
HAL Id: hal-00666652
https://hal.science/hal-00666652

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nominal Substitution at Work with the Global and
Converse Modalities

Serenella Cerrito, Marta Cialdea Mayer

To cite this version:
Serenella Cerrito, Marta Cialdea Mayer. Nominal Substitution at Work with the Global and Converse
Modalities. Advances in Modal Logic (AIML 2010), Aug 2010, Moscow, Russia. pp.59–76. �hal-
00666652�

https://hal.science/hal-00666652
https://hal.archives-ouvertes.fr


Nominal Substitution at Work
with the Global and Converse Modalities

Serenella Cerrito
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Abstract

This paper represents a continuation of a previous work, where a practical approach to the treatment
of nominal equalities in tableaux for basic Hybrid Logic HL(@) was proposed. Its peculiarity is a
substitution rule accompanied by nominal deletion. The main advantage of such a rule, compared with
other approaches, is its efficiency, that has been experimentally verified for the HL(@) fragment.
The integration of substitution and nominal deletion with more expressive languages is not a trivial task.
In this work the previously proposed tableaux calculus for HL(@) is extended to hybrid logic with the
global and converse modalities, taking into account also practical considerations. Though termination,
in this case, relies on loop checks, the computational advantages of the substitution rule persist in this
richer framework.

Keywords: Tableaux, Modal Logic, Hybrid Logic, Automated Deduction

1 Introduction

Kripke structures, providing the semantics of modal logics, can be seen as labelled
graphs, or else, transition systems. As such, they are widely used in computer science
for modelisation purposes. Nominal equalities, which are assertions saying that a and
b are different names for the same vertex (state), are typical of hybrid logic. In fact,
the hybrid syntax extends the modal one by allowing states to be named by means of
nominals, i.e. atomic formulae which hold at exactly one state, and it is possible to
express that a formula F - possibly a nominal b itself - holds at a state named a by
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use of the satisfaction operator (@aF ). In particular, an equality @ab states that the
nominals a and b are synonymous.

The treatment of nominal equalities in proof systems and provers may raise many
redundancies, because when a formula F holds in the world named by synonymous
nominals a1, ..., an, it can potentially be treated n times. A previous work [6], further
revised and extended in [5], presented a tableaux calculus for HL(@) (basic hybrid logic),
called H, whose characterizing feature is the treatment of nominal equalities by means
of a special substitution rule, that expands an equality @ab by replacing a with b while
deleting the chain of nominals generated by a, thus allowing for a reduction of the
number of redundancies possibly induced by nominal equalities. Though embedded in a
different context, such a rule is essentially the same as the “merge and prune” method
proposed by [14] for the description logic SHOIQ.

The computational advantages of such an approach with respect to expanding @ab

by copying formulae from a to b, like in [2], have been experimentally verified [9,8]. The
gain in efficiency is due to the nominal deletion mechanism embedded in the substitution
rule.

Like other calculi for basic hybrid logic, H enjoys strong termination (every tableau
in H is finite, independently of the rule application order), and termination does not need
loop checks. Moreover, the system does not use any extra-logical notation (like prefixes),
i.e. it is an internalized calculus. Tableau calculi for modal logics can in fact be given
either in the explicit style, by means of prefixes, or in the implicit style (internalized
calculi). In the first case, tableau nodes are labelled by prefixed formulae of the form
σ : F , where σ is a symbol of the meta-language and F a formula, in the second one by
language-level formulae. Prefixes are useful either when they are complex expressions
encoding the relation between states, or when there is no internal (object-language)
mechanism to name worlds.

In the case of hybrid logic, both styles have been used. A prefixed calculus is pre-
sented for instance in [2], which constitutes the theoretical background of the prover
HTab [12]. However, the use of (simple) prefixes in the case of hybrid logics seems a
useless burden, since nominals and the satisfaction operator can play the same role. In
fact, prefixes may sometimes make both meta-proofs and implementations more compli-
cated. Beyond this fact, internalized hybrid calculi have the advantage that the addition
of pure axioms automatically yields complete systems for the class of frames they define,
although termination may in some cases become a non trivial issue [3].

In this work we show that the approach to nominal equalities proposed in [6,5] can be
safely extended to HL(@,�−,E), i.e. the language containing, beyond the satisfaction
operator, the global modality E (and its dual A) and the converse modalities �− and
�−, preserving the computational advantages of substitution (with nominal deletion).
The overall main feature of the proposed calculus is its practical approach, aiming in
fact at being as close as possible a theoretical basis of an implemented system. For this
reason, a particular attention is paid to efficiency aspects.

In the extended calculus, termination is achieved by means of a loop checking mech-
anism, partially like in [2,3], i.e. using ancestor equality blocking. The paper also shows
that such a mechanism coupled with substitution without nominal deletion does not
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ensure termination.
An additional gain in efficiency is obtained by a different treatment of the existential

modality: no loop checks are performed when expanding a formula of the form @aEF ,
still preserving termination.

The presence of substitution, and its interplay with the nominal generating rules,
raise specific technical subtleties in the termination and completeness proofs, which are
given here with a fair amount of details.

1.1 Preliminaries

We conclude this section by briefly recalling the syntax and semantics of (multi-modal)
hybrid logic with the global and converse modalities, HL(@, �−,E).

