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This paper represents a continuation of a previous work, where a practical approach to the treatment of nominal equalities in tableaux for basic Hybrid Logic HL(@) was proposed. Its peculiarity is a substitution rule accompanied by nominal deletion. The main advantage of such a rule, compared with other approaches, is its efficiency, that has been experimentally verified for the HL(@) fragment. The integration of substitution and nominal deletion with more expressive languages is not a trivial task. In this work the previously proposed tableaux calculus for HL(@) is extended to hybrid logic with the global and converse modalities, taking into account also practical considerations. Though termination, in this case, relies on loop checks, the computational advantages of the substitution rule persist in this richer framework.

Introduction

Kripke structures, providing the semantics of modal logics, can be seen as labelled graphs, or else, transition systems. As such, they are widely used in computer science for modelisation purposes. Nominal equalities, which are assertions saying that a and b are different names for the same vertex (state), are typical of hybrid logic. In fact, the hybrid syntax extends the modal one by allowing states to be named by means of nominals, i.e. atomic formulae which hold at exactly one state, and it is possible to express that a formula F -possibly a nominal b itself -holds at a state named a by use of the satisfaction operator (@ a F ). In particular, an equality @ a b states that the nominals a and b are synonymous.

The treatment of nominal equalities in proof systems and provers may raise many redundancies, because when a formula F holds in the world named by synonymous nominals a 1 , ..., a n , it can potentially be treated n times. A previous work [START_REF] Cerrito | Terminating tableaux for HL(@) without loop-checking[END_REF], further revised and extended in [START_REF] Cerrito | An efficient approach to nominal equalities in hybrid logic tableaux[END_REF], presented a tableaux calculus for HL(@) (basic hybrid logic), called H, whose characterizing feature is the treatment of nominal equalities by means of a special substitution rule, that expands an equality @ a b by replacing a with b while deleting the chain of nominals generated by a, thus allowing for a reduction of the number of redundancies possibly induced by nominal equalities. Though embedded in a different context, such a rule is essentially the same as the "merge and prune" method proposed by [START_REF] Horrocks | A tableau decision procedure for SHOIQ[END_REF] for the description logic SHOIQ.

The computational advantages of such an approach with respect to expanding @ a b by copying formulae from a to b, like in [START_REF] Bolander | Termination for hybrid tableaus[END_REF], have been experimentally verified [START_REF] Mayer | Two tableau provers for basic hybrid logic[END_REF][START_REF] Cialdea Mayer | Herod and Pilate: two tableau provers for basic hybrid logic[END_REF]. The gain in efficiency is due to the nominal deletion mechanism embedded in the substitution rule.

Like other calculi for basic hybrid logic, H enjoys strong termination (every tableau in H is finite, independently of the rule application order), and termination does not need loop checks. Moreover, the system does not use any extra-logical notation (like prefixes), i.e. it is an internalized calculus. Tableau calculi for modal logics can in fact be given either in the explicit style, by means of prefixes, or in the implicit style (internalized calculi). In the first case, tableau nodes are labelled by prefixed formulae of the form σ : F , where σ is a symbol of the meta-language and F a formula, in the second one by language-level formulae. Prefixes are useful either when they are complex expressions encoding the relation between states, or when there is no internal (object-language) mechanism to name worlds.

In the case of hybrid logic, both styles have been used. A prefixed calculus is presented for instance in [START_REF] Bolander | Termination for hybrid tableaus[END_REF], which constitutes the theoretical background of the prover HTab [START_REF] Hoffmann | HTab: A terminating tableaux system for hybrid logic[END_REF]. However, the use of (simple) prefixes in the case of hybrid logics seems a useless burden, since nominals and the satisfaction operator can play the same role. In fact, prefixes may sometimes make both meta-proofs and implementations more complicated. Beyond this fact, internalized hybrid calculi have the advantage that the addition of pure axioms automatically yields complete systems for the class of frames they define, although termination may in some cases become a non trivial issue [START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF].

In this work we show that the approach to nominal equalities proposed in [START_REF] Cerrito | Terminating tableaux for HL(@) without loop-checking[END_REF][START_REF] Cerrito | An efficient approach to nominal equalities in hybrid logic tableaux[END_REF] can be safely extended to HL(@, 3 -, E), i.e. the language containing, beyond the satisfaction operator, the global modality E (and its dual A) and the converse modalities 3 -and 2 -, preserving the computational advantages of substitution (with nominal deletion). The overall main feature of the proposed calculus is its practical approach, aiming in fact at being as close as possible a theoretical basis of an implemented system. For this reason, a particular attention is paid to efficiency aspects.

In the extended calculus, termination is achieved by means of a loop checking mechanism, partially like in [START_REF] Bolander | Termination for hybrid tableaus[END_REF][START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF], i.e. using ancestor equality blocking. The paper also shows that such a mechanism coupled with substitution without nominal deletion does not ensure termination.

An additional gain in efficiency is obtained by a different treatment of the existential modality: no loop checks are performed when expanding a formula of the form @ a EF , still preserving termination.

