
HAL Id: hal-00666665
https://hal.science/hal-00666665v1

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nets in Nets with SNAKES
Franck Pommereau

To cite this version:
Franck Pommereau. Nets in Nets with SNAKES. Fifth International Workshop on Modelling of
Objects, Components, and Agents (MOCA’09), Sep 2009, Hamburg, Germany. �hal-00666665�

https://hal.science/hal-00666665v1
https://hal.archives-ouvertes.fr

Nets in nets with SNAKES

Franck Pommereau

LACL. University Paris East. 61 avenue du général de Gaulle. 94010 Créteil.
France. pommereau@univ-paris12.fr

Summary. This paper presents the toolkit SNAKES, focusing on the ability to
model Petri nets whose tokens are Petri nets (so called nets in nets). SNAKES is
a general Petri net library that allows to model and execute Python-coloured Petri
nets: tokens are Python objects and net inscriptions are Python expressions. Since
SNAKES itself is programmed in Python, Petri net inscriptions can handle Petri
net objects as data values, for instance as tokens.

1 Introduction

SNAKES is a general Petri net library designed with quick prototyping in
mind. For this aim, SNAKES offers a flexible architecture based on a core
library, that defines a basic Petri net structure, complemented with a variety
of extension modules (i.e., plugins), that introduce additional features. The
core library provides a general model of Python-coloured Petri nets: tokens are
Python objects, transitions guards are Python expressions and arcs can carry
Python expressions. See for instance [3] about the well known ML-coloured
Petri nets.

In this paper, we focus on the fact that, because SNAKES itself is pro-
grammed in Python, it is possible to exploit the features of SNAKES within
a Petri net inscriptions or tokens. In particular, we will show how to define
a Petri net whose tokens are Petri nets [9]. It is also possible to define in-
teractions between the nets at various levels. We will show later on how to
transform token nets at firing time, how to synchronise the firing of transitions
in token nets with the firing of the transition that uses these token nets, and
how to program transitions that modify the structure of the net that they
belong to when fired. Our aim is to show the feasibility of these features, a
real implementation would require to design and program dedicated plugins
in order to provide more general and reusable features, which is out of the
scope of the present paper.

2 Franck Pommereau

In order to demonstrate this possibilities, the rest of the paper will focus
on concrete examples. The features and architecture of SNAKES will be intro-
duced when needed in the examples. A general presentation of SNAKES can
be found in [6, 7] and a tutorial is available at SNAKES homepage [4]. This pa-
per assumes no prior knowledge of Python and key features will be explained
as needed; however, Python programs are very readable and programmers
usually feel comfortable with simple Python code (like in this paper). A good
Python tutorial is available at Python homepage [8]. The complete source
code of the examples is provided as an appendix at the end of the paper.

2 SNAKES overview

To start with, we define a very simple Petri net, which allow to illustrate how
to:

• load SNAKES with plugins;
• build a Petri net using SNAKES;
• draw a Petri net using a plugin;
• execute transitions;
• access the marking of a net;
• compute the whole state space of a Petri net.

2.1 Loading SNAKES

First, we load SNAKES. If no plugin is needed, its enough to import module
snakes.nets. However, we would like to be able to draw Petri nets so we load
a plugin called gv that uses GraphViz [1] in order to layout nets and print
pictures of them.

Listing 1. Basic example.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
Line 1 loads module snakes.plugins in order to allow to call its function load
in line 2. (Notice that Python statements end at the end of the line, without
a semi-colon.) This function load expects three arguments:

1. The name of the plugin to load, or a list of plugin names. Here, we load
a single plugin called gv.

2. The name of the module being extended. This is almost always snakes.nets
since it provides all the core library.

3. The name of the module created by extending snakes.nets with plugin gv.
Here we call nets this freshly created module.

Thanks to this function call, a module called nets is now loaded and line 3
allows to access directly to its content from our program.

Nets in nets with SNAKES 3

2.2 Building a Petri net

The next step is to create a Petri net as an instance of class PetriNet (line 4),
and add nodes (lines 5–7) and arcs to it (lines 8–9):

Listing 2. Basic example (continued).