Given two disjoint sets of atoms, NOM (nominals) and PROP (ordinary atoms),
and a set of relation labels REL, formulae are built up from atoms using the classical
connectives, the satisfaction operator @, the unary modal operators �τ , �τ and their
converses �−

τ , �−
τ (where τ ∈ REL), and the global modalities E and A. Formulae are

defined by the following grammar, where p ∈ PROP, a ∈ NOM, τ ∈ REL:

F := p | a | ¬F | F ∧ F | F ∨ F | @aF | �τF | �τF |
�−

τ F | �−
τ F | A F | E F

An interpretation M is a quadruple 〈W, {Rτ | τ ∈ REL}, N, I〉 where W is a non-
empty set (whose elements are the states of the interpretation), each Rτ ⊆ W × W is a
binary relation on W (the accessibility relations), N is a function NOM → W and I a
function W → 2PROP. We shall write wRτw′ as a shorthand for 〈w, w′〉 ∈ Rτ .

If M = 〈W, {Rτ | τ ∈ REL}, N, I〉 is an interpretation, w ∈ W and F a formula, the
relation Mw |= F is defined by:

(i) Mw |= p if p ∈ I(w), for p ∈ PROP.

(ii) Mw |= a if N(a) = w, for a ∈ NOM.

(iii) Mw |= ¬F if Mw 	|= F .

(iv) Mw |= F ∧ G if Mw |= F and Mw |= G.

(v) Mw |= F ∨ G if either Mw |= F or Mw |= G.

(vi) Mw |= @aF if MN(a) |= F .

(vii) Mw |= �τF if for each w′ such that wRτw′, Mw′ |= F .

(viii) Mw |= �τF if there exists w′ such that wRτw′ and Mw′ |= F .

(ix) Mw |= �−
τ F if for each w′ such that w′Rτw, Mw′ |= F .

(x) Mw |= �−
τ F if there exists w′ such that w′Rτw and Mw′ |= F .

(xi) Mw |= AF if for each w′ ∈ W , Mw′ |= F .

(xii) Mw |= EF if there exists w′ ∈ W such that Mw′ |= F .

A formula F is satisfiable if there exist an interpretation M and a state w of M, such
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that Mw |= F . Two formulae F and G are logically equivalent (F ≡ G) when, for every
interpretation M and state w of M, Mw |= F if and only if Mw |= G.

It is worth pointing out that, for any nominal a and formula F :

¬@aF ≡ @a¬F ¬�τF ≡ �τ¬F ¬�τF ≡ �τ¬F

¬�−
τ F ≡ �−

τ ¬F ¬�−
τ F ≡ �−

τ ¬F ¬AF ≡ E¬F ¬EF ≡ A¬F

This allows one to restrict attention to formulae in negation normal form (where negation
dominates only atoms), without loss of generality.

2 The tableau calculus H+

In the calculus H and its extension, that will be named H+, tableau nodes are labelled by
sets of satisfaction formulae, i.e. assertions of the form @aF written as comma separated
sequences of formulae. A formula of the form @aF will be called labelled by a. A formula
of the form @a�τ b, where b is a nominal, is a relational formula.

The initial tableau for a set S of formulae is a node labelled by Sa = {@aF | F ∈ S},
where a is a new nominal. Without loss of generality, formulae are assumed to be in
negation normal form. The set Sa is called the initial set. Nominals occurring in Sa are
called native nominals (in the tableau).

Table 1 contains the logical rules, i.e. all rules but substitution. A tableau node is
closed if it contains either @ap and @a¬p for some nominal a and atom p, or @a¬a for
some nominal a (otherwise it is open). A tableau branch is open if all its nodes are
open, otherwise it is closed. A tableau is closed if all its branches are closed, otherwise
it is open.

Note that all the rules of Table 1 are conservative, i.e. they do not “consume” their
premises. The �τ , �−

τ and E rules are called nominal generating rules, and formulae
of the form �τF , �−

τ F and EF nominal generating formulae. It is worth pointing out
that, contrarily to the �τ -rule, the table gives no restriction on the applicability of the
�−

τ -rule; in fact, it is necessary to expand formulae of the form @a�−
τ c where c ∈ NOM,

in order to obtain possible premises for the �τ and �−
τ rules, of the form @c�τa.

A formula occurring in a tableau T is called native (in T ) if and only if it is in
the language of the initial set, i.e. it does not contain any non-native nominal. A
formula occurring in a tableau node is an accessibility formula if it is a relational formula
introduced by application of the �τ or �−

τ rule. Accessibility formulae are obviously not
native. It is worth pointing out that only the direct modalities �τ occur in accessibility
formulae, and not the converse ones.

In order to define the last rule of the system, the substitution rule, the definition of
father and children of a nominal, given in [6,5] for H, has to be extended.

Definition 2.1 Let Θ be a tableau branch. If either the �τ or �−
τ rule has been applied

in Θ to a formula labelled by a, generating a new nominal b, then a ≺Θ b (and we say
that b is a child of a, and a is the father of b).
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Boolean Rules Label Rule

@a(F ∧ G), S

@aF, @aG, @a(F ∧ G), S
(∧)

@a@bF , S

@bF, @a@bF , S
(@)

@a(F ∨ G), S

@aF , @a(F ∨ G), S @aG, @a(F ∨ G), S
(∨)

Rules for the direct and converse modalities

@a�τ F, @a�τ b, S

@bF , @a�τ F, @a�τ b, S
(�τ )

@a�τ F , S

@a�τ b, @bF , @a�τ F, S
(�τ )

where b is a new nominal

(not applicable if F is a nominal)

@a�
−
τ F, @b�τ a, S

@bF , @a�
−
τ F, @b�τ a, S

(�−
τ )

@a�
−
τ F , S

@b�τ a, @bF , @a�
−
τ F, S

(�−
τ )

where b is a new nominal

Rules for the global modalities

@aAF , S

@cF , @aAF, S
(A)

@aEF , S

@bF , @aEF, S
(E)

where c occurs in the premise where b is a new nominal

Table 1
Logical rules of the tableau system

The relation ≺+
Θ is the transitive closure of ≺Θ and ≺∗

Θ the reflexive and transitive
closure of ≺Θ. If a ≺+

Θ b we say that b is a descendant of a and a an ancestor of b in the
branch Θ.

