
HAL Id: hal-00666664
https://hal.science/hal-00666664v1

Submitted on 16 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An approach to state space reduction for systems with
dynamic process creation

Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck Pommereau

To cite this version:
Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, Franck Pommereau. An approach to state space re-
duction for systems with dynamic process creation. 24th International Symposium on Computer
and Information Sciences (ISCIS 2009), Sep 2009, Guzelyurt, Turkey. pp.543–548, �10.1109/IS-
CIS.2009.5291864�. �hal-00666664�

https://hal.science/hal-00666664v1
https://hal.archives-ouvertes.fr


An Approach to State Space Reduction for

Systems with Dynamic Process Creation

Hanna Klaudel(1), Maciej Koutny(2), Elisabeth Pelz(3) and Franck Pommereau(3)

(1) IBISC, FRE 3190 CNRS, Université d’Evry, 91000 Evry, France

(2) School of Computing Science, Newcastle University, NE1 7RU, United Kingdom

(3) LACL, Université Paris Est, 61 av. du général de Gaulle, 94010 Créteil, France

Abstract

Automated verification of dynamic multi-threaded com-

puting systems can be adversely affected by problems relat-

ing to dynamic process creation. We therefore investigate —

in a general setting of labelled transition systems – a way of

reducing the state spaces of multi-threaded systems. At the

heart of our method is a state equivalence, which may pro-

duce a finite representation of an infinite state system while

still allowing to validate the relevant behavioural proper-

ties. We demonstrate the feasibility of the method through

experiments involving the checking of the proposed state

equivalence.

Key words: multi-threaded systems, state equivalence, state

space computation, state space reduction.

1. Introduction

In a multi-threaded (or multi-process) programming

paradigm, sequential code can be run repeatedly in concur-

rent threads of execution, interacting through shared data

and/or rendez-vous communication. The presence of thread

identifiers in state descriptions may accelerate the state

space explosion, especially when new threads may be cre-

ated dynamically. However, thread identifiers are arbitrary

(anonymous) symbols whose sole role is to ensure a consis-

tent (i.e., private or local) execution of each thread. Hence

the exact identity of an identifier is basically irrelevant, and

what only matters are the relationships between such identi-

fiers. As a result, (sets of) identifiers may often be replaced

by other (sets of) identifiers without changing the resulting

execution in any essential way. This leads to the problem of

identifying equivalent executions, which must be addressed

by any reasonable verification and/or simulation approach

to multi-threaded programming schemes.

We initiated our investigation in [9] using a specific syn-

tactic system model, viz. high-level Petri nets, resulting in

a proposal for identifying markings which are essentially

equivalent from the point of view of dynamic process cre-

ation. In this paper we consider a much more general (in

fact, model-independent or behavioural) framework of la-

belled transition systems. We first characterise the class of

labelled transition systems for which it is feasible to apply

identification of states inspired by the marking equivalence

of [9]. We then provide experimental results about the ef-

fort needed to verify the state equivalence which reaffirm

our initial hypothesis that this can be done in an efficient

way.

A distinguishing feature of our method is that it is param-

eterised by a set of operations that can be applied to thread

identifiers. For instance, it may or may not be allowed to

test whether one thread is a direct or indirect descendant of

another thread. The proposed method easily adapts to what

is usually allowed.

2. Multi-thread modelling

We denote by D the set of data values, and by P =
{π, π′, π′′, . . .} the set of process identifiers, (or pids for

short) that allow one to distinguish different concurrent

threads during an execution. We assume that there is a set

I ⊂ P of initial pids, i.e., threads active at the system startup

(below I
df

= {1, 2}). A possible way of implementing dy-

namic pids creation—and one adopted in this paper—is to

consider them as finite sequences of positive integers (writ-

ten down as dot-separated strings). It is not allowed to de-

compose a pid (e.g., to extract the parent pid of a given pid)

which is considered as an atomic value (a black box).

To compare pids, we use a set of binary relations on pids,

Ωpid
df

= {=, ∢1, ∢, ⋔1, ⋔}, defined as follows:

• π∢1π′ (which holds if there is a positive integer i such

that π.i = π′) indicates whether π is the parent of π′

(i.e., thread π created thread π′).

• π∢π′ indicates if π is an ancestor of π′ (i.e., ∢ is ∢
+
1 ).

