γ.

• Note also the over-estimation achieved by all EVI-estimators considered, with an exception for the PORT-MVRB EVI-estimators associated with q = 0.1 in a Student underlying parent.

In Figure 6, we still present the REFF-indicators of the EVI-estimators, in ( 5), ( 8) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], comparatively with the classical EVI-estimators, in ( 2), all at optimal levels, for an EV model with γ = 1 (ρ = -1) and a Fréchet model with γ = 0.25 (ρ = -1, as well). The Fréchet d.f. is Φ 1/γ (x) = exp(-x -1/γ ), x ≥ 0. Figure 7 is equivalent to Figure 6, but with the mean values at optimal levels, for the same extra models as in Figure 6.

! H 0 | 0 ! H 0 ! H 0 | 0.1 ! n ! H | 0 ! H 0 | 0.25 ! H | 0.25 ! REFF 0 • 0.0 0.5 1.0 1.5 2.0 0 2000 4000 ! H 0 | 0 ! H 0 ! n ! REFF 0 • ! H | 0.25
In summary we may draw the following final conclusions:

1. If the underlying model has a finite left endpoint greater than or equal to zero, the PORT estimators can never bit the original estimators.

2. For the range of ρ-values close to zero (greater than -1, say), the use of τ = 1 provides results only slightly better than the ones associated with the classical estimator. If |ρ| ≥ 1, the choice τ = 1 is more convenient, as already detected in other papers on the subject. 17 3. For parents with an infinite left endpoint, like the Student parents, or a left endpoint smaller than zero, like the EV parents, the best performance regarding efficiency is attained by the new estimators for an adequate value of q. Such a q depends on the underlying model and on the sample size n. A similar comment applies to bias reduction.

! H 0 | 0 ! H 0 ! H | 0 ! H ! E 0 • ! " = 1 ! H 0 | 0.25 ! n 0.2 0.3 0.4 0 2000 4000 ! n ! H 0 ! H 0 | 0 ! H ! E 0 • ! H | 0.25 ! " = 0.25
4 Data-driven choice of tuning parameters and case studies With the notation X 0:n = 0, and with H and H (q) , given in ( 8) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], respectively, we can consider that H = H (q) for q = -1/n (n q = 0). Our interest lies then on the estimation of γ through H (q) , in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], now also including H, in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF]. Based on the stability on k of the MVRB estimates, in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF], and the PORT-MVRB estimates, in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], for adequate values of q, we propose now a method for an adaptive heuristic estimation of γ.

An algorithm for the heuristic choice of k and q

Algorithm.

1.

Given an observed sample (x 1 , x 2 , . . . , x n ), consider, for q = -1/n, 0(0.1)0. 

n , with X (q) n given in (4), and compute ρ ≡ ρ0 = ρ0 (k 1 ; x (q) n ) and β ≡ β0 := βρ 0 (k 1 ; x (q) n ), ρ0 (k), k 1 and βρ (k) given in ( 14), ( 17) and [START_REF] Gomes | Tail Index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses[END_REF], respectively.

2.

Next compute, for k = 1, 2, . . . , n -[nq] -1, the observed values of H (q) 0 (k), with H (q) (k) given in [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF] note that, as mentioned before and with H given in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF],

H (-1/n) ≡ H .
3. Obtain j 0 , the minimum value of j, a non-negative integer, such that

a k (j) = [H (q) 0 (k) × 10 j ], k = 1, 2, • • • , n -[nq]
-1, has distinct elements (in the applications, in Section 4.2, we were led to j 0 = 1 for all data sets considered).

4.

For each q and for k > kH 0 , with kH 0 given in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF], consider as an estimate of γ the equal consecutive values

H (q) 0 (k), k ∈ K q , with K q = [k (q) min , k (q)
max ], to which is associated the largest size l q := #K q = k (q) max -k (q) min .

5.

Choose next q 0 := arg max q l q .

6. Consider all those estimates, H

(q 0 ) 0 (k), k (q 0 ) min ≤ k ≤ k (q 0 )
max , now with an extra decimal place, i.e., H (q 0 ) (k) = a k (j 0 + 1)/10 j 0 +1 . Count the frequencies associated to those estimates and obtain the mode η 0 ≡ η q 0 of these values. Let us denote K * the set of k-values corresponding to those estimates.

7.