The presence of substitution, and its interplay with the nominal generating rules, raise specific technical subtleties in the termination and completeness proofs, which are given here with a fair amount of details.

Preliminaries

We conclude this section by briefly recalling the syntax and semantics of (multi-modal) hybrid logic with the global and converse modalities, HL(@, 3 -, E).

Given two disjoint sets of atoms, NOM (nominals) and PROP (ordinary atoms), and a set of relation labels REL, formulae are built up from atoms using the classical connectives, the satisfaction operator @, the unary modal operators 3 τ , 2 τ and their converses 3 - τ , 2 - τ (where τ ∈ REL), and the global modalities E and A. Formulae are defined by the following grammar, where p ∈ PROP, a ∈ NOM, τ ∈ REL:

F := p | a | ¬F | F ∧ F | F ∨ F | @ a F | 3 τ F | 2 τ F | 3 - τ F | 2 - τ F | A F | E F An interpretation M is a quadruple W, {R τ | τ ∈ REL}, N, I
where W is a nonempty set (whose elements are the states of the interpretation), each R τ ⊆ W × W is a binary relation on W (the accessibility relations), N is a function NOM → W and I a function W → 2 PROP . We shall write wR τ w as a shorthand for w, w ∈ R τ .

If M = W, {R τ | τ ∈ REL}, N, I is an interpretation, w ∈ W and F a formula, the relation M w |= F is defined by:

(i) M w |= p if p ∈ I(w), for p ∈ PROP. (ii) M w |= a if N (a) = w, for a ∈ NOM. (iii) M w |= ¬F if M w |= F . (iv) M w |= F ∧ G if M w |= F and M w |= G. (v) M w |= F ∨ G if either M w |= F or M w |= G. (vi) M w |= @ a F if M N (a) |= F . (vii) M w |= 2 τ F if for each w such that wR τ w , M w |= F . (viii) M w |= 3 τ F if there exists w such that wR τ w and M w |= F . (ix) M w |= 2 - τ F if for each w such that w R τ w, M w |= F . (x) M w |= 3 - τ F if there exists w such that w R τ w and M w |= F . (xi) M w |= AF if for each w ∈ W , M w |= F . (xii) M w |= EF if there exists w ∈ W such that M w |= F .
A formula F is satisfiable if there exist an interpretation M and a state w of M, such that M w |= F . Two formulae F and G are logically equivalent (F ≡ G) when, for every interpretation M and state w of M, M w |= F if and only if M w |= G.

It is worth pointing out that, for any nominal a and formula F :

¬@ a F ≡ @ a ¬F ¬3 τ F ≡ 2 τ ¬F ¬2 τ F ≡ 3 τ ¬F ¬3 - τ F ≡ 2 - τ ¬F ¬2 - τ F ≡ 3 - τ ¬F ¬AF ≡ E¬F ¬EF ≡ A¬F
This allows one to restrict attention to formulae in negation normal form (where negation dominates only atoms), without loss of generality.

The tableau calculus H +

In the calculus H and its extension, that will be named H + , tableau nodes are labelled by sets of satisfaction formulae, i.e. assertions of the form @ a F written as comma separated sequences of formulae. A formula of the form @ a F will be called labelled by a. A formula of the form @ a 3 τ b, where b is a nominal, is a relational formula.

The initial tableau for a set S of formulae is a node labelled by S a = {@ a F | F ∈ S}, where a is a new nominal. Without loss of generality, formulae are assumed to be in negation normal form. The set S a is called the initial set. Nominals occurring in S a are called native nominals (in the tableau).

Table 1 contains the logical rules, i.e. all rules but substitution. A tableau node is closed if it contains either @ a p and @ a ¬p for some nominal a and atom p, or @ a ¬a for some nominal a (otherwise it is open). A tableau branch is open if all its nodes are open, otherwise it is closed. A tableau is closed if all its branches are closed, otherwise it is open.

Note that all the rules of Table 1 are conservative, i.e. they do not "consume" their premises. The 3 τ , 3 - τ and E rules are called nominal generating rules, and formulae of the form 3 τ F , 3 - τ F and EF nominal generating formulae. It is worth pointing out that, contrarily to the 3 τ -rule, the table gives no restriction on the applicability of the 3 - τ -rule; in fact, it is necessary to expand formulae of the form @ a 3 - τ c where c ∈ NOM, in order to obtain possible premises for the 2 τ and 2 - τ rules, of the form @ c 3 τ a. A formula occurring in a tableau T is called native (in T ) if and only if it is in the language of the initial set, i.e. it does not contain any non-native nominal. A formula occurring in a tableau node is an accessibility formula if it is a relational formula introduced by application of the 3 τ or 3 - τ rule. Accessibility formulae are obviously not native. It is worth pointing out that only the direct modalities 3 τ occur in accessibility formulae, and not the converse ones.

In order to define the last rule of the system, the substitution rule, the definition of father and children of a nominal, given in [START_REF] Cerrito | Terminating tableaux for HL(@) without loop-checking[END_REF][START_REF] Cerrito | An efficient approach to nominal equalities in hybrid logic tableaux[END_REF] for H, has to be extended. Definition 2.1 Let Θ be a tableau branch. If either the 3 τ or 3 - τ rule has been applied in Θ to a formula labelled by a, generating a new nominal b, then a ≺ Θ b (and we say that b is a child of a, and a is the father of b).