1



Client Server Handler Function

1: subm(req)
2: create(addr,req)

3: call(req)

4: comp(req)5: ret(res)
6: answer(res)

7: wait()

msc Motivating example

Figure 1. Motivating example: sequence diagram of a session

• π ⋔1 π′ (which holds if there is a pid π′′ and a positive

integer i such that π = π′′.i and π′ = π′′.(i + 1))
indicates whether π is a sibling of π′ and π was created

immediately before π′ (i.e., after creating π, the parent

π′′ of π and π′ did not create any other thread before

creating π′).

• π⋔π′ indicates whether π is an elder sibling of π′ (i.e.,

⋔ is the transitive closure ⋔
+
1 ).

For example, pids 1.1 and 1.2 are siblings such that 1.1 ⋔1

1.2 and both are children of 1 (i.e., 1 ∢1 1.1 and 1 ∢1 1.2).
Consider a simple server system in which a bunch of

threads are waiting for connections from clients requesting

some calculation. Figure 1 shows a message sequence chart

of a typical session. Whenever a new request arrives, a han-

dler is created to process it. The handler calls an auxiliary

function to perform the required calculation and then sends

the answer back to the client. Terminated handlers are col-

lected asynchronously by the thread that created them.

This example illustrates two standard ways of calling a

subprogram: either asynchronously by creating a thread, or

synchronously by calling a function. In our setting, both

these methods amount to creating a new thread, the only

difference is that a function call is modelled by creating a

thread and immediately waiting for its termination.

Figure 2 shows an initial fragment of the state space with

two alternative branches corresponding to the same scenario

played by two different threads, tuples 〈1〉 and 〈2〉 in S.

The client is not modelled. In this scenario, a server cal-

culates whether a given year is a leap year. It receives a

data req = 2009, creates a handler, and passes req and

the client’s address addr to it. The handler calls a function

passing req to it, the function calculates the result res = 0,
and returns it to the handler. The handler passes on the re-

sult to the client. Finally, the server terminates the handler.

3. Transition systems and state equivalence

In this paper, a labelled transition system LTS provides

a description of all reachable states of some multi-threaded

system, operating over some finite set of local states L, to-

gether with transitions between these states. In Figure 2: (i)

L = {S, H, F} are the local states; (ii) 1, 2, 1.1, 1.2, 2.1,

2.2, 1.1.1 and 2.1.1 are pids; and (iii) 2009 and addr are

data items.

As usual, there is a distinguished initial state from which

all other states can be reached. Each state s
df

= (σs, ηs) is
composed of a pair of mappings: (i) a mapping σs from L

to finite multisets of vectors (tuples) of data and pids (e.g.,

in the initial node s0, the local state at S is composed of two

vectors: 〈1〉 and 〈2〉); and (ii) a mapping ηs which for each

active thread (i.e., one which belongs to the domain of ηs)

gives the number of threads it has already created.

Each transition is labelled by the pid of the thread where

it took place, and the specific name of an action or command

(possibly internal) which effected it together with the actual

parameters used.

When moving from a state s to s′ along a transition t (or

s
t

−−−−−−−−→ s′), the pids present in s′ as well as those involved in

t must either be present in s or be newly created using the

information provided by ηs. Similarly, any pid active at s′

must be active in s or be a newly created one.

Looking at Figure 2 one can note that the two

branches of execution, s0→s1→s2→ . . .→s5 and

s0→s′1→s′2→ . . .→s′5, are basically equivalent since the

roles of pids 1 and 2 can be swapped to obtain one from

the other. Moreover, s0 is equivalent to s5 and s′5. For

example, s5 is the same as s0 except for the value of η(1).
Before proceeding with a formal definition of state

equivalence, we make an important observation that not all

potential states can be considered as valid. For example,

one should prohibit the generation of an already existing

pid. This can be achieved by requiring that no pid involved

2



s0

S : 〈1〉 〈2〉
H :
F :

1 7→ 0
2 7→ 0

s1

S : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F :

1 7→ 1
2 7→ 0
1.1 7→ 0

s2

S : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F : 〈1.1.1, 2009〉

1 7→ 1
2 7→ 0
1.1 7→ 1
1.1.1 7→ 0

s3

S : 〈1〉 〈2〉
H : 〈1.1, addr, 2009〉
F : 〈1.1.1, 0〉

1 7→ 1
2 7→ 0
1.1 7→ 1
1.1.1 7→ 0

s4

S : 〈1〉 〈2〉
H : 〈1.1, addr, 0〉
F :

1 7→ 1
2 7→ 0
1.1 7→ 1

s5

S : 〈1〉 〈2〉
H :
F :