In order to enlarge the size of the associated CI, take k 0 as the minimum of K * and the adaptive EVI-estimate γ = H (q 0 ) 0 (k 0 ).

4.2

Case studies and a simulated sample reinsurance rating and heavy-tailed distributions in car insurance. As detected before, and can be seen from the histogram in Figure 8, the right-tail is quite heavy. The data is censored at the left, with a finite positive left endpoint, and we thus expect to have no improvement through the use of the PORT methodology, and we expect to be led by the Algorithm to the choice of the MVRB EVI-estimator, H, in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF]. In Figure 9, we present, for the original sample, the sample path of the ρ-estimates in ( 14) and ( 16), as function of k, together with the sample paths of the β-estimators in [START_REF] Gomes | Tail Index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses[END_REF], also for τ = 0 and τ = 1. We have n = n 0 = 371, and we got ρ = ρ 0 (368) = -0.74. We were next led to the estimate β = 0.80.

Histogram of Secura_data

In Figure 10, we present the estimates of γ, provided by H and H (q) , q = -1/n, 0 and 0.2, with H and H (q) given in ( 2) and [START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF], respectively. Regarding the EVI-estimation, note that the Hill estimator H(k), in (2), is unbiased for the estimation of the extreme value index γ only when the underlying model is a strict Pareto model. Otherwise, i.e. when we have only Pareto-like tails, as happens here and can be seen from Figure 10, it exhibits a quite relevant bias. The MVRB EVI-estimators, H, in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF], which are "asymptotically unbiased", have a smaller bias, exhibit more stable sample paths as functions of k, and enable us to take a decision upon the estimate of γ and other parameters of extreme events to be 20 • The estimate of k H 0 , provided in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF], is kH 0 = 54 and H(54) = 0.320. The approximate 99% confidence interval is then (0.219, 0.420), with a size equal to 0.201 > 0.089.

! k ! ˆ " 0 (k) ! ˆ " 1 (k) ! ˆ " ˆ # 0 (k) ! ˆ " ˆ # 1 (k) ! ˆ " 0 = #0.74 ! ˆ " 0 = 0.80

A data set in the field of finance

We have also considered the performance of the Algorithm, when applied to the analysis of the log-returns associated with one of the four sets of financial data considered in Gomes and Pestana (2007), the daily closing values of the Microsoft Corp. (MSFT). Although there is some increasing trend in the volatility, stationarity and weak dependence are assumed, under the same considerations as in [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF]. For this data set, we now present, in Figure 11, a box-and-whiskers' plot of the available data. From Figure 11, we immediately see that the underlying model has heavy left and right tails. This is the usual situation for log-returns data, and leads to the elimination of the estimators associated with q = 0, due to their inconsistency. Figure 12 is similar to Figure 10, now for the MSFT data.. • The number of positive elements in the available sample of log-returns is now n 0 = 882. We were led to the ρ-estimate ρ ≡ ρ0 = -0.72, obtained at the level k 1 =

[n 0.999 0 ] = 876. The associated β-estimate is β ≡ β0 = 1.02.

• In Step 5. of the Algorithm, we have been led to the choice q 0 = 0. • The estimate of k H 0 , provided in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF], is kH 0 = 71 and H(71) = 0.391. The approximate 99% confidence interval is then (0.286, 0.518), with a size equal to 0.232 again larger than the size 0.159 obtained through the heuristic Algorithm in this paper.

! H ! H ! k ! ˆ " = H 0 (0.1) (72) = 0.238 ! q = 0.1 ! q = 0.2

A simulated data set

Due to the specificity of the log-returns, often modelled by a Student-t or its skewed versions (see [START_REF] Jones | A skew extension of the t-distribution, with applications[END_REF][START_REF] Jones | A skew extension of the t-distribution, with applications[END_REF]McNeill et al., 2005), we have arbitrarily simulated a random sample of size n = 1762, from a Student's t ν -model with ν = 4 degrees of freedom. got a mode η 0 = 361 for the γ-estimate 0.24, k 0 = 115 and the adaptive PORT-MVRB estimate γ = 0.244. The associated 99% MVRB-confidence interval for γ is (0.197, 0.321), with a size equal to 0.124.

• The estimate of k H 0 , provided in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF], is kH 0 = 73 and H(73) = 0.359. The approximate 99% confidence interval is then (0.257, 0.452), with a size equal to 0.195.