4

∣∣ n = PetriNet("mynet")
5

∣∣ n.add place(Place("p1", [dot]))
6

∣∣ n.add place(Place("p2"))
7

∣∣ n.add transition(Transition("t"))
8

∣∣ n.add input("p1", "t", Value(dot))
9

∣∣ n.add output("p2", "t", Value(dot))

Line 4, the created net is given the name "mynet". Then, each place is created
as an instance of class Place whose constructor expects a name and an optional
collection of tokens. So, the first place is called "p1" and initially marked by a
single black token (given as a list with only one dot item); the second place is
called "p2" and is not initially marked. Each place is added to the net using
the dedicated method add place. Line 7, a transition called "t" is added to the
net. Arcs are divided into input arcs, i.e., from a place toward a transition,
and output arcs, i.e., from a transition toward a place. Line 8, an input arc
is added from "p1" to "t" and labelled by Value(dot); this means that the
arc will consume (because it is an input arc) a single token whose value is the
black token dot. Similarly, an output arc is added in order to produce a black
token into "p2" when "t" fires.

Thanks to plugin gv, a PetriNet instance is equipped with a method draw
that allows to layout and draw the net. So, a picture of our net can be produced
with a single statement:

Listing 3. Basic example (continued).

10

∣∣ n.draw("mynet.ps")

The result is shown on the left of figure 1. Here, PostScript output has been
asked by providing file extension “.ps”, but many other formats are supported
by GraphViz (in particular, PNG and JPEG).

2.3 Firing transitions

The firing of a transition is decomposed in two steps:

1. Possible modes are computed: a mode is binding of the variables in the
transition guard and the annotations of its adjacent arcs that enables the
transition.

2. A mode is chosen in order to actually fire the transition, i.e., consume
and produce tokens according to input and output arcs.

This is reflected by the following code:

4 Franck Pommereau

(a)

p2
{ }

p1
{ d o t }

t
True

(b)

p2
{ d o t }

p1
{ }

t
True

(c)

0: Marking({’p1’: MultiSet([dot])})

1: Marking({’p2’: MultiSet([dot])})

t
{ }

Fig. 1. (a) our first Petri net as drawn by GraphViz; (b) the same net after its
transition has fired; (c) the corresponding marking graph. Each place is labelled
by its name and marking (in set-like notation); each transition is labelled by its
name and guard (True by default); each state in the marking graph is labelled by
its number and marking; each edge in the marking graph is labelled by a transition
name and a mode that correspond to the firing.

Listing 4. Basic example (continued).

11

∣∣ t = n.transition("t")
12

∣∣ m = t.modes()
13

∣∣ t . fire (m.pop())

Line 11, the transition object for "t" is fetched from the net and stored in
variable t for an easier access to it. Then, line 12, its modes are computed
and stored into variable m. Since the transition involves no variable, only one
mode is possible to fire it and this is the empty binding; so, m holds a single
value. Last, line 13, the transition is fired with a mode picked from m (m.pop()
removes and returns a value from m, that is here the unique value). If the net
is drawn again (this is done in line 14 that is not displayed here), we get the
picture displayed in the middle of figure 1.

2.4 Computing the state space

In order to reset the marking, we can use the following:

Listing 5. Basic example (continued).

15

∣∣ n.set marking(Marking(p1=MultiSet([dot]), p2=MultiSet([])))

Method set marking expects a Marking instance as its argument, which is con-
structed by providing for each place the multiset of its tokens.

Then, instead of manually computing modes and firing transitions, we can
use class StateGraph in order to compute all the reachable states from the

Nets in nets with SNAKES 5

provided initial marking. The resulting graph can be draw thanks to plugin
gv. For instance:

Listing 6. Basic example (continued).

16

∣∣ g = StateGraph(n)
17

∣∣ for i in g :
18

∣∣ g.net.draw("mynet-%s.ps" % i)
19

∣∣ g.draw("mynet-states.ps")

Line 16 creates the StateGraph instance; the constructor expects the marked
net whose state space has to be computed. Lines 17–18, a loop iterates over
the states of g, numbered from zero. The body of the loop just contains line 18
(Python defines block through indentation) that draws the net in each reached
state: i is the state number and operator % allows to substitute the value of i
inside the template string "mynet-%s.ps" (similarly to printf in C, with here
an automatic coercion of integer i to a string). Notice that g.net.draw is called,
and not n.draw as one could expect; indeed, g holds a copy of n so that n is
not affected when the marking of the copy is modified as the state space is
computed. The resulting pictures are exactly the same as in figure 1. Then,
line 19, the state space itself is drawn, which results in the picture shown on
the right of figure 1. Notice that the state space is constructed on-the-fly, i.e.,
the successors of each state are computed only when the state is iterated over.
This is useful, for instance, to display a progression of state space computation
or to check a property on-the-fly.