1 7→ 1
2 7→ 0

s′1

S : 〈1〉 〈2〉
H : 〈2.1, addr,2009〉
F :

1 7→ 0
2 7→ 1
2.1 7→ 0

s′2

S : 〈1〉 〈2〉
H : 〈2.1, addr, 2009〉
F : 〈2.1.1, 2009〉

1 7→ 0
2 7→ 1
2.1 7→ 1
2.1.1 7→ 0

s′3

S : 〈1〉 〈2〉
H : 〈2.1, addr, 2009〉
F : 〈2.1.1, 0〉

1 7→ 0
2 7→ 1
2.1 7→ 1
2.1.1 7→ 0

s′4

S : 〈1〉 〈2〉
H : 〈2.1, addr, 0〉
F :

1 7→ 0
2 7→ 1
2.1 7→ 1

s′5

S : 〈1〉 〈2〉
H :
F :

1 7→ 0
2 7→ 1

1 : create(addr,2009) 2 : create(addr,2009)

1.1 : call(2009)

1.1.1 : comp(2009)

1.1 : ret(0)

1 : wait()

2.1 : call(2009)

2.1.1 : comp(2009)

2.1 : ret(0)

2 : wait()

Figure 2. An initial fragment of the state space: σs is shown in the left part of each state and ηs in the
right part

in σs can be derived as the next son of another active thread.

More generally, we require that each state s = (σs, ηs) de-
fines what we call a consistent thread configuration (or ct-

configuration): Assuming that pid s is the set of all pids in-

volved in σs, then: (i) dom(ηs) ⊆ pids, i.e., each active pid

is present in a local state; and (ii) for all π ∈ dom(ηs) and
π′ ∈ pid s, if π.k is a prefix of π′ then k ≤ ηs(π), i.e., all
pids in local states had been created in the past.

For each active pid π in s we denote the possibly next

created pid by nexts(π)
df

= π.(ηs(π) + 1) and the set of

next pids in s by nextpids
df

= {nexts(π) | π ∈ dom(ηs)}.

Definition 3.1 (state equivalence) Two states s and s′

defining ct-configurations, are equivalent if there is a bi-

jection h : (pid s ∪ nextpids) → (pid s′ ∪ nextpids′) such
that h(dom(ηs)) = dom(ηs′) and for all ≺∈ {∢1, ∢} and

f ∈ {⋔1, ⋔}:

• ∀π ∈ dom(ηs), h(nexts(π)) = nexts′(h(π)).

• ∀π, π′ ∈ pid s: π ≺ π′ iff h(π) ≺ h(π′).

• ∀π, π′ ∈ pid s ∪ nextpids: π f π′ iff h(π) f h(π′).

• σs′ is σs after replacing each pid π by h(π).

We denote this by s ∼h s′ or s ∼ s′. ✸

For state space reduction, the above equivalence should

be preserved through possible executions, and so we make

the following assumption.

Assumption 1 If s ∼h s′ and s
t

−−−−−−−−→ r then s′
h(t)
−−−−−−−−−−−→ r′

and r ∼h′ r′ where h′ is suitably restricted (no newly ter-

minated threads) and extended (created threads added) bi-

jection. And similarly for s′
t′

−−−−−−−−→ r′. ✸

The above assumption (which needs to be demonstrated

for each concrete system model as, e.g., in [9]) means that

∼ behaves like a strong bisimulation relation and can there-

fore be regarded as sufficient, e.g., for the purpose of state

reduction for deadlock detection. Moreover, the fact that

the bijection h is preserved on the retained pids over the

corresponding transitions means that it is also relevant if

one deals with properties of individual (abstracted) threads

over sequences of states, making it compatible with the un-

folding based verification technique [8].

It is important to see why we need the nextpid ’s in the

3



}

layer 1
{

}

layer 2
{















layer 3















S

〈ǫ〉

ǫ

ǫ

〈ǫ〉

ǫ

ǫ

H

〈ǫ, addr, 2009〉

ǫ

ǫ

F

〈ǫ, 2009〉

ǫ

ǫ

0

∢1

0

∢1

∢1

0

∢1

∢1

0

∢1

S

〈2〉

2

2.1

〈1〉

1

1.2

H

〈1.1, addr, 2009〉

1.1

1.1.2

F

〈1.1.1, 2009〉

1.1.1

1.1.1.1

0

∢1

0

∢1

∢1

0

∢1

∢1

0

∢1

Figure 3. TLG of s3 and its version with explicit pids (on the right) included to improve readability.