Nominals with no fathers are called root nominals.

Note that if a nominal b is newly introduced in a branch by expanding a formula or
the form @aEF , then b is not a child of a.

The substitution rule, which is applicable only if a 	= b, is formulated as follows:

@ab, S

S#[a �→ b]
(Sub)

where S#[a �→ b] is obtained from S by:

(i) replacing every occurrence of a with b;

(ii) deleting every formula containing a descendant of a.

When the substitution rule is applied, a is said to be replaced in the branch and the
descendants of a are called deleted in the branch.

It is worth pointing out that, differently from the cases of the label and boolean rules
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which could also be formulated as “destructive”, 1 the �τ and �−
τ rules must conserve

their premises (though they are single-premise rules). In fact, when the descendants of
a replaced nominal are deleted, these formulae have to be reused, with the new label, in
order to keep completeness.

In order to ensure termination, first of all, trivial re-applications of rules must be
ruled out. So, we establish that:

R1. rules that would not change the node (their expansion being already contained in
the upper node) are not applicable.

Obviously, in practice, since substitution affects the whole node, such heavy membership
tests can be avoided and replaced by a marking mechanism – which can also allow for
the boolean and label rules being implemented destructively (see [9] or [8]).

Secondly, useless re-application of nominal generating rules must be avoided. To this
aim, the expansion of existential formulae is restricted similarly to [16]. A memory of
existential formulae is associated to each tableau node. When a formula of the form
@aEF is expanded, the “body” of the formula, EF , is saved in the memory of the
resulting node. When the substitution rule is applied, it affects also memorized formulae
(which are not deleted), and the other rules keep the memory unchanged. The E rule is
then subject to the following restriction:

R2. a formula of the form @aEF is not expanded in a node S if EF belongs to the
memory of S.

Moreover, when one of the rules �τ or �−
τ is applied, the expanded formula is marked

as inactive in the lower node. When the substitution rule is fired by an equality @ab,
it affects (only) the markings of formulae labelled by a, as follows: every formula of the
form @a�τF or @a�−

τ F becomes active again, before replacing a with b and deleting
its descendants. This is because, as already remarked, the children of a are deleted, and
the formulae resulting from the substitution, @b�τF ′ and @b�

−
τ F ′ (F ′ = F [a �→ b]),

need to be expanded again in order to generate the corresponding children of b.
It is necessary to specify how substitution interacts with the active/inactive marking

mechanism, i.e. what happens when two differently marked formulae collapse by the
effect of substitution. In such cases, the inactive marking takes precedence. In particular,
when Sub is applied to a node containing an active formula F1 and an inactive one F2,
then, if the application of the substitution to F1 and F2 produces the same formula G,
G is marked as inactive in the conclusion of the rule. The same mechanism applies when
the Sub rule replaces a with b in a node containing both @a�τF1 (or @a�−

τ F1) and an
inactive @b�τF2 (or @b�

−
τ F2), with F1[a �→ b] = F2[a �→ b] = G: the inactive marking

takes precedence again in the conclusion of the rule. I.e. substitution does not produce
two occurrences of @b�τG (or @b�

−
τ G), an active occurrence and an inactive one, but

a single inactive one.
The �τ and �−

τ rules are then restricted as follows:

1 The destructive versions of the label and boolean rules would in fact be more faithful to a possi-
ble implementation. Though such a choice would affect only technical details, the completeness and
termination proofs would however become more fastidious.
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R3. the �τ and �−
τ rules are not applicable to inactive formulae.

Note that the simpler restriction that nominal generating formulae are never expanded
more than once on a branch (R1) would be weaker than R2 and R3. In fact, in that case,
when an already expanded formula of the form @a�τF , @a�−

τ F or @aEF is changed by
a substitution, resulting in a never expanded new formula, it would become expandable
again (even if the substitution does not affect a). Moreover, restriction R2 cannot be
replaced by marking an expanded @aEF as inactive and establishing that @bEF is not
expanded whenever the node contains an inactive @aEF (similarly to restriction R3); in
fact an existential inactive formula could be deleted by the Sub rule, without its witness
being deleted. Nor could restriction R2 be replaced by simply requiring that @aEF is
not expandable whenever the node contains some @bF , for any nominal b (this would
not be enough for the completeness proof given in Section 3.2).

Finally termination needs a blocking mechanism relying on loop checks, which ex-
ploits the notion of twin nominals (like in [3]):

Definition 2.2 Let T be a tableau, Θ a branch of T and S a node of Θ. Then:

• If a is a nominal occurring in S then

FormsS(a) = {F | @aF occurs in S and F is native in T}

i.e. FormsS(a) contains all the native formulae labelled by a in S.
• Two nominals a and b are said to be twins in S if FormsS(a) = FormsS(b).
• A nominal a occurring in S is directly blocked by a nominal b in S if b ≺+

Θ a and a

and b are twins in S. It is indirectly blocked by b in S when b ≺+
Θ a and b is directly

blocked in S. Finally, a is blocked in S when it is either directly or indirectly blocked
in S.