• In this case we know the true value of γ, the value 0.25, and we see that such a value does not even belong to the 99% confidence interval associated with the Hill estimate. On the other way round, it belongs to the 99% CI associated with the adaptive PORT-MVRB estimate. Moreover, the fact that the size of the MVRB-CI is always smaller than the size of the Hill-CI, even when we consider both the classical and the PORT-MVRB estimators at the level kH 0 , in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF], favours the new methodology.

A general summary of the performed data analysis

In Table 4, we present a summary of the data analysis performed in this section, providing the estimates of k for the Hill EVI-estimation and the values of (k 0 , q 0 ) provided by the Algorithm considered. We also provide not only the most usual adaptive EVI-estimation of For the SECURA data, and as desired, the adaptive PORT-MVRB EVI-estimate is inside the 99% CI associated with the adaptive Hill EVI-estimate. But nothing similar happens with the other adaptive estimates. For the generated Student sample, the true value of γ does not even belong to the 99% CI associated with the adaptive Hill EVIestimate. Moreover, γ is below the lower limit of the 99% CI associated with the adaptive Hill estimate, as well as the adaptive Hill estimate is above the upper limit of the 99% CI associated with the adaptive PORT-MVRB EVI-estimate. A similar comment applies to the MSFT data, and we strongly believe that in this case the true value of γ is slightly below 0.286. These case studies claim obviously for a simulation study of the Algorithm presented in Section 4.1, but this is a topic out of the scope of this paper. However, the results obtained for other simulated samples, clearly indicate an over-estimation of the adaptive Hill estimate and an overall best performance of this data-driven (and locationinvariant) method of estimation of the extreme value index. 
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 7 in Caeiro et al. (2005) and Gomes and Pestana (2007). With such a choice of k 1 , and whenever

  499.5, an irrelevant restriction, from a practical point of view. Interesting alternative classes of ρ-estimators have recently been introduced in Goegebeur et al. (2008, 2010) and Ciuperca and Mercadier (2010).

  the scaled log-spacings associated with X n . Details on the distributional behaviour of the estimator in (18) can be found in Gomes and Martins (2002) and more recently in Gomes et al. (2008b) and Caeiro et al. (2009). Consistency is achieved for models in (6), k values such that (3) holds and √ k A(n/k) → ∞, as n → ∞, and estimators ρ of ρ such that ρ -ρ = o p (1/ ln n). Alternative estimators of β can be found in Caeiro and Gomes (2006) and Gomes et al. (2010).
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 8 , to enhance the choice τ = 0 in the class of ρ-estimators in Fraga[START_REF] Alves | A new class of semi-parametric estimators of the second order parameter[END_REF]. For τ = 1, we shall use the obvious notation H 1 and H

25 and ρ = -0. 5 ;

 5 II. the Student's t ν -model with ν degrees of freedom, with a probability density function
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Figure 1 :

 1 Figure 1: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Burr parent with (γ, ρ) = (0.25, -0.5).
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Figure 2 :

 2 Figure 2: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Student t 4 parent (γ = 0.25, ρ = -0.5).

Figure 3 :

 3 Figure 3: Patterns of mean values (left) and root mean squared errors (right), as functions of k, for an underlying Extreme Value parent with γ = 0.5 (ρ = -0.5).
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 11 the OSF for S(k) is denoted k S 0 /n, with k S 0 := arg min k M SE (S(k)). We shall now present, n = 200, 500, 1000, 2000 and 5000, and with • denoting H or H|q or H τ or H τ |q, τ = 0, 1, the simulated OSF (k • 0 /n), mean values (E • 0 ) and relative efficiencies (REF F • 0 ) of the EVI-estimators under study, at their optimal levels. The search of the minimum MSE has been performed over the region of k-values between 1 and [0.95 × n]. The MSE of H is also provided so that it is possible to recover the MSE of any other EVI-estimator, due to the fact that for any EVI-estimator different from H, generally denoted S, the REF F S 0 indicator is given by

Figure 4 :

 4 Figure 4: REFF-indicators for a Burr model with γ = 0.25 and ρ = -0.5 (left), a Student t 4 model (center) and an EV model, with γ = .5 (right).