3 Petri nets as tokens

In this section, we use instances of class PetriNet as tokens. We consider two
levels: the token level where Petri nets use dot as their tokens, and the con-
tainer level that uses the nets of the token level as tokens. In order to produce
the token nets, we define a function token net:

Listing 7. Nets as tokens.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))

6 Franck Pommereau

12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net

This function (whose body, as usual, is delimited by indentation) expects as
its sole argument a string that is used to define nodes names and that becomes
the name of the returned Petri net. For instance, if name="foo" then line 6
results in a="afoo", b="bfoo" and t="tfoo".

Then, a contained Petri net is defined with a similar structure:

Listing 8. Nets as tokens (continued).

15

∣∣ n = PetriNet("container")
16

∣∣ n.add place(Place("p1", [token net("Toknet")]))
17

∣∣ n.add place(Place("p2"))
18

∣∣ n.add transition(Transition("t"))
19

∣∣ n.add input("p1", "t", Variable("x"))
20

∣∣ n.add output("p2", "t", Expression("x.copy()"))

Line 16, a new token net is created for the marking of place "p1". Line 19,
the input arc is labelled by a variable called "x"; this allows to consume one
token from the input place while binding its name to a variable x. Line 20, the
output arc is labelled by an expression; this allows to compute a new token to
be produced in the output place. Here, we simply copy the token net bound
to x by calling its method copy.

Copying net tokens may be important in order to avoid unwanted side
effects. For instance: suppose that we add an output arc from the transition
toward "p1" in order to reproduce the consumed token net, and suppose that
we do not copy token nets. Then, after firing the container’s transition, the
two places of the container net would hold each a reference to the same token
net. Firing the transition of one of these token nets would thus modify the
marking in both places of the container net. This may be desirable or not, and
this can be controlled by choosing to produce either copies of or references to
token nets.

The rest of the program builds the marking graph, drawing the container
net in each state as well as all the token nets in each place:

Listing 9. Nets as tokens (continued).

22

∣∣ g = StateGraph(n)
23

∣∣ for i in g :
24

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
25

∣∣ for place in g.net.place() :
26

∣∣ for j , tok in enumerate(place.tokens) :
27

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
28

∣∣ % (g.net.name, i, place.name, j))

(Notice that line 27 is automatically continued on line 28 thanks to the paren-
thesising.) The resulting pictures are displayed in figure 2. Line 25, we can

Nets in nets with SNAKES 7

see how to iterate over the places of a PetriNet object: method place returns
the list of Place objects when no argument is given; otherwise, it returns the
place whose name is provided (similarly, we have used method transition to
fetch a transition from a net). Line 26, function enumerate is used to iter-
ate over the tokens in a place, providing a number to each one; for instance,
enumerate([x, y, z]) results in the sequence of pairs (0,x), (1,y) and (2,z).

(a)

p2
{ }

p1
{Toknet}

t
True

(b)

p2
{Toknet}

p1
{ }

t
True

(c)

aToknet
{ d o t }

tToknet
True

bToknet
{ }

(d)

aToknet
{ d o t }

tToknet
True

bToknet
{ }

Fig. 2. (a) the initial state of the container net; (b) the state of the container net
after firing; (c) the token net from place "p1" in (a); (d) the token net from place
"p2" in (b), which is exactly the same as in (c).

4 Transforming token nets

In this section, we elaborate on the previous example. In a first step, we
introduce material to rename a token net when it is copied. Then, we consider
a more complex example where two token nets are composed in order to
produce a new one.

4.1 Simple transformation

As a first example, we consider a program that starts exactly as the previous
one (listing 7). Then, we define a function copy rename that takes a Petri net
and a string as arguments and returns a renamed copy of the net whose nodes
are also renamed.

Listing 10. Renaming token nets.