definition of equivalence. Assume that s and s′ are such that

pid s = {1, 1.1} and ηs(1) = 1 whereas pid s′ = {5, 5.1}
and ηs′(5) = 3. Then consider a bijection h : pid s →
pid s′ such that h(1) = 5 and h(1.1) = 5.1. Everything

is fine as far as preserving the fatherhood/brotherhood of

the corresponding pids is concerned. Let us now imagine

that the two corresponding active threads, 1 and 5, created

new pids, leading respectively to new states r and r′ such

that pid r = {1, 1.1, 1.2} and pidr′ = {5, 5.1, 5.4}. Then
the two new states are no longer equivalent, because 1.1 ⋔1

1.2 yet 5.1 6⋔1 5.4. This violates the preservation of the

immediate brotherhood relation of the corresponding pids

and so the two new states are not equivalent.

Checking state equivalence proceeds in two phases.

First, candidate states are mapped to three-layered labelled

directed graphs (or TLGs), and then the TLGs are checked

for graph isomorphism.

TLGs are constructed as follows. The first layer is la-

belled by local states, the second layer by (abstracted) vec-

tors and the third one by (abstracted) pids. The arcs are

of two sorts: those going from the container object towards

the contained object (local states contain vectors which con-

tain pids), and those between the vertexes of the third layer

reflecting the relationship between the corresponding pids

through the comparisons in Ω⋆
pid

df

= {⊳1, . . . , ⊳k}, where
Ω⋆

pid is Ωpid without the equality relation, without relations

that are transitive closures of other relations, and without

any relation that is not needed in the model (i.e., the con-

crete system model generating an LTS does not use such

a relation). Figures 3 and 4 show examples with Ω⋆
pid =

{∢1}. The abstraction mapping ⌊ ⌋ : D ∪ P → D ∪ {ε} is

defined as the identity on D and as a constant mapping ε on

P, extended component-wise to vectors of values.

Definition 3.2 (TLG) Let s
df

= (σs, ηs) be a state of

an LTS. Then the corresponding graph representation

TLG(s)
df

= (V ; A, A⊳1
, . . . , A⊳k

; λ), where V is the set

of vertexes, A, A⊳1
, . . . , A⊳k

are sets of arcs and λ is a la-

belling on vertexes and arcs, is defined as follows:

- First layer: for each local state ℓ ∈ L such that σs(ℓ) 6=

∅, ℓ is a vertex in V labelled by ℓ.

- Second layer: for each local state ℓ ∈ L and for each

vector v ∈ σs(ℓ), v is a vertex in V labelled by ⌊v⌋ and

ℓ −−−−−−−−→ v is an unlabelled arc in A.

- Third layer:

• for each vertex v at the second layer, for each pid π in

v at the position n (in the vector), π is an ε-labelled

vertex in V and there is an arc v
n

−−−−−−−−→ π in A;

• for each active pid π, its potential next child, nexts(π),
is a vertex in V labelled by ε; and

• for all vertexes π, π′ at this layer, for all 1 ≤ j ≤ k,

there is an arc π
⊳j

−−−−−−−−→ π′ in A⊳j
iff π ⊳j π′, i.e., A⊳j

defines the graph of the relation ⊳j on V ∩ P.

There is no other vertex nor arc in G(s). ✸

In Figures 3 and 4, the S-, H- and F -labelled nodes be-

long to the first layer, the tuple labelled nodes belong to the

second layer and the remaining nodes belong to the third

layer.

Theorem 3.3 Let s1 and s2 be two reachable states. Then

TLG(s1) and TLG(s2) are isomorphic iff s1 ∼ s2.

Proof (sketch): For i ∈ {1, 2}, let us denote TLGi
df

=
TLG(si) = (Wi; Ai, Ai⊳1

, . . . , Ai⊳k
; λi).

(⇒) Let h : W1 → W2 be an isomorphism between

G1 and G2, such that ∀v ∈ W1, λ1(v) = λ2(h(v)) and

∀u, v ∈ W1, λ1((u, v)) = λ2((h(u), h(v))). The states

si
df

= (σsi
, ηsi

) can easily be obtained from Gi: (i) vertexes

of the second layer represent the vectors associated to local-

ities, which are vertexes of the first layer; this allows one to

obtain σsi
; and (ii) vertexes of the third layer which have no

incoming arc from any vertex of the second layer allow to

retrieve ηsi
, i.e., for each such vertex π.j ∈ Wi, there is an

active thread π in si and ηsi
(π) = j − 1. Moreover, all pids

(present as vertexes of the third layer) are related through

h, which is always the identity on data. So, the marking

equivalence follows.