Figure 5

 5 Figure 5 is equivalent to Figure 4, but with the simulated mean values of the EVIestimators at optimal levels.

Figure 5 :

 5 Figure 5: Mean values at optimal levels for a Burr model with γ = 0.25 and ρ = -0.5 (left) , a Student t 4 model (center and an EV model, with γ = .5 (right).
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Figure 6 :

 6 Figure 6: REFF-indicators for a GEV model with γ = 1 (left) and a Fréchet model with γ = 0.25 (right), both with ρ = -1.

Figure 7 :

 7 Figure 7: Mean values at optimal levels for a GEV model with γ = 1 (left) and a Fréchet model with γ = 0.25 (right), both with ρ = -1.
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 2119 data set in the field of insurance We shall first consider an illustration of the performance of the Algorithm, when applied to the analysis of automobile claim amounts exceeding 1,200,000 Euro over the period 1988-2001, gathered from several European insurance companies co-operating with the same re-insurer (Secura Belgian Re). This data set was already studied in Beirlant et al. (2004), Vandewalle and Beirlant (2006) and Beirlant et al. (2008) as an example to excess-of-loss

Figure 8 :

 8 Figure 8: A histogram associated with the SECURA data.
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 91021 Figure 9: Estimates of the shape second-order parameter ρ and of the scale second-order parameter β for the SECURA data.

Figure 11 :

 11 Figure 11: Box-and-whiskers plot associated with the MSFT data.

Figure 12 :

 12 Figure 12: EVI-estimates, as function of k, for the MSFT data, as well as the adaptive estimates obtained through the Algorithm..

Figure 13 Figure 13 :

 1313 Figure 13 is equivalent to Figure 10, but for the Student t 4 generated sample.
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  the average of the k log-excesses over a high random threshold X n-k:n . Consistency of the estimators in (2) is achieved if X n-k:n is an intermediate o.s., i.e., ifk = k n → ∞ and k/n → 0, as n → ∞.(3)The Hill estimators, in (2), are scale-invariant, but not location-invariant, as often desired, and this contrarily to the PORT-Hill estimators, introduced in Araújo Santos et al. (2006) and further studied in Gomes et al. (2008a), with PORT standing for peaks over random thresholds. The class of PORT-Hill estimators is based on a sample of excesses over a
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Table 1 :

 1 Simulated OSFs (k • 0 /n), mean values (E • 0 ), MSE of H 0 and relative efficiency measures (REF F • 0 ) at optimal levels, for a Burr parent with (γ, ρ) = (0.25, -0.5).