15

∣∣ def copy rename (net, new) :
16

∣∣ old = net.name
17

∣∣ net = net.copy()

8 Franck Pommereau

18

∣∣ net.rename(new)
19

∣∣ for node in net.node() :
20

∣∣ net.rename node(node.name, node.name.replace(old, new))
21

∣∣ return net

Line 16, the current name of the net to process is saved in variable old. Then,
the net is copied (line 17) and the copy is renamed (line 18). Notice that
line 17 just results in loosing the reference to the original net: a reference to
the copied net is stored in the local variable net that hides parameter net. The
loop lines 19–20 iterates over all the nodes in the copy and rename them by
substituting the old net name with the new one in their names.

Then, a container net (here called "renamer") is defined and function
copy rename is used on the output arc.

Listing 11. Renaming token nets (continued).

23

∣∣ n = PetriNet("renamer")
24

∣∣ n.globals ["copy_rename"] = copy rename
25

∣∣ n.add place(Place("p1", [token net("Toknet")]))
26

∣∣ n.add place(Place("p2"))
27

∣∣ n.add transition(Transition("t"))
28

∣∣ n.add input("p1", "t", Variable("x"))
29

∣∣ n.add output("p2", "t", Expression("copy_rename(x, ’Mynet’)"))

Line 24, function copy rename is declared as a global name in the Petri
net n. As a result, Python expressions used in this net will be able to use
copy rename, as in particular in line 29. Without line 24, the evaluation
of the output arc specified line 29 would result in a exception complaining
about the fact that name copy rename is unknown. Notice line 29 the string
"copy_rename(x, ’Mynet’)": strings in Python can be freely delimited with
single or double quotes, this allows to nest strings easily. In this example,
copy rename(x, ’Mynet’) is a valid Python expression where ’Mynet’ is just
a regular string.

The rest of the program is exactly as listing 9 in the previous section. An
execution results in the pictures shown in figure 3.

4.2 Composition of token nets

In our next example, we make use of Petri net compositions defined in the Petri
Box Calculus (PBC) and its variants [2, 5] and implemented in SNAKES. In
a nutshell, places in PBC are labelled with statuses, allowing to distinguish
entry places, internal places and exit places. All together, these places form
the control flow of a Petri net and PBC defines binary operators to compose
nets with respect to their control flow. If N1 and N2 are two PBC nets:

• the sequential composition N1 & N2 allows to execute N1 once, followed
by one execution of N2;

Nets in nets with SNAKES 9

(a)

p2
{ }

p1
{Toknet}

t
True

(b)

p2
{Myne t}

p1
{ }

t
True

(c)

aToknet
{ d o t }

tToknet
True

bToknet
{ }

(d)

aMynet
{ d o t }

tMynet
True

bMynet
{ }

Fig. 3. (a) the initial state of the renamer net; (b) the state of the renamer net after
firing; (c) the token net from place "p1" in (a); (d) the token net from place "p2"

in (b). With respect to figure 2, notice the renaming operated at (b) and (d).

• the choice N1 + N2 allows to execute once either N1 or N2;
• the iteration N1 ∗ N2 allows to execute repeatedly N1, followed by one

execution N2;
• the parallel composition N1 | N2 allows to execute both N1 and N2 con-

currently.

Notice that the operators presented above are denoted as implemented in
SNAKES, instead of as originally defined in PBC (SNAKES uses Python
operators).

We now consider token nets similar to the previous ones, with input places
(the a· · · ones) being labelled as entry places, and output places (the b· · · ones)
labelled as exit places. The container net consists in one transition with two
input places holding one token net each, and one output place to receive the
parallel composition of the two consumed token nets upon firing.

The program starts with the loading a SNAKES extended with plugins gv
(to draw nets) and ops (to support PBC operations). Then, function token net
is defined just as before except that it assigns statuses to the places (lines 8–9):

Listing 12. Composing token nets.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load(["gv", "ops"], "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot], status=entry))
9

∣∣ net.add place(Place(b, status=exit))

10 Franck Pommereau

10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net

Then, the container net, called "composer", is created as explained above:

Listing 13. Composing token nets (continued).

15

∣∣ n = PetriNet("composer")
16

∣∣ n.add place(Place("left", [token net("foo")]))
17

∣∣ n.add place(Place("right", [token net("bar")]))
18

∣∣ n.add place(Place("parall"))
19

∣∣ n.add transition(Transition("t"))
20

∣∣ n.add input("left", "t", Variable("x"))
21

∣∣ n.add input("right", "t", Variable("y"))
22

∣∣ n.add output("parall", "t", Expression("x|y"))

Lines 20–21, notice the arcs labelled by variables allowing to bind the two
token nets to different names x and y. Line 22, the parallel composition of
these two token nets is computed by simply providing expression “x|y” on the
output arc.