Note that a nominal a is non-blocked in S if and only if there is no pair of distinct
twins b, c occurring in S such that b, c ≺∗

Θ a.
Termination is ensured by the following restriction:

R4. The rules �τ and �−
τ are not applicable to a formula labelled by a nominal a in a

node S if a is blocked in S.

A tableau node (respectively a tableau branch) is complete if no rule can be applied
to expand it (possibly because of restrictions R1–R4). A tableau is complete when all
its branches are complete.

The blocking mechanism is similar to the dynamic loop checking 2 introduced in [13]
for description logics, then adapted to hybrid logic in [2]. However, existential formulae
are treated differently, more in the style of [16]. A loop checking mechanism closer to
that used in [2,3] – and adopted in the first proposal to extend H to the global and
converse modalities, that is [7] – would treat E like the �τ and �−

τ operators: if a new

2 If blocks on nominals are never undone then blocking is static. Otherwise it is called dynamic. In
H+ blocking is dynamic because the “twin” relation may be destroyed when new formulae are added
to the branch.

7



nominal b is generated by expansion of an existential formula labelled by a, then a ≺Θ b,
and it is established that a formula of the form @aEF cannot be expanded when a is
blocked. The main difference between the two methods is that, in H+, any existential
formula is expanded at most once, independently of its label, thus avoiding possible
redundant computations.

We end up this section pointing out that nominal deletion not only allows one to
avoid useless expansions, but is necessary in order to ensure termination, as shown by
the infinite tableau in Figure 1, where nominals are replaced without deleting their de-
scendants. For the sake or readability, when a rule without side effects is applied, the
lower node shows only the newly added formulae. Note that, as an effect of substitu-
tion without nominal deletion, each nominal bi+1 becomes orphan of its father bi that,
otherwise, would have blocked it.

@aA�τ (p ∧ a)

@a�τ (p ∧ a)
(A)

@a�τ b0, @b0 (p ∧ a)
(�τ )

@b0p, @b0a
(∧)

@b0�τ (p ∧ a)
(A)

@b0�τ b1, @b1 (p ∧ a)
(�τ )

@b1p, @b1a
(∧)

@aA�τ (p ∧ a), @a�τ (p ∧ a), @a�τ a, @a(p ∧ a), @ap, @aa, @a�τ b1, @b1 (p ∧ a), @b1p, @b1a
(b0 �→ a)

@b1�τ (p ∧ a)
(A)

@b1�τ b2, @b2 (p ∧ a)
(�τ )

@b2p, @b2a
(∧)

@aA�τ (p ∧ a), @a�τ (p ∧ a), @a�τ a, @a(p ∧ a), @ap, @aa, @a�τ b2, @b2 (p ∧ a), @b2p, @b2a
(b1 �→ a)

....

Fig. 1. Substitution without nominal deletion

As a final remark, one can observe that the tableau in Figure 1 would terminate
(even without nominal deletion) if subset blocking were adopted, i.e. if a nominal were
blocked whenever it labels a subset of the formulae labelled by some of its ancestors.
In fact, @b1�τ (p ∧ a) could not be expanded since b1 labels, at that point, a subset of
the formulae labelled by a. Subset blocking is sufficient for converse-free formulae, 3 but
does not guarantee completeness for HL(@,�−,E).

3 One of the tableau decision procedures presented in [4] for HL(@, E) uses in fact substitution – without
nominal deletion – and (anywhere) subset blocking.

8



3 Properties of H+

3.1 Termination

In order to show that H+ terminates with loop-checks (under any rule application strat-
egy), one can use an argument similar to the one given in [2] for the prefixed calculus.
However, there are obvious differences, and some more delicate points, due to the pres-
ence of the substitution rule and the different treatment of existential formulae.

In order to state the key property of the system, we need the following definition:

Definition 3.1 If T is a tableau rooted at S0, then:

S∗
0 = {F | F = G[b1 �→ c1, ..., bn �→ cn] for some subformula G of some formula

in S0, and native nominals c1, ..., cn}

In other terms, S∗
0 contains every formula that can be obtained from a subformula of

some formula in the initial set, by replacing nominals with native nominals. Note that
S∗

0 is necessarily finite and closed with respect to subformulae.
The following result can easily been proved by induction on tableaux.

Lemma 3.2 (Quasi-subformula property) Let Θ be a branch in a tableau rooted at
S0. Then for every nominal a, the set of native formulae labelled by a in Θ is a subset
of the finite set

S∗
0 ∪ {�τ b | b is a native nominal and τ is in the language of S0}

Moreover, any formula @aF occurring in Θ with F non-native is a relational formula
(i.e. F has the form �τ b).

The following properties are direct consequences of Lemma 3.2. If T is a tableau
rooted at S0, then:

(i) If @ab occurs in a node of T , then b is a native nominal. Therefore, in the applica-
tions of the substitution rule, nominals are always replaced by native nominals.

(ii) A non-native nominal b may occur in tableau nodes only in relational formulae of
the form @a�τ b or @b�τa, or as the label of a formula @bF , where F ∈ S∗

0 is
native.

(iii) In particular, b is native in any formula of the form @a�−
τ b, since such formulae

are not relational. Therefore, a given nominal a may label only a finite number of
formulae of the form �−

τ b.

(iv) If there is only a finite number of nominals occurring in a tableau branch Θ, then
the set of formulae occurring in Θ and labelled by any fixed nominal a is finite (if
there is a finite number of nominals, a can label only a finite number of relational
formulae).
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Since a given nominal a may label only a finite number of formulae which can be
expanded by means of the �τ or �−

τ rule (Lemma 3.2, and its consequence iii), the
restrictions on the applicability of such rules allow us to prove:

Lemma 3.3 If Θ is a tableau branch and a any nominal occurring in Θ, then {b | a ≺Θ

b} is finite.