Boolean Rules Label Rule @ a (F ∧ G), S @ a F, @ a G, @ a (F ∧ G), S (∧) @ a @ b F , S @ b F, @ a @ b F , S (@) @ a (F ∨ G), S @ a F , @ a (F ∨ G), S @ a G, @ a (F ∨ G), S (∨)
Rules for the direct and converse modalities

@ a 2 τ F, @ a 3 τ b, S @ b F , @ a 2 τ F, @ a 3 τ b, S (2 τ ) @ a 3 τ F , S @ a 3 τ b, @ b F , @ a 3 τ F, S (3 τ ) where b is a new nominal (not applicable if F is a nominal) @ a 2 - τ F, @ b 3 τ a, S @ b F , @ a 2 - τ F, @ b 3 τ a, S (2 - τ ) @ a 3 - τ F , S @ b 3 τ a, @ b F , @ a 3 - τ F, S (3 - τ )
where b is a new nominal

Rules for the global modalities

@ a AF , S @ c F , @ a AF, S (A) @ a EF , S @ b F , @ a EF, S (E)
where c occurs in the premise where b is a new nominal Nominals with no fathers are called root nominals.

Note that if a nominal b is newly introduced in a branch by expanding a formula or the form @ a EF , then b is not a child of a.

The substitution rule, which is applicable only if a = b, is formulated as follows:

@ a b, S S # [a → b] (Sub)
where S # [a → b] is obtained from S by: (i) replacing every occurrence of a with b;

(ii) deleting every formula containing a descendant of a.

When the substitution rule is applied, a is said to be replaced in the branch and the descendants of a are called deleted in the branch.

It is worth pointing out that, differently from the cases of the label and boolean rules which could also be formulated as "destructive",1 the 3 τ and 3 - τ rules must conserve their premises (though they are single-premise rules). In fact, when the descendants of a replaced nominal are deleted, these formulae have to be reused, with the new label, in order to keep completeness.

In order to ensure termination, first of all, trivial re-applications of rules must be ruled out. So, we establish that: R1. rules that would not change the node (their expansion being already contained in the upper node) are not applicable.

Obviously, in practice, since substitution affects the whole node, such heavy membership tests can be avoided and replaced by a marking mechanism -which can also allow for the boolean and label rules being implemented destructively (see [START_REF] Mayer | Two tableau provers for basic hybrid logic[END_REF] or [START_REF] Cialdea Mayer | Herod and Pilate: two tableau provers for basic hybrid logic[END_REF]).

Secondly, useless re-application of nominal generating rules must be avoided. To this aim, the expansion of existential formulae is restricted similarly to [START_REF] Kaminski | Terminating tableau systems for hybrid logic with difference and converse[END_REF]. A memory of existential formulae is associated to each tableau node. When a formula of the form @ a EF is expanded, the "body" of the formula, EF , is saved in the memory of the resulting node. When the substitution rule is applied, it affects also memorized formulae (which are not deleted), and the other rules keep the memory unchanged. The E rule is then subject to the following restriction: R2. a formula of the form @ a EF is not expanded in a node S if EF belongs to the memory of S.

Moreover, when one of the rules 3 τ or 3 - τ is applied, the expanded formula is marked as inactive in the lower node. When the substitution rule is fired by an equality @ a b, it affects (only) the markings of formulae labelled by a, as follows: every formula of the form @ a 3 τ F or @ a 3 - τ F becomes active again, before replacing a with b and deleting its descendants. This is because, as already remarked, the children of a are deleted, and the formulae resulting from the substitution, @ b 3 τ F and @ b 3

- τ F (F = F [a → b]
), need to be expanded again in order to generate the corresponding children of b.

It is necessary to specify how substitution interacts with the active/inactive marking mechanism, i.e. what happens when two differently marked formulae collapse by the effect of substitution. In such cases, the inactive marking takes precedence. In particular, when Sub is applied to a node containing an active formula F 1 and an inactive one F 2 , then, if the application of the substitution to F 1 and F 2 produces the same formula G, G is marked as inactive in the conclusion of the rule. The same mechanism applies when the Sub rule replaces a with b in a node containing both @ a 3 τ F 1 (or @ a 3 - τ F 1 ) and an

inactive @ b 3 τ F 2 (or @ b 3 - τ F 2 ), with F 1 [a → b] = F 2 [a → b] = G:
the inactive marking takes precedence again in the conclusion of the rule. I.e. substitution does not produce two occurrences of @ b 3 τ G (or @ b 3 - τ G), an active occurrence and an inactive one, but a single inactive one.