	n	200	500	1000	2000	5000
				k • 0 /n		
	H	0.0778 ± 0.0023	0.0520 ± 0.0017	0.0388 ± 0.0008	0.0291 ± 0.0009	0.0187 ± 0.0006
	H|0	0.0720 ± 0.0025	0.0493 ± 0.0016	0.0376 ± 0.0009	0.0281 ± 0.0010	0.0181 ± 0.0005
	H|0.1	0.0540 ± 0.0026	0.0357 ± 0.0011	0.0260 ± 0.0009	0.0183 ± 0.0006	0.0115 ± 0.0003
	H|0.25	0.0425 ± 0.0014	0.0281 ± 0.0010	0.0202 ± 0.0007	0.0138 ± 0.0005	0.0084 ± 0.0003
	H 0	0.1573 ± 0.0062	0.1019 ± 0.0031	0.0719 ± 0.0021	0.0504 ± 0.0019	0.0299 ± 0.0009
	H 0 |0	0.1460 ± 0.0059	0.0961 ± 0.0026	0.0684 ± 0.0024	0.0479 ± 0.0015	0.0292 ± 0.0010
	H 0 |0.1	0.0938 ± 0.0000	0.0573 ± 0.0020	0.0396 ± 0.0010	0.0276 ± 0.0012	0.0156 ± 0.0006
	H 0 |0.25	0.0688 ± 0.0000	0.0426 ± 0.0018	0.0286 ± 0.0007	0.0196 ± 0.0008	0.0114 ± 0.0004
	H 1	0.0783 ± 0.0023	0.0531 ± 0.0015	0.0389 ± 0.0008	0.0291 ± 0.0009	0.0187 ± 0.0006
	H 1 |0	0.0728 ± 0.0786	0.0500 ± 0.0345	0.0378 ± 0.0210	0.0281 ± 0.0139	0.0183 ± 0.0078
	H 1 |0.1	0.0550 ± 0.0000	0.0358 ± 0.0010	0.0262 ± 0.0009	0.0183 ± 0.0006	0.0116 ± 0.0003
	H 1 |0.25	0.0425 ± 0.0000	0.0281 ± 0.0010	0.0202 ± 0.0007	0.0138 ± 0.0005	0.0114 ± 0.0004
				E • 0		
	H	0.3106 ± 0.0012	0.2965 ± 0.0010	0.2889 ± 0.0006	0.2827 ± 0.0007	0.2754 ± 0.0006
	H|0	0.3145 ± 0.0011	0.2986 ± 0.0011	0.2904 ± 0.0007	0.2835 ± 0.0007	0.2758 ± 0.0005
	H|0.1	0.3334 ± 0.0021	0.3158 ± 0.0014	0.3059 ± 0.0010	0.2972 ± 0.0007	0.2879 ± 0.0006
	H|0.25	0.3498 ± 0.0016	0.3296 ± 0.0016	0.3178 ± 0.0011	0.3070 ± 0.0009	0.2961 ± 0.0008
	H 0	0.2974 ± 0.0010	0.2883 ± 0.0007	0.2825 ± 0.0004	0.2776 ± 0.0005	0.2718 ± 0.0004
	H 0 |0	0.3024 ± 0.0011	0.2907 ± 0.0006	0.2839 ± 0.0005	0.2784 ± 0.0004	0.2723 ± 0.0004
	H 0 |0.1	0.3220 ± 0.0000	0.3076 ± 0.0009	0.2994 ± 0.0007	0.2927 ± 0.0008	0.2844 ± 0.0005
	H 0 |0.25	0.3383 ± 0.0000	0.3215 ± 0.0014	0.3113 ± 0.0007	0.3032 ± 0.0007	0.2937 ± 0.0006
	H 1	0.3102 ± 0.0011	0.2969 ± 0.0008	0.2888 ± 0.0006	0.2827 ± 0.0007	0.2754 ± 0.0006
	H 1 |0	0.3145 ± 0.0011	0.2988 ± 0.0010	0.2904 ± 0.0007	0.2835 ± 0.0007	0.2759 ± 0.0005
	H 1 |0.1	0.3341 ± 0.0000	0.3158 ± 0.0013	0.3060 ± 0.0010	0.2972 ± 0.0007	0.2881 ± 0.0006
	H 1 |0.25	0.3497 ± 0.0000	0.3295 ± 0.0015	0.3177 ± 0.0011	0.3069 ± 0.0009	0.2937 ± 0.0006
	M SE(H 0 )	0.0091 ± 0.0001	0.0052 ± 0.0001	0.0035 ± 0.0000	0.0023 ± 0.0000	0.0014 ± 0.0000
				REF F • 0		
	H|0	0.9454 ± 0.0011	0.9633 ± 0.0010	0.9718 ± 0.0004	0.9783 ± 0.0005	0.9852 ± 0.0002
	H|0.1	0.7568 ± 0.0033	0.7492 ± 0.0029	0.7387 ± 0.0026	0.7267 ± 0.0017	0.7122 ± 0.0021
	H|0.25	0.6396 ± 0.0032	0.6308 ± 0.0032	0.6198 ± 0.0018	0.6074 ± 0.0018	0.5909 ± 0.0019
	H 0	1.3826 ± 0.0065	1.3373 ± 0.0052	1.3000 ± 0.0045	1.2623 ± 0.0045	1.2303 ± 0.0048
	H 0 |0	1.2869 ± 0.0060	1.2744 ± 0.0051	1.2542 ± 0.0053	1.2288 ± 0.0045	1.2080 ± 0.0047
	H 0 |0.1	0.9616 ± 0.0000	0.9173 ± 0.0011	0.8838 ± 0.0006	0.8509 ± 0.0006	0.8113 ± 0.0014
	H 0 |0.25	0.7840 ± 0.0000	0.7486 ± 0.0021	0.7176 ± 0.0020	0.6884 ± 0.0014	0.6546 ± 0.0019
	H 1	1.0049 ± 0.0004	1.0025 ± 0.0002	1.0015 ± 0.0003	1.0010 ± 0.0000	1.0005 ± 0.0000
	H 1 |0	0.9490 ± 0.0009	0.9652 ± 0.0008	0.9730 ± 0.0003	0.9791 ± 0.0004	0.9856 ± 0.0003
	H 1 |0.1	0.7579 ± 0.0000	0.7500 ± 0.0029	0.7392 ± 0.0026	0.7269 ± 0.0017	0.7123 ± 0.0021
	H 1 |0.25	0.6401 ± 0.0000	0.6314 ± 0.0032	0.6202 ± 0.0018	0.6076 ± 0.0018	0.6546 ± 0.0019
				13		