As a consequence, also the following result holds:

Lemma 3.4 Let Θ be a tableau branch. If Θ is infinite then there is an infinite chain
of nominals

b1 ≺Θ b2 ≺Θ b3... .

Proof. The presence of the substitution rule makes the argument a little more compli-
cated than the corresponding one given in [2].

First of all we prove that if Θ is infinite, then there is an infinite number of nominals
occurring in Θ. If there were only a finite number of nominals, in fact, each of them
would label a finite number of formulae (by the consequence iv of Lemma 3.2). Now,
since formulae are never added to nodes where they already occur, there should be at
least one formula F occurring in a node Si of Θ which disappears from the branch
and then reappears in a node Sj below Si. F can disappear only because some nominal
occurring in it is either replaced or deleted. But when a nominal is replaced or deleted, it
can never occur again in the branch below the application of Sub which replaces/deletes
it.

The infinite number of nominals occurring in Θ can be arranged by ≺Θ in a forest
of trees rooted at root nominals, and there are finitely many such trees. In fact, only
native nominals and nominals generated by the E rule have no fathers, and their number
is finite (only a finite number of – necessarily native – formulae of the form EF may
occur in the branch, and each of them is expanded at most once, independently of its
label).

Moreover, each tree is finitely branching because any nominal can generate only a
finite number of new ones, by Lemma 3.3. By König’s Lemma, if one of such trees is
infinite, it has an infinite branch, i.e. there is an infinite chain of nominals b1 ≺Θ b2 ≺Θ

b3... . �

Theorem 3.5 (Termination) Every tableau is finite.

Proof. By Lemma 3.4, if an infinite branch Θ exists, then there is an infinite chain of
nominals

b1 ≺Θ b2 ≺Θ b3... .

By Lemma 3.2, if @aF occurs in Θ and F is native, then F is an element of the finite
set Σ = S∗

0 ∪ {�τ b | b is a native nominal and τ is in the language of S0}, where S0 is
the initial set.

Let n be the cardinality of Σ and consider the initial sub-chain:

b1 ≺Θ b2 ≺Θ ... ≺Θ b2n+1 ≺Θ b2n+2
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Let Θ′ be the initial segment of Θ up to, but not including, the nominal-generating
inference (�τ or �−

τ ) producing b2n+2, and let Sk be the last node of Θ′.
Since b2n+1 occurs in Sk, all its ancestors occur in Sk, too (if some of them had

been either replaced or deleted above Sk, b2n+1 would have been deleted by the same
application of the substitution rule). Since b2n+1 is the father of b2n+2 in Θ, and it
generates b2n+2 by expanding Sk, then b2n+1 is not blocked in Sk, i.e. Sk does not
contain two distinct twins bi, bj ≺∗ b2n+1.

Because of the choice of n, however, at least two nominals bi and bj among b1, ..., b2n+1

must be twins in Sk (i.e. they must label the same set of native formulae).
�

3.2 Completeness

In this section we prove that if Θ is a complete and open branch of an H+ tableau
rooted at S0, then S0 is satisfiable. The overall structure of the completeness proof is
the same as the corresponding one for H [5], and exploits the termination theorem: we
first consider the set labelling the last node of Θ, that is downward saturated (in some
sense), and we show that any such set has a model. Then the model existence property
is propagated upward to the root node. However, in the presence of substitution, the
model existence argument is technically subtler, because of the interplay between Sub

and the nominal generating rules, accompanied by the blocking mechanism.
The following notion of nominal representatives is used in order to define saturation.

Definition 3.6 Let Θ be a tableau branch, S a node of Θ and b a nominal occurring
in S. The representative of b in S, written ρS(b), is the nominal a ≺∗

Θ b such that a is a
twin of b and a is not blocked, if it exists (undefined otherwise).

Note that ρS(b) may be undefined. Consider in fact a situation where a1 ≺+
Θ a2 ≺+

Θ b

and a1 and a2 become twins after the generation of b (by effect of the converse rules).
It may happen that, in the chain leading to b, there is no ancestor of b that is a twin of
b (because of different choices in the expansion of disjunctive formulae). In such cases,
b is blocked and ρS(b) does not exist either. It is worth pointing out also that there is
at most one non-blocked nominal a ≺∗

Θ b that is a twin of b. In fact, if a1 and a2 are
distinct nominals such that a1 ≺∗

Θ b, a2 ≺∗
Θ b and both a1, a2 are twins of b, then a1 is

also a twin of a2, hence at least one among a1, a2 has a twin ancestor and is blocked.
The following result establishes useful properties of nominal representatives.

Lemma 3.7 Let Θ be a tableau branch and S a node of Θ. Then:
(i) For any nominal a occurring in S, a is non-blocked in S if and only if ρS(a) = a.

In particular, if a is a root nominal, ρS(a) = a.

(ii) Let a be a non-blocked nominal in S and b a nominal occurring in S. If either
a ≺Θ b or b ≺Θ a, then ρS(b) is defined.

(iii) If ρS(a) = b and F is native, then @aF ∈ S if and only if @bF ∈ S.

Here finally follows the notion of saturation, that is relative to a tableau node, since
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clauses ix–xi make reference to non-blocked nominals and nominal representatives. Such
notions, in turn, depend on the branch, since the relation ≺∗

Θ is branch-dependent.