The 3 τ and 3 - τ rules are then restricted as follows:

R3. the 3 τ and 3 - τ rules are not applicable to inactive formulae. Note that the simpler restriction that nominal generating formulae are never expanded more than once on a branch (R1) would be weaker than R2 and R3. In fact, in that case, when an already expanded formula of the form @ a 3 τ F , @ a 3 - τ F or @ a EF is changed by a substitution, resulting in a never expanded new formula, it would become expandable again (even if the substitution does not affect a). Moreover, restriction R2 cannot be replaced by marking an expanded @ a EF as inactive and establishing that @ b EF is not expanded whenever the node contains an inactive @ a EF (similarly to restriction R3); in fact an existential inactive formula could be deleted by the Sub rule, without its witness being deleted. Nor could restriction R2 be replaced by simply requiring that @ a EF is not expandable whenever the node contains some @ b F , for any nominal b (this would not be enough for the completeness proof given in Section 3.2).

Finally termination needs a blocking mechanism relying on loop checks, which exploits the notion of twin nominals (like in [START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF]): Definition 2.2 Let T be a tableau, Θ a branch of T and S a node of Θ. Then:

• If a is a nominal occurring in S then F orms S (a) = {F | @ a F occurs in S and F is native in T }
i.e. F orms S (a) contains all the native formulae labelled by a in S.

• Two nominals a and b are said to be twins in S if F orms S (a) = F orms S (b). Note that a nominal a is non-blocked in S if and only if there is no pair of distinct twins b, c occurring in S such that b, c ≺ * Θ a. Termination is ensured by the following restriction: R4. The rules 3 τ and 3 - τ are not applicable to a formula labelled by a nominal a in a node S if a is blocked in S.

A tableau node (respectively a tableau branch) is complete if no rule can be applied to expand it (possibly because of restrictions R1-R4). A tableau is complete when all its branches are complete.

The blocking mechanism is similar to the dynamic loop checking2 introduced in [13] for description logics, then adapted to hybrid logic in [START_REF] Bolander | Termination for hybrid tableaus[END_REF]. However, existential formulae are treated differently, more in the style of [START_REF] Kaminski | Terminating tableau systems for hybrid logic with difference and converse[END_REF]. A loop checking mechanism closer to that used in [START_REF] Bolander | Termination for hybrid tableaus[END_REF][START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF] -and adopted in the first proposal to extend H to the global and converse modalities, that is [START_REF] Cerrito | Tableaux with substitution for hybrid logic with the global and converse modalities[END_REF] -would treat E like the 3 τ and 3 - τ operators: if a new nominal b is generated by expansion of an existential formula labelled by a, then a ≺ Θ b, and it is established that a formula of the form @ a EF cannot be expanded when a is blocked. The main difference between the two methods is that, in H + , any existential formula is expanded at most once, independently of its label, thus avoiding possible redundant computations. We end up this section pointing out that nominal deletion not only allows one to avoid useless expansions, but is necessary in order to ensure termination, as shown by the infinite tableau in Figure 1, where nominals are replaced without deleting their descendants. For the sake or readability, when a rule without side effects is applied, the lower node shows only the newly added formulae. Note that, as an effect of substitution without nominal deletion, each nominal b i+1 becomes orphan of its father b i that, otherwise, would have blocked it.

@ a A3 τ (p ∧ a) @ a 3 τ (p ∧ a) (A) @ a 3 τ b 0 , @ b 0 (p ∧ a) (3 τ ) @ b 0 p, @ b 0 a (∧) @ b 0 3 τ (p ∧ a) (A) @ b 0 3 τ b 1 , @ b 1 (p ∧ a) (3 τ ) @ b 1 p, @ b 1 a (∧) @ a A3 τ (p ∧ a), @ a 3 τ (p ∧ a), @ a 3 τ a, @ a (p ∧ a), @ a p, @ a a, @ a 3 τ b 1 , @ b 1 (p ∧ a), @ b 1 p, @ b 1 a (b 0 → a) @ b 1 3 τ (p ∧ a) (A) @ b 1 3 τ b 2 , @ b 2 (p ∧ a) (3 τ ) @ b 2 p, @ b 2 a (∧)
@ a A3 τ (p ∧ a), @ a 3 τ (p ∧ a), @ a 3 τ a, @ a (p ∧ a), @ a p, @ a a, @ a 3 τ b 2 , @ b 2 (p ∧ a), @ b 2 p, @ b 2 a (b 1 → a) . . . .

Fig. 1. Substitution without nominal deletion

As a final remark, one can observe that the tableau in Figure 1 would terminate (even without nominal deletion) if subset blocking were adopted, i.e. if a nominal were blocked whenever it labels a subset of the formulae labelled by some of its ancestors. In fact, @ b 1 3 τ (p ∧ a) could not be expanded since b 1 labels, at that point, a subset of the formulae labelled by a. Subset blocking is sufficient for converse-free formulae,3 but does not guarantee completeness for HL(@, 3 -, E).

Properties of H +

Termination

In order to show that H + terminates with loop-checks (under any rule application strategy), one can use an argument similar to the one given in [START_REF] Bolander | Termination for hybrid tableaus[END_REF] for the prefixed calculus. However, there are obvious differences, and some more delicate points, due to the presence of the substitution rule and the different treatment of existential formulae.