Table 2 :

 2 Simulated OSFs (k •

		0 /n), mean values (E • 0 ), MSE of H 0 and relative efficiency measures (REF F • 0 ) at optimal
	levels, together with corresponding 95% confidence intervals, for a Student t 4 parent (γ = 0.25, ρ = -0.5).
	n	200	500	1000	2000	5000
				k • 0 /n		
	H	0.0385 ± 0.0017	0.0258 ± 0.0010	0.0196 ± 0.0007	0.0144 ± 0.0005	0.0096 ± 0.0003
	H|0.1	0.1478 ± 0.0027	0.1345 ± 0.0014	0.1275 ± 0.0012	0.1247 ± 0.0007	0.1218 ± 0.0005
	H|0.25	0.0700 ± 0.0019	0.0534 ± 0.0016	0.0428 ± 0.0012	0.0348 ± 0.0009	0.0266 ± 0.0007
	H 0	0.0863 ± 0.0033	0.0503 ± 0.0028	0.0352 ± 0.0011	0.0249 ± 0.0007	0.0151 ± 0.0004
	H 0 |0.1	0.3718 ± 0.0030	0.3882 ± 0.0020	0.3934 ± 0.0013	0.3970 ± 0.0008	0.3988 ± 0.0004
	H 0 |0.25	0.1375 ± 0.0045	0.1067 ± 0.0022	0.0899 ± 0.0023	0.0742 ± 0.0015	0.0598 ± 0.0009
	H 1	0.0435 ± 0.0019	0.0283 ± 0.0012	0.0200 ± 0.0007	0.0144 ± 0.0005	0.0096 ± 0.0003
	H 1 |0.1	0.1533 ± 0.0026	0.1395 ± 0.0018	0.1314 ± 0.0016	0.1287 ± 0.0009	0.1255 ± 0.0005
	H 1 |0.25	0.0703 ± 0.0018	0.0540 ± 0.0016	0.0430 ± 0.0013	0.0352 ± 0.0010	0.0267 ± 0.0007
				E • 0		
	H	0.3392 ± 0.0026	0.3167 ± 0.0016	0.3055 ± 0.0013	0.2959 ± 0.0009	0.2862 ± 0.0007
	H|0.1	0.2634 ± 0.0009	0.2564 ± 0.0004	0.2533 ± 0.0004	0.2520 ± 0.0002	0.2508 ± 0.0002
	H|0.25	0.2935 ± 0.0012	0.2806 ± 0.0011	0.2728 ± 0.0008	0.2672 ± 0.0006	0.2613 ± 0.0005
	H 0	0.3104 ± 0.0009	0.3005 ± 0.0013	0.2939 ± 0.0008	0.2879 ± 0.0006	0.2805 ± 0.0004
	H 0 |0.1	0.2498 ± 0.0005	0.2499 ± 0.0004	0.2498 ± 0.0002	0.2500 ± 0.0001	0.2500 ± 0.0000
	H 0 |0.25	0.2783 ± 0.0012	0.2686 ± 0.0006	0.2641 ± 0.0006	0.2599 ± 0.0003	0.2561 ± 0.0002
	H 1	0.3365 ± 0.0024	0.3181 ± 0.0015	0.3052 ± 0.0012	0.2956 ± 0.0009	0.2860 ± 0.0007
	H 1 |0.1	0.2634 ± 0.0008	0.2565 ± 0.0006	0.2532 ± 0.0005	0.2520 ± 0.0003	0.2508 ± 0.0002
	H 1 |0.25	0.2930 ± 0.0012	0.2806 ± 0.0010	0.2728 ± 0.0008	0.2674 ± 0.0006	0.2612 ± 0.0005
	M SE H 0	0.0205 ± 0.0003	0.0112 ± 0.0001	0.0073 ± 0.0001	0.0048 ± 0.0000	0.0029 ± 0.0000
				REF F • 0		
	H|0.1	2.9437 ± 0.0206	3.4305 ± 0.0218	3.9106 ± 0.0209	4.4822 ± 0.0305	5.4522 ± 0.0335
	H|0.25	1.6823 ± 0.0083	1.7745 ± 0.0072	1.8702 ± 0.0077	1.9850 ± 0.0081	2.1777 ± 0.0092
	H 0	1.3982 ± 0.0084	1.3615 ± 0.0053	1.3223 ± 0.0057	1.2834 ± 0.0057	1.2358 ± 0.0048
	H 0 |0.1	4.6598 ± 0.0358	5.5036 ± 0.0348	6.2959 ± 0.0364	7.2692 ± 0.0563	8.8478 ± 0.0457
	H 0 |0.25	2.5115 ± 0.0167	2.7219 ± 0.0153	2.8846 ± 0.0169	3.1153 ± 0.0215	3.5054 ± 0.0174
	H 1	1.0443 ± 0.0033	1.0163 ± 0.0013	1.0078 ± 0.0006	1.0039 ± 0.0002	1.0016 ± 0.0002
	H 1 |0.1	2.9950 ± 0.0216	3.4867 ± 0.0220	3.9712 ± 0.0205	4.5530 ± 0.0325	5.5340 ± 0.0349
	H 1 |0.25	1.6917 ± 0.0083	1.7820 ± 0.0073	1.8758 ± 0.0079	1.9898 ± 0.0081	2.1816 ± 0.0092
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Table 3 :