Definition 3.8 A node S of a tableau branch Θ is downward saturated if and only if
the following conditions hold:

(i) S contains neither a formula of the form @a¬a, nor two formulae of the form @ap

and @a¬p for some atom p.

(ii) If @a(F ∧ G) ∈ S, then @aF,@aG ∈ S.

(iii) If @a(F ∨ G) ∈ S, then either @aF ∈ S or @aG ∈ S.

(iv) If @a@bF ∈ S, then @bF ∈ S.

(v) If @ab ∈ S then a = b.

(vi) If @a�τ b, @a�τF ∈ S, then @bF ∈ S.

(vii) If @b�τa,@a�−
τ F ∈ S, then @bF ∈ S.

(viii) If @aAF ∈ S, then for all nominals b occurring in S, @bF ∈ S.

(ix) If @a�τF ∈ S, F is not a nominal and a is not blocked in S, then there is a nominal
b such that ρS(b) is defined and @a�τ b, @bF ∈ S.

(x) If @a�−
τ F ∈ S and a is not blocked in S, then there is a nominal b such that ρS(b)

is defined and @b�τa,@bF ∈ S.

(xi) If @aEF ∈ S, then there is a nominal b such that ρS(b) = b and @bF ∈ S.

The following lemma proves the adequacy of the set of expansion rules.

Lemma 3.9 Any complete and open tableau node is downward saturated.

Proof. The delicate cases of the proofs are the items concerning the nominal generating
formulae.

ix. Let us assume that @a�τF ∈ S, F is not a nominal, and a is not blocked in S. Then,
since S is complete, @a�τF is inactive in S. This means that @a�τF is obtained by a
number of substitutions (possibly none) from some @a�τG which has been expanded
above S, 4 i.e. F = G[c1 �→ d1, ..., cn �→ dn], n ≥ 0. The expansion of @a�τG has
generated some @a�τ b and @bG. Since a still occurs in S, it has not been replaced
or deleted, and consequently b has not been deleted. Since the same substitutions
modifying �τG also affect b and G, S contains @a�τ b[c1 �→ d1, ..., cn �→ dn] and
@bG[c1 �→ d1, ..., cn �→ dn]. If b has not been replaced, then @a�τ b, @bF ∈ S, and,
by Lemma 3.7.ii, ρS(b) is defined. If b = cj for some j, then S contains @a�τ cj and
@cj F ; since cj is a native nominal, ρS(b) is defined by Lemma 3.7.i.

Case x is treated similarly.

xi. Let us assume that @aEF ∈ S. Then, since S is complete, the memory of S contains
EF , and this means that some @cEG has been expanded in a node S′ above S, where

4 Note that, here, �τ G is necessarily labelled by a, because of the of the interaction between substitution
and the active/inactive markings.
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F is obtained from G by means of a number of substitutions (those applied in the sub-
branch leading from S′ to S); i.e. F = G[c1 �→ d1, ..., cn �→ dn], n ≥ 0. The expansion
of @cEG has generated some @dG. Now, since d is a root nominal, it cannot be deleted
(though it can be replaced), therefore S contains (@dG)[c1 �→ d1, ..., cn �→ dn] = @bF

for some b ∈ {d, d1, ..., dn}. Since b is in any case a root nominal (either b = d or b is
native), ρS(b) = b, by Lemma 3.7.i.

�

The following lemma defines a model (in some sense) of any open and complete
tableau node S. Note that S necessarily contains at least one root nominal a0, which is
non-blocked in it, and, by Lemma 3.7.i, ρS(a0) = a0.

Lemma 3.10 Let S be an open and complete tableau node and a0 any root nominal
occurring in S. Let M∗ be the interpretation defined as follows:

W = {a | a is a non-blocked nominal occurring in S};
Rτ = {(ρS(a), ρS(b)) | @a�τ b ∈ S and both ρS(a), ρS(b) are defined};

For every nominal a occurring in S : N∗(a) =

⎧⎨
⎩

ρS(a) if ρS(a) is defined

a0 otherwise

I(a) = {p | @ap ∈ S} for all a ∈ W

If a ∈ W , @aF ∈ S and F has not the form �τ b for some b such that ρS(b) is undefined,
then M∗

a |= F .

Proof. We remark beforehand that since S is open and complete, it is downward satu-
rated by Lemma 3.9. Let us assume that a ∈ W and @aF ∈ S, for F 	= �τ b with ρS(b)
undefined. Since a is not blocked, ρS(a) is defined, and ρS(a) = a (by Lemma 3.7.i).
Therefore N∗(a) = a. The proof that M∗

a |= F is by induction on F .

Base We distinguish three cases.
(i) F is a literal. If F is a propositional letter or its negation, then the result is

true by construction. In fact, if @ap ∈ S, for p ∈ PROP, M∗
a |= p by definition,

because N∗(a) = a. If @a¬p ∈ S, since S is open, @ap 	∈ S and again M∗
a |= ¬p

by construction.
(ii) F is a nominal b. Then necessarily b = a, since S is saturated, and the result is

trivial, since N∗(a) = a.
(iii) F is ¬b, for some nominal b. Since S is open, b 	= a. By Lemma 3.2, b is a

native nominal, hence it is non-blocked and belongs to W , so that N∗(b) = b 	= a.
Therefore M∗

a |= ¬b.