The rest of the program, as in listing 9, builds the state space and draws
all the container and token nets at each state. This results in the pictures
shown in figure 4. It may be noted that node names in a compound net are
systematically obtained from the node names of its components; for instance,
“[x|]” denotes a new node obtained from a node called x in the left operand of
the parallel composition (read this name as “x” on the left of “|”, with “[· · ·]”
around to handle nested compositions). Similarly, the name of the compound
net “foo|bar” is derived from that of its components.

5 Synchronising firing

Let us consider again the example from section 3. In this section, we elaborate
on it in order to enforce synchronised firing between transitions of the two
levels.

The beginning of this program is exactly as in listings 7. Then, after the
definition of function token net, we also define a function to check whether
transitions from a token net are ready to fire:

Listing 14. Synchronised firing.

15

∣∣ def ready (net, ∗names) :
16

∣∣ for n in names :
17

∣∣ if not net.transition(n).modes() :
18

∣∣ return False
19

∣∣ return True

Nets in nets with SNAKES 11

(a)

r ight
{ b a r }

t
True

parall
{ }

left
{foo}

(b)

r ight
{ }

t
True

parall
{(foo|bar)}

left
{ }

(c)

afoo
{ d o t }

tfoo
True

bfoo
{ }

(d)

aba r
{ d o t }

t b a r
True

bbar
{ }

(e)

[|abar]
{ d o t }

[| tbar]
True

[|bbar]
{ }

[afoo|]
{ d o t }

[tfoo|]
True

[bfoo|]
{ }

Fig. 4. (a) the initial state of the composer net; (b) the composer net after firing;
(c) the token net from place "left" in (a); (d) the token net from place "right" in
(a); (e) the token net from place "parall" in (b), which is the parallel composition
of the token nets in (c) and (d).

Line 15, parameter ∗names denotes that several values may be passed to the
function and are grouped as a sequence called names. For instance, if one
calls ready(x,"a","b","c") then we have names=("a","b","c"). The function
consists in iterating over all the given names (line 16) and for each, test if it
has no mode (line 17) and if so, returns False. If none of the provided transition
is inactive, then function ready returns True (line 19). Notice that in line 17,
we use a sequence as a truth value; this is allowed in Python where a sequence
is true iff its non-empty.

A second helper function is needed to produce a copy of a net in which
specified transitions have been fired. The arguments are the same as for func-
tion ready:

Listing 15. Synchronised firing (continued).

21

∣∣ def synchro (net, ∗names) :

12 Franck Pommereau

22

∣∣ net = net.copy()
23

∣∣ for n in names :
24

∣∣ t = net.transition(n)
25

∣∣ m = t.modes()
26

∣∣ t . fire (m.pop())
27

∣∣ return net

Line 22, the net is copied, then for each given transition name (line 23), the
corresponding transition object is fetched from the net (line 24), its modes are
computed (line 25) and the transition is fired with one of these modes (line 26).
In a real model, an appropriate mode should be chosen more carefully, for
instance by considering one mode that is compatible with the container’s
mode. Finally, the net, modified by the firings, is returned (line 27). Notice
that it is not check whether firing the given transitions is possible (if not,
an exception will occur) and we assume that function ready as been used
appropriately for this purpose. Indeed, this is checker in the guard of the
transition in the container net:

Listing 16. Synchronised firing (continued).

29

∣∣ n = PetriNet("synchroniser")
30

∣∣ n.globals ["ready"] = ready
31

∣∣ n.globals ["synchro"] = synchro
32

∣∣ n.add place(Place("p1", [token net("Toknet")]))
33

∣∣ n.add place(Place("p2"))
34

∣∣ n.add transition(Transition("t", Expression("ready(x, ’tToknet’)")))
35

∣∣ n.add input("p1", "t", Variable("x"))
36

∣∣ n.add output("p2", "t", Expression("synchro(x, ’tToknet’)"))

Lines 30–31, the defined functions are declared in the execution environment of
the container net. Function ready is used line 34 in the guard of the transition
(provided by an Expression object as the second argument of the constructor
of class Transition). Line 36, function synchro is used on the output arc in
order to produce a copy of the net taken from the input place (as x) in which
the transition "tToknet" has fired. We known that this firing is possible since
transition "t" is guarded by ready(x,’tToknet’) that exactly checks this.