In order to state the key property of the system, we need the following definition: Definition 3.1 If T is a tableau rooted at S 0 , then:

S * 0 = {F | F = G[b 1 → c 1 , ..., b n → c n ]
for some subformula G of some formula in S 0 , and native nominals c 1 , ..., c n }

In other terms, S * 0 contains every formula that can be obtained from a subformula of some formula in the initial set, by replacing nominals with native nominals. Note that S * 0 is necessarily finite and closed with respect to subformulae.

The following result can easily been proved by induction on tableaux. The following properties are direct consequences of Lemma 3.2. If T is a tableau rooted at S 0 , then: (i) If @ a b occurs in a node of T , then b is a native nominal. Therefore, in the applications of the substitution rule, nominals are always replaced by native nominals.

(ii) A non-native nominal b may occur in tableau nodes only in relational formulae of the form @ a 3 τ b or @ b 3 τ a, or as the label of a formula @ b F , where F ∈ S * 0 is native.

(iii) In particular, b is native in any formula of the form @ a 3 - τ b, since such formulae are not relational. Therefore, a given nominal a may label only a finite number of formulae of the form 3 - τ b. (iv) If there is only a finite number of nominals occurring in a tableau branch Θ, then the set of formulae occurring in Θ and labelled by any fixed nominal a is finite (if there is a finite number of nominals, a can label only a finite number of relational formulae).

Since a given nominal a may label only a finite number of formulae which can be expanded by means of the 3 τ or 3 - τ rule (Lemma 3.2, and its consequence iii), the restrictions on the applicability of such rules allow us to prove:

Lemma 3.3 If Θ is a tableau branch and a any nominal occurring in Θ, then {b | a ≺ Θ b} is finite.
As a consequence, also the following result holds:

Lemma 3.4 Let Θ be a tableau branch. If Θ is infinite then there is an infinite chain of nominals b 1 ≺ Θ b 2 ≺ Θ b 3 ... .
Proof. The presence of the substitution rule makes the argument a little more complicated than the corresponding one given in [START_REF] Bolander | Termination for hybrid tableaus[END_REF].

First of all we prove that if Θ is infinite, then there is an infinite number of nominals occurring in Θ. If there were only a finite number of nominals, in fact, each of them would label a finite number of formulae (by the consequence iv of Lemma 3.2). Now, since formulae are never added to nodes where they already occur, there should be at least one formula F occurring in a node S i of Θ which disappears from the branch and then reappears in a node S j below S i . F can disappear only because some nominal occurring in it is either replaced or deleted. But when a nominal is replaced or deleted, it can never occur again in the branch below the application of Sub which replaces/deletes it.

The infinite number of nominals occurring in Θ can be arranged by ≺ Θ in a forest of trees rooted at root nominals, and there are finitely many such trees. In fact, only native nominals and nominals generated by the E rule have no fathers, and their number is finite (only a finite number of -necessarily native -formulae of the form EF may occur in the branch, and each of them is expanded at most once, independently of its label).

Moreover, each tree is finitely branching because any nominal can generate only a finite number of new ones, by Lemma 3.3. By König's Lemma, if one of such trees is infinite, it has an infinite branch, i.e. there is an infinite chain of nominals b Let n be the cardinality of Σ and consider the initial sub-chain:

1 ≺ Θ b 2 ≺ Θ b 3 ... . 2
b 1 ≺ Θ b 2 ≺ Θ ... ≺ Θ b 2 n +1 ≺ Θ b 2 n +2
Let Θ be the initial segment of Θ up to, but not including, the nominal-generating inference (3 τ or 3 - τ ) producing b 2 n +2 , and let S k be the last node of Θ . Since b 2 n +1 occurs in S k , all its ancestors occur in S k , too (if some of them had been either replaced or deleted above S k , b 2 n +1 would have been deleted by the same application of the substitution rule). Since b 2 n +1 is the father of b 2 n +2 in Θ, and it generates b 2 n +2 by expanding S k , then b 2 n +1 is not blocked in S k , i.e. S k does not contain two distinct twins b i , b j ≺ * b 2 n +1 .

Because of the choice of n, however, at least two nominals b i and b j among b 1 , ..., b 2 n +1 must be twins in S k (i.e. they must label the same set of native formulae). 2

Completeness

In this section we prove that if Θ is a complete and open branch of an H + tableau rooted at S 0 , then S 0 is satisfiable. The overall structure of the completeness proof is the same as the corresponding one for H [START_REF] Cerrito | An efficient approach to nominal equalities in hybrid logic tableaux[END_REF], and exploits the termination theorem: we first consider the set labelling the last node of Θ, that is downward saturated (in some sense), and we show that any such set has a model. Then the model existence property is propagated upward to the root node. However, in the presence of substitution, the model existence argument is technically subtler, because of the interplay between Sub and the nominal generating rules, accompanied by the blocking mechanism.