Induction Step Several cases have to be considered, according to the form of F . Here
follows the treatment of some of them, the others being either very simple or similar
to those shown below.
(i) F = EG. If @aEG ∈ S, since S is saturated, there is a nominal b such that

ρS(b) = b and @bG ∈ S. By Lemma 3.7.i, b is not blocked in S, so that b ∈ W .
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By the inductive hypothesis, M∗
b |= G, thus M∗

a |= EG.
(ii) F is �τG. We distinguish two cases.
(a) G is a nominal b. By hypothesis, ρS(b) is defined and belongs to W . So, let

ρS(b) = c. By construction of M∗, we have: N∗(a) = a, N∗(b) = ρS(b) = c and
aRτ c. Hence M∗

a |= �τ b.
(b) G is not a nominal, and therefore it is native. Since S is saturated and a ∈ W is

not blocked, there is a nominal b such that ρS(b) is defined and @a�τ b, @bG ∈ S.
Since ρS(b) is a twin of b and G is native, if c = ρS(b) we have @cG ∈ S by Lemma
3.7.iii. By construction of M∗, aRτ c, and, by the inductive hypothesis, M∗

c |= G.
Hence M∗

a |= �τG.
(iii) F is �−

τ G. Observe that, differently from the above case, G is necessarily native
(Lemma 3.2), because @a�−

τ c is not a relational formula, and this case is treated
similarly to the second item of case ii.

(iv) F = �−
τ G. Let b be any element of W such that bRτa. By definition, there are

two nominals c and d such that a = ρS(c), b = ρS(d) and @d�τ c ∈ S. Since a

and c are twins and �−
τ G is native, @c�

−
τ G ∈ S by Lemma 3.7.iii. And since

S is saturated, @dG ∈ S, so that also @bG ∈ S because b and d are twins and
G is native (Lemma 3.7.iii again). By the induction hypothesis, then M∗

b |= G.
Therefore M∗

a |= �−
τ G.

�

Completeness is proved by lifting the model existence property upwards to the root
set.

Theorem 3.11 (Completeness) If S is unsatisfiable, then every complete tableau for
S is closed.

Proof. The proof consists in showing that if Θ is a complete and open branch of a
tableau rooted at S0, then S0 is satisfiable.

Since Θ is finite by Theorem 3.5, Θ = S0, S1, ..., Sk for some k, where Sk is a complete
and open node.

Let M∗ = 〈W, {Rτ | τ ∈ REL}, N∗, I〉 be the model of Sk given by Lemma 3.10.
Since N∗ is undefined for nominals that do not occur in Sk, we can safely extend it to
interpret all the nominals occurring in Θ. In order to do it, we define an equivalence
relation on nominals (with respect to the branch Θ) as follows: a ∼ b if some node of Θ
contains @ab. The relation ≈ is the reflexive, symmetric and transitive closure of ∼. If
a0 is any native nominal occurring in Sk, then N is the extension of N∗ such that for
all nominals c occurring in Θ:

N(c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∗(c) if c ∈ W , i.e. c occurs in Sk

N∗(d) if for some d ∈ W, c ≈ d

a0 otherwise

It is clear that if some node of Θ contains @ab, then N(a) = N(b).
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If M = 〈W, {Rτ | τ ∈ REL}, N, I〉, obviously, it still holds that for every @aF ∈ Sk,
if a ∈ W and F has not the form �τ b for some b with ρSk

(b) undefined, then MN(a) |=
F . We now prove that the satisfaction property propagates upwards, restricting our
attention to nominals that are not deleted in Θ. Let us say that a formula @aF is
relevant (w.r.t. Θ) if and only if either F is native, or both the following conditions
hold:

• @aF contains only nominals that are never deleted in Θ, and
• F has not the form �τ b for some b with ρSk

(b) undefined.

Let us say that an interpretation M is a Θ-model of a node S of Θ if for every relevant
formula @aF ∈ S, MN(a) |= F . Obviously the specific interpretation M defined above
is a Θ-model of Sk. We show that, for every i = 0, ..., k − 1:

(•) if M is a Θ-model of Si+1, then M is a Θ-model of Si.

When i = 0 this is what we want, because the initial set obviously contains only native
(hence relevant) formulae.

In order to prove (•), the cases where Si+1 is obtained from Si by applying any rule
but Sub are trivial, since Si ⊆ Si+1. So the only non-trivial case is the substitution rule,
where:

Si = @ab, S′

Si+1 = S′#[a �→ b]

Since N(a) = N(b) (by definition), MN(a) |= b, therefore MN(a) |= @ab.
Let now @cF be any relevant formula in S′ = Si\{@ab} such that @cF 	= (@cF )[a �→

b] ∈ Si+1. If @cF is relevant then also (@cF )[a �→ b] is relevant. In fact:

• if @cF is native, then also (@cF )[a �→ b] is native because b is a native nominal
(Lemma 3.2).

• If @cF contains only nominals that are never deleted in Θ, then the same holds for
(@cF )[a �→ b]. In fact, the only nominal possibly occurring in (@cF )[a �→ b] and not
in @cF is b, and b is native (Lemma 3.2), so it cannot be deleted.

• If @cF is not a relational formula, obviously (@cF )[a �→ b] is not a relational formula
either. So let us assume that F = �τd where ρSk

(d) is defined. If d 	= a there is
nothing to prove (in fact, (@c�τd)[a �→ b] = @c[a�→b]�τd and ρSk

(d) is defined). If
d = a, then (@c�τd)[a �→ b] = @c[a�→b]�τ b. Since �τ b is native, (@cF )[a �→ b] is
relevant.