 3 Simulated OSFs (k • 0 /n), mean values (E • 0 ), MSE of H 0 and relative efficiency measures (REF F • 0 ) at optimal levels, together with corresponding 95% confidence intervals, for a EV 0.5 parent (γ = -ρ = 0.5).
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	n	200	500	1000	2000	5000
				k • 0 /n		
	H	0.0663 ± 0.0021	0.0465 ± 0.0008	0.0351 ± 0.0010	0.0254 ± 0.0006	0.0173 ± 0.0006
	H|0	0.1338 ± 0.0039	0.1003 ± 0.0030	0.0767 ± 0.0022	0.0616 ± 0.0022	0.0427 ± 0.0012
	H|0.1	0.0955 ± 0.0031	0.0666 ± 0.0020	0.0503 ± 0.0011	0.0370 ± 0.0009	0.0256 ± 0.0006
	H|0.25	0.0790 ± 0.0030	0.0542 ± 0.0020	0.0400 ± 0.0013	0.0306 ± 0.0006	0.0204 ± 0.0005
	H 0	0.2045 ± 0.0065	0.1223 ± 0.0044	0.0886 ± 0.0029	0.0605 ± 0.0025	0.0372 ± 0.0011
	H 0 |0	0.4818 ± 0.0082	0.4504 ± 0.0056	0.4193 ± 0.0080	0.3764 ± 0.0079	0.3350 ± 0.0067
	H 0 |0.1	0.2735 ± 0.0066	0.2019 ± 0.0048	0.1505 ± 0.0049	0.1146 ± 0.0036	0.0700 ± 0.0028
	H 0 |0.25	0.1919 ± 0.0076	0.1348 ± 0.0042	0.1014 ± 0.0030	0.0718 ± 0.0028	0.0446 ± 0.0016
	H 1	0.0803 ± 0.0028	0.0513 ± 0.0021	0.0367 ± 0.0015	0.0259 ± 0.0007	0.0174 ± 0.0006
	H 1 |0	0.1440 ± 0.0423	0.1053 ± 0.0326	0.0805 ± 0.0302	0.0630 ± 0.0247	0.0436 ± 0.0157
	H 1 |0.1	0.0988 ± 0.0031	0.0679 ± 0.0021	0.0510 ± 0.0010	0.0376 ± 0.0010	0.0257 ± 0.0006
	H 1 |0.25	0.0806 ± 0.0049	0.0550 ± 0.0020	0.0400 ± 0.0013	0.0309 ± 0.0006	0.0446 ± 0.0016
				E • 0		
	H	0.6236 ± 0.0033	0.5957 ± 0.0011	0.5791 ± 0.0016	0.5647 ± 0.0010	0.5513 ± 0.0010
	H|0	0.5814 ± 0.0017	0.5611 ± 0.0014	0.5485 ± 0.0010	0.5401 ± 0.0009	0.5303 ± 0.0006
	H|0.1	0.6001 ± 0.0023	0.5769 ± 0.0015	0.5638 ± 0.0009	0.5524 ± 0.0009	0.5419 ± 0.0006
	H|0.25	0.6155 ± 0.0035	0.5879 ± 0.0021	0.5717 ± 0.0015	0.5607 ± 0.0009	0.5477 ± 0.0007
	H 0	0.5733 ± 0.0016	0.5643 ± 0.0014	0.5579 ± 0.0010	0.5499 ± 0.0009	0.5412 ± 0.0006
	H 0 |0	0.5346 ± 0.0007	0.5270 ± 0.0003	0.5231 ± 0.0003	0.5222 ± 0.0002	0.5211 ± 0.0001