The following notion of nominal representatives is used in order to define saturation. Note that ρ S (b) may be undefined. Consider in fact a situation where a 1 ≺ + Θ a 2 ≺ + Θ b and a 1 and a 2 become twins after the generation of b (by effect of the converse rules). It may happen that, in the chain leading to b, there is no ancestor of b that is a twin of b (because of different choices in the expansion of disjunctive formulae). In such cases, b is blocked and ρ S (b) does not exist either. It is worth pointing out also that there is at most one non-blocked nominal a ≺ * Θ b that is a twin of b. In fact, if a 1 and a 2 are distinct nominals such that a 1 ≺ * Θ b, a 2 ≺ * Θ b and both a 1 , a 2 are twins of b, then a 1 is also a twin of a 2 , hence at least one among a 1 , a 2 has a twin ancestor and is blocked.

The following result establishes useful properties of nominal representatives. 

(iii) If ρ S (a) = b and F is native, then @ a F ∈ S if and only if @ b F ∈ S.
Here finally follows the notion of saturation, that is relative to a tableau node, since clauses ix-xi make reference to non-blocked nominals and nominal representatives. Such notions, in turn, depend on the branch, since the relation ≺ * Θ is branch-dependent.

Definition 3.8

A node S of a tableau branch Θ is downward saturated if and only if the following conditions hold:

(i) S contains neither a formula of the form @ a ¬a, nor two formulae of the form @ a p and @ a ¬p for some atom p.

(ii) If @ a (F ∧ G) ∈ S, then @ a F, @ a G ∈ S.

(iii) If @ a (F ∨ G) ∈ S, then either @ a F ∈ S or @ a G ∈ S.

(iv) If @ a @ b F ∈ S, then @ b F ∈ S. (v) If @ a b ∈ S then a = b. (vi) If @ a 3 τ b, @ a 2 τ F ∈ S, then @ b F ∈ S. (vii) If @ b 3 τ a, @ a 2 - τ F ∈ S, then @ b F ∈ S. (viii) If @ a AF ∈ S, then for all nominals b occurring in S, @ b F ∈ S.
(ix) If @ a 3 τ F ∈ S, F is not a nominal and a is not blocked in S, then there is a nominal b such that ρ S (b) is defined and @ a 3 τ b, @ b F ∈ S.

(x) If @ a 3 - τ F ∈ S and a is not blocked in S, then there is a nominal b such that ρ S (b) is defined and @ b 3 τ a, @ b F ∈ S.

(xi) If @ a EF ∈ S, then there is a nominal b such that ρ S (b) = b and @ b F ∈ S.
The following lemma proves the adequacy of the set of expansion rules.

Lemma 3.9 Any complete and open tableau node is downward saturated.

Proof. The delicate cases of the proofs are the items concerning the nominal generating formulae.

ix. Let us assume that @ a 3 τ F ∈ S, F is not a nominal, and a is not blocked in S. Then, since S is complete, @ a 3 τ F is inactive in S. This means that @ a 3 τ F is obtained by a number of substitutions (possibly none) from some @ a 3 τ G which has been expanded above S, 4 i.e.

F = G[c 1 → d 1 , ..., c n → d n ]
, n ≥ 0. The expansion of @ a 3 τ G has generated some @ a 3 τ b and @ b G. Since a still occurs in S, it has not been replaced or deleted, and consequently b has not been deleted. Since the same substitutions modifying

3 τ G also affect b and G, S contains @ a 3 τ b[c 1 → d 1 , ..., c n → d n ] and @ b G[c 1 → d 1 , ..., c n → d n ]
. If b has not been replaced, then @ a 3 τ b, @ b F ∈ S, and, by Lemma 3.7.ii, ρ S (b) is defined. If b = c j for some j, then S contains @ a 3 τ c j and @ c j F ; since c j is a native nominal, ρ S (b) is defined by Lemma 3.7.i. Case x is treated similarly.

xi. Let us assume that @ a EF ∈ S. Then, since S is complete, the memory of S contains EF , and this means that some @ c EG has been expanded in a node S above S, where F is obtained from G by means of a number of substitutions (those applied in the subbranch leading from S to S); i.e.

F = G[c 1 → d 1 , ..., c n → d n ]
, n ≥ 0. The expansion of @ c EG has generated some @ d G. Now, since d is a root nominal, it cannot be deleted (though it can be replaced), therefore

S contains (@ d G)[c 1 → d 1 , ..., c n → d n ] = @ b F for some b ∈ {d, d 1 , ..., d n }. Since b is in any case a root nominal (either b = d or b is native), ρ S (b) = b, by Lemma 3.7.i. 2 
The following lemma defines a model (in some sense) of any open and complete tableau node S. Note that S necessarily contains at least one root nominal a 0 , which is non-blocked in it, and, by Lemma 3.7.i, ρ S (a 0 ) = a 0 . Lemma 3.10 Let S be an open and complete tableau node and a 0 any root nominal occurring in S. Let M * be the interpretation defined as follows:

W = {a | a is a non-blocked nominal occurring in S}; R τ = {(ρ S (a), ρ S (b)) | @ a 3 τ b ∈ S and both ρ S (a), ρ S (b) are defined};
For every nominal a occurring in S :

N * (a) = ⎧ ⎨ ⎩ ρ S (a) if ρ S (a) is defined a 0 otherwise I(a) = {p | @ a p ∈ S} for all a ∈ W If a ∈ W , @ a F ∈ S and F has not the form 3 τ b for some b such that ρ S (b) is undefined, then M * a |= F .
Proof. We remark beforehand that since S is open and complete, it is downward saturated by Lemma 3.9. Let us assume that a ∈ W and @ a F ∈ S, for F = 3 τ b with ρ S (b) undefined. Since a is not blocked, ρ S (a) is defined, and ρ S (a) = a (by Lemma 3.7.i).