Therefore by the inductive hypothesis

MN(c[a�→b]) |= F [a �→ b]

where c[a �→ b] = b if c = a, and c[a �→ b] = c otherwise. Since N(a) = N(b),
MN(c[a�→b]) |= F . If c[a �→ b] = c, we are done. Otherwise, if c[a �→ b] = b then c = a, so
N(c[a �→ b]) = N(b) = N(a) = N(c). Hence, also in this case MN(c) |= F . �

15



4 Concluding remarks

In this work we have extended the treatment of nominal equalities by means of substi-
tution and nominal deletion, proposed in [6,5] for HL(@), to the global and converse
modalities. The approach followed in this work is procedural, in that the formal system
embodies algorithmic choices. As a consequence, the proposed calculus, proved to be
sound, complete and terminating, can be almost directly “synthesized” into a running
prover, with a minimal need of checking that the good properties of the system are
preserved.

The features of the calculus defined in this paper can be summarized into the fol-
lowing main points:

(i) No use of prefixes: the calculus is internalized.

(ii) A practical approach to the treatment of nominal equalities: they are handled
by means of substitution, accompanied by the deletion of the chain of nominals
generated by the replaced one.

(iii) Ancestor equality blocking for the �τ and �−
τ rules: formulae of the form @a�τF

or @a�−
τ F are not expanded when either there exists an ancestor b of a which

labels the same set of native formulae as a (a is directly blocked) or the father of a

is blocked (a is indirectly blocked).

(iv) A mechanism to prevent useless re-applications of the E-rule: a formula of the form
@aEF is not expanded whenever any @bEF has already been expanded.

As regard to point iii, indirect blocking and equality loop checks (as opposed to
subset blocking) are a necessity in the presence of the converse modalities. The paper
shows that, in such a context, a simple substitution rule with no side effects yields a
non-terminating calculus. And in fact, although substitution-based decision procedures
have been defined for HL(@,E), to our knowledge none of them has been extended to
deal with the converse modalities.

Point ii is quite similar to the “merge and prune” mechanism used in [14], where a
tableau calculus for description logic with nominals, number restrictions and transitive
and inverse roles is defined. The overall context is however quite different: there, a
tableau branch is a graph of nodes, labelled by sets of formulae and describing worlds
in the model. Nodes containing a nominal in their label are called nominal nodes, the
others are blockable nodes. When two nodes contain the same nominal, they are merged
into one of them and the blockable successors of the other node (which is deleted) are
“pruned”. The blocking mechanism used there only affects blockable nodes, and requires
pairwise blocking (pairwise blocking seems to be a necessity when both inverse roles and
number restrictions are present). The possibility and usefulness of exporting some of
the ideas in our approach to the context of description logics have to be explored.

The first tableau-based decision procedures for HL(@,E) were proposed in [4], where
systems defined in [17,18,1] are reformulated, and the global modalities are added. The
first two systems (reformulations of [17] and [18]) use prefixes, while the third one is
internalized (like in point i of our approach). The treatment of nominal equalities in the
three systems is different: either by copying formulae from a “world” to another, or by
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means of substitution (similarly to point ii, but without nominal deletion), or else by
means of a set of quite “natural” rules for equality. The procedures involve loop-checks
based on subset blocking (which is sufficient in the absence of the converse modalities).

The first tableau-based decision procedure for hybrid logic including both the global
and converse modalities was given in [2]. Ancestor equality blocking (point iii above) is
the same blocking mechanism used for every nominal generating rule in the prefixed cal-
culus defined there (and the internalized one given in [3]). The main difference between
H and H+ and the internalized calculi for the corresponding logics in [2,3] is represented
by ii. In fact, in the latter systems, an equality @ab is handled by copying formulae
labelled by a to b, except for accessibility formulae. When the copied formula generates
a new nominal, two copies of such a nominal are therefore expanded, which can in turn
generate copies of the same nominals, and so on. The redundancy of such a treatment
of equalities and the computational gain of substitution with nominal deletion has been
experimentally verified. The results of the comparison are reported in [9,8], which also
compares the implementation of H with HTab [12], the more mature prover based on
the prefixed calculus defined in [2].

As already remarked, the treatment of existential formulae in H+ (point iv above)
recalls the mechanism used in [16], which defines another procedure including the con-
verse and difference modalities (which subsume the global ones). A similar mechanism
(called pattern-based blocking) is used to block the expansions of �-formulae for the sub-
logic with no converse operators. In fact, pattern-based blocking yields a terminating
system only in the absence of the converse modalities, and provided that applications
of the �-rule are prioritized. When the converse modalities are present, chain-based
blocking (with indirect blocking) has to be used. In [16], equalities are dealt with in
an abstract and declarative way, constituting a still different approach w.r.t. point ii
above. Algorithmic choices about the concrete treatment of such formulae are left open.
A corresponding procedural approach is presented in [15], where a substitution rule,
without nominal deletion, is used, in the context of the difference modality, but no con-
verse operators. Differently from H+ (point iii), pattern-based blocking is applied there
to block the application of any nominal generating rule. Spartacus [11,10], the prover
implementing tableaux for HL(@,E) on the basis of the works in question, processes
nominal equalities by merging the content of the corresponding “nodes”, and electing
one of them as the representative of both. Again, nominal generating formulae are there
treated by pattern-based blocking.

Guidelines for future work include, on the practical side, the extension of the already
mentioned prover [9,8], which at present implements only the restricted calculus H, and
its refinement so as to include some basic optimization techniques. This would allow
for an experimental verification of the fact that the extended calculus still benefits of
the computational advantages of substitution with nominal deletion. On the theoretical
side, the integration of the substitution mechanism used in this work with still more
expressive languages can be studied.
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