The rest of the program is taken from listing 9 in order to produce the
pictures shown in figure 5.

6 Self-modifying nets

As a last example, we consider a Petri net whose structure is modified by the
firing of its transition. We start with a net that has the same structure as
that of figure 1(a). When its transition "t" fires, it creates a new transition
(called "back") and arcs in order to reset the marking. When this transition
"back" fires, it removes itself from the net.

Nets in nets with SNAKES 13

(a)

p2
{ }

p1
{Toknet}

t
ready(x, ’tToknet’)

(b)

p2
{Toknet}

p1
{ }

t
ready(x, ’tToknet’)

(c)

aToknet
{ d o t }

tToknet
True

bToknet
{ }

(d)

aToknet
{ }

tToknet
True

bToknet
{ d o t }

Fig. 5. (a) the initial state of the synchroniser net; (b) the state of the synchroniser
net after firing; (c) the token net from place "p1" in (a); (d) the token net from
place "p2" in (b), which is exactly that from (c) after the firing of its transition.
With respect to figure 2, notice in (d) that the transition as fired.

In order to achieve such an effect, we extend twice class Transition in
order to redefine its method fire: a first class BackwardTransition is used to
implement the transition added to the net; a second class ForwardTransition is
used to implement the adding of a BackwardTransition.

Listing 17. Self-modifying net.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ class BackwardTransition (Transition) :
6

∣∣ def fire (self , binding) :
7

∣∣ Transition. fire (self , binding)
8

∣∣ self .net.remove transition(self .name)
9

∣∣
10

∣∣ class ForwardTransition (Transition) :
11

∣∣ def fire (self , binding) :
12

∣∣ Transition. fire (self , binding)
13

∣∣ self .net.add transition(BackwardTransition("back"))
14

∣∣ self .net.add input("p2", "back", Value(dot))
15

∣∣ self .net.add output("p1", "back", Value(dot))

Line 5, the new class BackwardTransition is defined as a sub-class of Transition;
it redefined method fire on line 6. This method expects two arguments: self
is the instance whose method has been called (this is an explicit argument in
Python) and binding is the mode under which the transition is fired. Line 7,
method fire from the super-class Transition is called in order to achieve the

14 Franck Pommereau

actual firing. Line 8, the transition removes itself from the Petri net that
is accessible under the attribute net. Notice that removing a transition also
remove all its arcs. Lines 10–15, class ForwardTransition is defined similarly,
the only difference is that it adds a BackwardTransition to the net instead of
removing it.

The rest of the code is dedicated to build the net and to draw the two
states of the net, resulting in the pictures shown in figure 6.

Listing 18. Self-modifying net (continued).

17

∣∣ n = PetriNet("modifier")
18

∣∣ n.add place(Place("p1", [dot]))
19

∣∣ n.add place(Place("p2"))
20

∣∣ n.add transition(ForwardTransition("t"))
21

∣∣ n.add input("p1", "t", Value(dot))
22

∣∣ n.add output("p2", "t", Value(dot))
23

∣∣
24

∣∣ n.draw("modifier-0.ps")
25

∣∣ n. transition ("t").fire (n. transition ("t").modes().pop())
26

∣∣ n.draw("modifier-1.ps")

Notice line 20 that we use ForwardTransition instead of Transition.

(a)

p2
{ }

p1
{ d o t }

t
True

(b)

p2
{ d o t }

back
True

p1
{ }

t
True

Fig. 6. (a) the initial state of the modifier net; (b) the state of the modifier net after
the firing of the forward transition. Firing the backward transition from (b) would
result in net (a) again.

Nets in nets with SNAKES 15

7 Conclusion

In this paper, we have presented the toolkit SNAKES, focusing on its ability
to represent and execute Petri whose tokens are Petri nets. In particular, we
have shown that it is easy to perform transformations on the token nets at
firing time, to synchronise the firing of the transitions at different levels. We
have shown also how self-modifying nets can be defined.