Therefore N * (a) = a. The proof that M * a |= F is by induction on F . Base We distinguish three cases.

(i) F is a literal. If F is a propositional letter or its negation, then the result is true by construction. In fact, if @ a p ∈ S, for p ∈ PROP, M 

* c |= G. Hence M * a |= 3 τ G. (iii) F is 3 - τ G.
Observe that, differently from the above case, G is necessarily native (Lemma 3.2), because @ a 3 - τ c is not a relational formula, and this case is treated similarly to the second item of case ii. Proof. The proof consists in showing that if Θ is a complete and open branch of a tableau rooted at S 0 , then S 0 is satisfiable.

Since Θ is finite by Theorem 3.5, Θ = S 0 , S 1 , ..., S k for some k, where S k is a complete and open node.

Let M * = W, {R τ | τ ∈ REL}, N * , I be the model of S k given by Lemma 3.10. Since N * is undefined for nominals that do not occur in S k , we can safely extend it to interpret all the nominals occurring in Θ. In order to do it, we define an equivalence relation on nominals (with respect to the branch Θ) as follows: a ∼ b if some node of Θ contains @ a b. The relation ≈ is the reflexive, symmetric and transitive closure of ∼. If a 0 is any native nominal occurring in S k , then N is the extension of N * such that for all nominals c occurring in Θ:

N (c) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ N * (c) if c ∈ W , i.e. c occurs in S k N * (d) if for some d ∈ W, c ≈ d a 0 otherwise
It is clear that if some node of Θ contains @ a b, then N (a) = N (b).

If M = W, {R τ | τ ∈ REL}, N, I , obviously, it still holds that for every @ a F ∈ S k , if a ∈ W and F has not the form 3 τ b for some b with ρ S k (b) undefined, then M N (a) |= F . We now prove that the satisfaction property propagates upwards, restricting our attention to nominals that are not deleted in Θ. Let us say that a formula @ a F is relevant (w.r.t. Θ) if and only if either F is native, or both the following conditions hold:

• @ a F contains only nominals that are never deleted in Θ, and Let us say that an interpretation M is a Θ-model of a node S of Θ if for every relevant formula @ a F ∈ S, M N (a) |= F . Obviously the specific interpretation M defined above is a Θ-model of S k . We show that, for every i = 0, ..., k -1:

(•) if M is a Θ-model of S i+1 , then M is a Θ-model of S i .
When i = 0 this is what we want, because the initial set obviously contains only native (hence relevant) formulae.

In order to prove (•), the cases where S i+1 is obtained from S i by applying any rule but Sub are trivial, since S i ⊆ S i+1 . So the only non-trivial case is the substitution rule, where:

S i = @ a b, S S i+1 = S # [a → b] Since N (a) = N (b) (by definition), M N (a) |= b, therefore M N (a) |= @ a b.
Let now @ c F be any relevant formula in S = S i \{@ a b} such that @ c F = (@ c F )[a → b] ∈ S i+1 . If @ c F is relevant then also (@ c F )[a → b] is relevant. In fact:

• if @ c F is native, then also (@ c F )[a → b] is native because b is a native nominal (Lemma 3.2).

• If @ c F contains only nominals that are never deleted in Θ, then the same holds for (@ c F )[a → b]. In fact, the only nominal possibly occurring in (@ c F )[a → b] and not in @ c F is b, and b is native (Lemma 3.2), so it cannot be deleted.

• If @ c F is not a relational formula, obviously (@ c F )[a → b] is not a relational formula either. So let us assume that

F = 3 τ d where ρ S k (d) is defined. If d = a there is nothing to prove (in fact, (@ c 3 τ d)[a → b] = @ c[a →b] 3 τ d and ρ S k (d) is defined). If d = a, then (@ c 3 τ d)[a → b] = @ c[a →b] 3 τ b. Since 3 τ b is native, (@ c F )[a → b] is relevant.
Therefore by the inductive hypothesis 

M N (c[a →b]) |= F [a → b] where c[a → b] = b if c = a,

Concluding remarks

In this work we have extended the treatment of nominal equalities by means of substitution and nominal deletion, proposed in [START_REF] Cerrito | Terminating tableaux for HL(@) without loop-checking[END_REF][START_REF] Cerrito | An efficient approach to nominal equalities in hybrid logic tableaux[END_REF] for HL(@), to the global and converse modalities. The approach followed in this work is procedural, in that the formal system embodies algorithmic choices. As a consequence, the proposed calculus, proved to be sound, complete and terminating, can be almost directly "synthesized" into a running prover, with a minimal need of checking that the good properties of the system are preserved.

The features of the calculus defined in this paper can be summarized into the following main points:

(i) No use of prefixes: the calculus is internalized.