	H 0 |0.1	0.5596 ± 0.0011	0.5495 ± 0.0007	0.5427 ± 0.0006	0.5382 ± 0.0006	0.5315 ± 0.0005
	H 0 |0.25	0.5769 ± 0.0019	0.5619 ± 0.0010	0.5536 ± 0.0009	0.5459 ± 0.0008	0.5374 ± 0.0006
	H 1	0.6188 ± 0.0032	0.5954 ± 0.0021	0.5788 ± 0.0020	0.5645 ± 0.0011	0.5512 ± 0.0010
	H 1 |0	0.5827 ± 0.0019	0.5618 ± 0.0013	0.5494 ± 0.0008	0.5403 ± 0.0009	0.5304 ± 0.0005
	H 1 |0.1	0.6008 ± 0.0021	0.5770 ± 0.0015	0.5638 ± 0.0008	0.5527 ± 0.0009	0.5419 ± 0.0006
	H 1 |0.25	0.6157 ± 0.0060	0.5878 ± 0.0021	0.5714 ± 0.0015	0.5609 ± 0.0009	0.5374 ± 0.0006
	M SE(H 0 )	0.0409 ± 0.0005	0.0227 ± 0.0002	0.0149 ± 0.0001	0.0099 ± 0.0001	0.0059 ± 0.0000
				REF F • 0		
	H|0	1.5056 ± 0.0097	1.5443 ± 0.0058	1.5752 ± 0.0066	1.6080 ± 0.0066	1.6494 ± 0.0079
	H|0.1	1.2348 ± 0.0057	1.2320 ± 0.0038	1.2316 ± 0.0045	1.2288 ± 0.0036	1.2275 ± 0.0041
	H|0.25	1.0912 ± 0.0020	1.0878 ± 0.0021	1.0872 ± 0.0026	1.0859 ± 0.0018	1.0860 ± 0.0020
	H 0	1.5009 ± 0.0097	1.4760 ± 0.0059	1.4519 ± 0.0057	1.4167 ± 0.0057	1.3590 ± 0.0052
	H 0 |0	3.0038 ± 0.0192	3.2385 ± 0.0149	3.3792 ± 0.0143	3.2726 ± 0.0145	3.0308 ± 0.0114
	H 0 |0.1	2.1648 ± 0.0149	2.0932 ± 0.0120	2.0248 ± 0.0094	1.9490 ± 0.0079	1.8406 ± 0.0066
	H 0 |0.25	1.7370 ± 0.0198	1.6770 ± 0.0084	1.6322 ± 0.0075	1.5778 ± 0.0067	1.5068 ± 0.0065
	H 1	1.0624 ± 0.0047	1.0245 ± 0.0012	1.0128 ± 0.0009	1.0066 ± 0.0005	1.0030 ± 0.0003
	H 1 |0	1.5283 ± 0.0097	1.5594 ± 0.0057	1.5851 ± 0.0068	1.6160 ± 0.0067	1.6544 ± 0.0080
	H 1 |0.1	1.2447 ± 0.0060	1.2377 ± 0.0039	1.2356 ± 0.0046	1.2313 ± 0.0037	1.2290 ± 0.0041
	H 1 |0.25	1.0980 ± 0.0053	1.0929 ± 0.0023	1.0901 ± 0.0028	1.0880 ± 0.0018	1.5068 ± 0.0065
				15		
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Table 4 :

 4 Adaptive EVI-estimates for the different data sets under analysis.
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