The code presented throughout the paper should be considered as a proof
of concept rather than as a guideline about how to implement these features
in a real tool. For such a use case, it would be better to carefully design and
program a plugin for SNAKES in order to provide a solution that would be
both more general and easier to use. The design phase in particular seems
crucial for both generality and robustness, it’s likely that it requires a good
background about nets in nets. Any contribution to SNAKES or collaboration
proposal toward adding such a plugin will be welcomed.

References

1. AT&T Research. Graphviz, graph visualization software. 〈http://www.
graphviz.org〉.

2. E. Best, R. Devillers, and J. Hall. The Petri box calculus: a new causal algebra
with multilabel communication. In Advances in Petri Nets 1992, volume 609 of
LNCS. Springer-Verlag, 1992.

3. K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Springer, 2009.

4. F. Pommereau. SNAKES is the Net Algebra Kit for Editors and Simulators.
〈http://lacl.univ-paris12.fr/pommereau/soft/snakes〉.

5. F. Pommereau. Versatile boxes: a multi-purpose algebra of high-level Petri nets.
In Proc. of DASDS’04. SCS/ACM, 2004.

6. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. Petri net
newsletter, September 2008.

7. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. In Proc. of
PNTAP’08, ACM Digital Library. ACM, 2008.

8. Python Software Foundation. Python programming language. 〈http://www.
python.org〉.

9. R. Valk. Petri nets as token objects: An introduction to elementary object nets.
In ICATPN ’98. Springer-Verlag, 1998.

16 Franck Pommereau

A Source code of the examples

Listing 19. Basic example.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣ n = PetriNet("mynet")
5

∣∣ n.add place(Place("p1", [dot]))
6

∣∣ n.add place(Place("p2"))
7

∣∣ n.add transition(Transition("t"))
8

∣∣ n.add input("p1", "t", Value(dot))
9

∣∣ n.add output("p2", "t", Value(dot))
10

∣∣ n.draw("mynet.ps")
11

∣∣ t = n.transition("t")
12

∣∣ m = t.modes()
13

∣∣ t . fire (m.pop())
14

∣∣ n.draw("mynet-bis.ps")
15

∣∣ n.set marking(Marking(p1=MultiSet([dot]), p2=MultiSet([])))
16

∣∣ g = StateGraph(n)
17

∣∣ for i in g :
18

∣∣ g.net.draw("mynet-%s.ps" % i)
19

∣∣ g.draw("mynet-states.ps")

Listing 20. Nets as tokens.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ n = PetriNet("container")
16

∣∣ n.add place(Place("p1", [token net("Toknet")]))
17

∣∣ n.add place(Place("p2"))
18

∣∣ n.add transition(Transition("t"))
19

∣∣ n.add input("p1", "t", Variable("x"))

Nets in nets with SNAKES 17

20

∣∣ n.add output("p2", "t", Expression("x.copy()"))
21

∣∣
22

∣∣ g = StateGraph(n)
23

∣∣ for i in g :
24

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
25

∣∣ for place in g.net.place() :
26

∣∣ for j , tok in enumerate(place.tokens) :
27

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
28

∣∣ % (g.net.name, i, place.name, j))

Listing 21. Renaming token nets.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ def copy rename (net, new) :
16

∣∣ old = net.name
17

∣∣ net = net.copy()
18

∣∣ net.rename(new)
19

∣∣ for node in net.node() :
20

∣∣ net.rename node(node.name, node.name.replace(old, new))
21

∣∣ return net
22

∣∣
23

∣∣ n = PetriNet("renamer")
24

∣∣ n.globals ["copy_rename"] = copy rename
25

∣∣ n.add place(Place("p1", [token net("Toknet")]))
26

∣∣ n.add place(Place("p2"))
27

∣∣ n.add transition(Transition("t"))
28

∣∣ n.add input("p1", "t", Variable("x"))
29

∣∣ n.add output("p2", "t", Expression("copy_rename(x, ’Mynet’)"))
30

∣∣
31

∣∣ g = StateGraph(n)
32

∣∣ for i in g :
33

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))

18 Franck Pommereau

34

∣∣ for place in g.net.place() :
35

∣∣ for j , tok in enumerate(place.tokens) :
36

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
37

∣∣ % (g.net.name, i, place.name, j))

Listing 22. Composing token nets.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load(["gv", "ops"], "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name
7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot], status=entry))
9

∣∣ net.add place(Place(b, status=exit))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ n = PetriNet("composer")
16