4



(⇐) By Definition 3.2, h-equivalent states si generate

graph representations Gi which only differ by the identity

of some vertexes (their number, arcs and labelling being

identical). By definition of the state equivalence, h is the

identity on data and relates pids between s1 and s2. So h

relates in the same way the identities of vertexes in W1 and

W2. ✷

In our motivating example, the brotherhood relation is

not needed to compare pids. Indeed, the only requirement

is that a parent thread waits for one of its children to ter-

minate. So it is not necessary to consider ⋔1 in Ω⋆
pid . Af-

ter taking this into account, the identification of equivalent

states in the LTS of Figure 2 leads to a reduced state space.

First, the TLGs of s3 and s′3 are clearly isomorphic (see

Figure 3). Thus, only one of the two execution paths would

be represented, which shows how symmetric executions can

be identified. Let us first consider the initial state s0 whose

TLG is represented in Figure 4. It is easy to check that the

TLGs of s5 and s′5 are isomorphic to this one. Thus, the

infinite execution that is possible in each branch can be re-

duced to a loop because we consistently abstract away the

information about newly generated pids.

S

〈ε〉

ε

ε

〈ε〉

ε

ε

0

∢1

0

∢1

Figure 4. TLG of s0.

Note that considering also the brotherhood relation for

TLG(s3) and TLG(s′3) would add one extra arc from the

node of pid 1 towards that of pid 2. This would result in

losing the isomorphism of the two TLGs. Consequently, in

order to achieve the highest reduction rate, it is important to

keep in Ω⋆
pid only the relations actually used by the system

generating an LTS.

4 Experimental results

The complexity of checking graph isomorphism is, in

general, not known. In order to evaluate how efficient in

practice it turns out to be in our case, we generated ran-

dom states and measured the time spent on checking iso-

morphism of the corresponding graphs. We only considered

pairs of graphs where the same local states are non-empty.

Indeed, pairs that do not match this way can be checked for

non-equivalence in linear time with respect to the number of

local states, with no need for checking graph isomorphism.

Our methodology has been to generate random states and

compare each one with similar ones obtained through all

possible transformations based on: (i) pids swapping pre-

serving isomorphism; (ii) shuffling of vectors throughout

local states; (iii) shuffling of vector components; (iv) ex-

change of components between vectors (pids, data or both);

(iv) data replacement; (v) pids replacement; and (vi) shift-

ing of integers that compose pids. In order to check graph

isomorphism, we used NetworkX [4] that implements the

VF2 [3] algorithm.

We carried out more than two millions of comparisons,

on the basis of which it may be observed that: (i) computa-

tion time is growing with the state and with the percentage

of pids in vectors (with respect to data); while (ii) computa-

tion time improves with the increase of distinct data values.

None of these facts should really be surprising. In particu-

lar, the presence of data leads to labelled nodes that can be

quickly matched when comparing two graphs. Moreover,

we observed that the general evolution of computation time

is linear with respect to p2/3 where p is the number of dis-

tinct pids in the compared states. With respect to p2, the

evolution of time looks clearly sublinear. Hence it is justi-

fiable to estimate that computation time is in mean polyno-

mial (around p3/2) with respect to the number of threads in

the observed system. Finally, we determined that the com-

putation time looks slightly less than quadratic with respect

to the number of vectors in compared states.

As a result, we conclude that the cost of checking state

equivalence is very low for states that are different (most of

the compared pairs) and stays good for states that are simi-

lar. Moreover, it should be noted that discovering equivalent

states allows to limit the state space exploration. Thus the

time spent in computing equivalences is probably less than

the time required to computed the whole state space, which

obviously holds for infinite state spaces reduced to finite

ones. This reduction may also allow to analyze systems

whose complete state space would simply not fit into the

computer’s memory, and thus would have been intractable

regardless of the computation time.

5 Comparison with other approaches

A variety of methods such as those in [2, 6, 7] (see,

e.g., [12] for a recent survey) address the state explosion

problem by exploiting, in particular, symmetries in the sys-

tem in order to avoid searching parts of the state space

which are equivalent to those that have already been ex-

plored. Some methods, such as [1, 5, 11], have been im-

plemented in widely used verification tools and proved to

be successful in the analysis of numerous communication

protocols and distributed systems. The method proposed in

this paper actually focuses on abstracting thread identifiers

and symmetries are addressed only indirectly.