∣∣ n.add place(Place("left", [token net("foo")]))
17

∣∣ n.add place(Place("right", [token net("bar")]))
18

∣∣ n.add place(Place("parall"))
19

∣∣ n.add transition(Transition("t"))
20

∣∣ n.add input("left", "t", Variable("x"))
21

∣∣ n.add input("right", "t", Variable("y"))
22

∣∣ n.add output("parall", "t", Expression("x|y"))
23

∣∣
24

∣∣ g = StateGraph(n)
25

∣∣ for i in g :
26

∣∣ g.net.draw("%s-state%s.ps" % (g.net.name, i))
27

∣∣ for place in g.net.place() :
28

∣∣ for j , tok in enumerate(place.tokens) :
29

∣∣ tok.draw("%s-state%s-place%s-token%s.ps"
30

∣∣ % (g.net.name, i, place.name, j))

Listing 23. Synchronised firing.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣
5

∣∣ def token net (name) :
6

∣∣ a, b, t = "a%s" % name, "b%s" % name, "t%s" % name

Nets in nets with SNAKES 19

7

∣∣ net = PetriNet(name)
8

∣∣ net.add place(Place(a, [dot]))
9

∣∣ net.add place(Place(b))
10

∣∣ net.add transition(Transition(t))
11

∣∣ net.add input(a, t, Value(dot))
12

∣∣ net.add output(b, t, Value(dot))
13

∣∣ return net
14

∣∣
15

∣∣ def ready (net, ∗names) :
16

∣∣ for n in names :
17

∣∣ if not net.transition(n).modes() :
18

∣∣ return False
19

∣∣ return True
20

∣∣
21

∣∣ def synchro (net, ∗names) :
22

∣∣ net = net.copy()
23

∣∣ for n in names :
24

∣∣ t = net.transition(n)
25

∣∣ m = t.modes()
26

∣∣ t . fire (m.pop())
27

∣∣ return net
28

∣∣
29

∣∣ n = PetriNet("synchroniser")
30

∣∣ n.globals ["ready"] = ready
31

∣∣ n.globals ["synchro"] = synchro
32

∣∣ n.add place(Place("p1", [token net("Toknet")]))
33

∣∣ n.add place(Place("p2"))
34

∣∣ n.add transition(Transition("t", Expression("ready(x, ’tToknet’)")))
35

∣∣ n.add input("p1", "t", Variable("x"))
36

∣∣ n.add output("p2", "t", Expression("synchro(x, ’tToknet’)"))
37

∣∣
38

∣∣ g = StateGraph(n)
39

∣∣ for i in g :
40

∣∣ g.net.draw("%s-state%s.png" % (g.net.name, i))
41

∣∣ for place in g.net.place() :
42

∣∣ for j , tok in enumerate(place.tokens) :
43

∣∣ tok.draw("%s-state%s-place%s-token%s.png"
44

∣∣ % (g.net.name, i, place.name, j))

Listing 24. Self-modifying net.

1

∣∣ import snakes.plugins
2

∣∣ snakes.plugins.load("gv", "snakes.nets", "nets")
3

∣∣ from nets import ∗
4

∣∣

20 Franck Pommereau

5

∣∣ class BackwardTransition (Transition) :
6

∣∣ def fire (self , binding) :
7

∣∣ Transition. fire (self , binding)
8

∣∣ self .net.remove transition(self .name)
9

∣∣
10

∣∣ class ForwardTransition (Transition) :
11

∣∣ def fire (self , binding) :
12

∣∣ Transition. fire (self , binding)
13

∣∣ self .net.add transition(BackwardTransition("back"))
14

∣∣ self .net.add input("p2", "back", Value(dot))
15

∣∣ self .net.add output("p1", "back", Value(dot))
16

∣∣
17

∣∣ n = PetriNet("modifier")
18

∣∣ n.add place(Place("p1", [dot]))
19

∣∣ n.add place(Place("p2"))
20

∣∣ n.add transition(ForwardTransition("t"))
21

∣∣ n.add input("p1", "t", Value(dot))
22

∣∣ n.add output("p2", "t", Value(dot))
23

∣∣
24

∣∣ n.draw("modifier-0.ps")
25

∣∣ n. transition ("t").fire (n. transition ("t").modes().pop())
26

∣∣ n.draw("modifier-1.ps")