5



Our approach appears to be closely related to that de-

veloped in [7] (which, incidentally, covers those in [6, 2])

where a general framework was proposed aiming at reduced

state space exploration through the utilisation of symme-

tries in data types. More precisely, [7] defines three classes

of primitive data types. Two of these, ordered (for which

symmetries are not considered) and cyclic (which are finite)

cannot lead to reductions based on pids. The remaining

one, unordered, can in principle be used for reduction even

for an infinite domain (Sect.7.5 in [7]). However, the ap-

proach proposed in [7] does not cover the case of dynamic

process creation as considered in this paper. First of all,

our approach requires to establish the crucial behavioural

consistency condition formulated as Assumption 1 by re-

stricting the kind of global states (through the notion of

ct-configuration) for which our consistency condition can

work. Moreover, when comparing two states for equiv-

alence, the approach of [7] considers only data actually

present in the states. In our case, however, we have to

look at additional data (potential sons of the pids present

in the states) to ensure the preservation of equivalence over

possible behaviours. We believe that approaches like [7]

are insufficient for dealing with dynamic process creation

and checking relationships between pids such as the broth-

erhood.

6 Concluding remarks

The presentation in this paper is based at the behavioural

level of labelled transition systems which have, in particu-

lar, to satisfy Assumption 1. One might question, therefore,

the practical usefulness of our approach. Fortunately, as it

turns out, labelled transition systems of the ‘right’ kind can

be ensured through introducing mild syntactic restrictions

on the system model generating them. For example, in [9]

we introduced a class of high-level Petri nets which gener-

ate labelled transition systems satisfying the conditions re-

quired in this paper. It is our conjecture that this situation

is not unique and many other system models which support

explicit thread creation and manipulation will lead to the

same view.

In our future work we intend to carry out experimenta-

tion using the Sage [13] tool that implements the Nauty [10]

algorithm which is often acknowledged as the fastest exist-

ing algorithm for graph isomorphism. Moreover, some case

studies should be performed in order to be able to measure

the concrete impact on verification efficiency. In a longer

term, we plan to investigate the possibility of merging to-

gether the treatments of ordered and cyclic data types of [7]

together with our approach.

Acknowledgement

This research was partially supported by: the Davac

project, NSFC grant 60433010, and the SPREADS ANR

project.

References

[1] D. Bosnacki, D. Dams and L. Holenderski. Symmetric

Spin. Int. J. Soft. Tools Technol. Transfer 4(1)65-80,

2002.

[2] G. Chiola, C. Dutheillet, G. Franceschini and S. Had-

dad. On Well-Formed Coloured Nets and their Sym-

bolic Reachability Graph.High-Level Petri Nets, The-

ory and Application, LNCS, Springer 1991.

[3] L.P. Cordella, P. Foggia, C. Sansone, M. Vento.

A (Sub)Graph Isomorphism Algorithm for Matching

Large Graphs. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 10, 2004.

[4] A. Hagberg, D. Schult and P. Swart. NetworkX,

High productivity software for complex networks.

http://networkx.lanl.gov

[5] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert

and F. Vaandrager. Adding symmetry reduction to UP-

PAAL. FORMATS’03, LNCS 2791. Springer, 2003.

[6] C.N. Ip and D.L. Dill. Better verification through sym-

metry. FMSD 9, 1996.

[7] T. Junttila. On the symmetry reduction method for

Petri nets and similar formalisms. PhD Thesis, HUT,

Espoo, Finland, 2003.

[8] V. Khomenko. Model Checking Based on Prefixes of

Petri Net Unfoldings. PhD Thesis, School of Comput-

ing Science, University of Newcastle, 2003.

[9] H. Klaudel, M. Koutny, E. Pelz and F. Pommereau.

Towards efficient verification of systems with dy-

namic process creation. ICTAC 2008, LNCS 5160.

Springer, 2008. Full version: LACL Technical re-

port, 2008. http://lacl.univ-paris12.fr/

pommereau/publis/2008-lacl.html

[10] B. D. McKay. Practical Graph Isomorphism. Con-

gressus Numerantium 30, 1981.

[11] K. McMillan. SymbolicModel Checking.Kluwer Aca-

demic, 1993.

[12] A. Miller, A. Donaldson and M. Calder. Symmetry in

temporal logic model checking. ACM Comput. Surv.,

38(3)8. ACM, 2006.

[13] W. Stein. Sage Mathematics Software. The Sage

Group, 2007. http://www.sagemath.org

6