(ii) A practical approach to the treatment of nominal equalities: they are handled by means of substitution, accompanied by the deletion of the chain of nominals generated by the replaced one.

(iii) Ancestor equality blocking for the 3 τ and 3 - τ rules: formulae of the form @ a 3 τ F or @ a 3 - τ F are not expanded when either there exists an ancestor b of a which labels the same set of native formulae as a (a is directly blocked) or the father of a is blocked (a is indirectly blocked).

(iv) A mechanism to prevent useless re-applications of the E-rule: a formula of the form @ a EF is not expanded whenever any @ b EF has already been expanded.

As regard to point iii, indirect blocking and equality loop checks (as opposed to subset blocking) are a necessity in the presence of the converse modalities. The paper shows that, in such a context, a simple substitution rule with no side effects yields a non-terminating calculus. And in fact, although substitution-based decision procedures have been defined for HL(@, E), to our knowledge none of them has been extended to deal with the converse modalities.

Point ii is quite similar to the "merge and prune" mechanism used in [START_REF] Horrocks | A tableau decision procedure for SHOIQ[END_REF], where a tableau calculus for description logic with nominals, number restrictions and transitive and inverse roles is defined. The overall context is however quite different: there, a tableau branch is a graph of nodes, labelled by sets of formulae and describing worlds in the model. Nodes containing a nominal in their label are called nominal nodes, the others are blockable nodes. When two nodes contain the same nominal, they are merged into one of them and the blockable successors of the other node (which is deleted) are "pruned". The blocking mechanism used there only affects blockable nodes, and requires pairwise blocking (pairwise blocking seems to be a necessity when both inverse roles and number restrictions are present). The possibility and usefulness of exporting some of the ideas in our approach to the context of description logics have to be explored.

The first tableau-based decision procedures for HL(@, E) were proposed in [START_REF] Bolander | Tableau-based decision procedures for hybrid logic[END_REF], where systems defined in [START_REF] Tzakova | Tableau calculi for hybrid logics[END_REF][START_REF] Van Eijck | Constraint tableaux for hybrid logics[END_REF][START_REF] Blackburn | Tableaux for quantified hybrid logic[END_REF] are reformulated, and the global modalities are added. The first two systems (reformulations of [START_REF] Tzakova | Tableau calculi for hybrid logics[END_REF] and [START_REF] Van Eijck | Constraint tableaux for hybrid logics[END_REF]) use prefixes, while the third one is internalized (like in point i of our approach). The treatment of nominal equalities in the three systems is different: either by copying formulae from a "world" to another, or by means of substitution (similarly to point ii, but without nominal deletion), or else by means of a set of quite "natural" rules for equality. The procedures involve loop-checks based on subset blocking (which is sufficient in the absence of the converse modalities).

The first tableau-based decision procedure for hybrid logic including both the global and converse modalities was given in [START_REF] Bolander | Termination for hybrid tableaus[END_REF]. Ancestor equality blocking (point iii above) is the same blocking mechanism used for every nominal generating rule in the prefixed calculus defined there (and the internalized one given in [START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF]). The main difference between H and H + and the internalized calculi for the corresponding logics in [START_REF] Bolander | Termination for hybrid tableaus[END_REF][START_REF] Bolander | Terminating tableau calculi for hybrid logics extending K[END_REF] is represented by ii. In fact, in the latter systems, an equality @ a b is handled by copying formulae labelled by a to b, except for accessibility formulae. When the copied formula generates a new nominal, two copies of such a nominal are therefore expanded, which can in turn generate copies of the same nominals, and so on. The redundancy of such a treatment of equalities and the computational gain of substitution with nominal deletion has been experimentally verified. The results of the comparison are reported in [START_REF] Mayer | Two tableau provers for basic hybrid logic[END_REF][START_REF] Cialdea Mayer | Herod and Pilate: two tableau provers for basic hybrid logic[END_REF], which also compares the implementation of H with HTab [START_REF] Hoffmann | HTab: A terminating tableaux system for hybrid logic[END_REF], the more mature prover based on the prefixed calculus defined in [START_REF] Bolander | Termination for hybrid tableaus[END_REF].

As already remarked, the treatment of existential formulae in H + (point iv above) recalls the mechanism used in [START_REF] Kaminski | Terminating tableau systems for hybrid logic with difference and converse[END_REF], which defines another procedure including the converse and difference modalities (which subsume the global ones). A similar mechanism (called pattern-based blocking) is used to block the expansions of 3-formulae for the sublogic with no converse operators. In fact, pattern-based blocking yields a terminating system only in the absence of the converse modalities, and provided that applications of the 2-rule are prioritized. When the converse modalities are present, chain-based blocking (with indirect blocking) has to be used. In [START_REF] Kaminski | Terminating tableau systems for hybrid logic with difference and converse[END_REF], equalities are dealt with in an abstract and declarative way, constituting a still different approach w.r.t. point ii above. Algorithmic choices about the concrete treatment of such formulae are left open. A corresponding procedural approach is presented in [START_REF] Kaminski | Hybrid tableaux for the difference modality[END_REF], where a substitution rule, without nominal deletion, is used, in the context of the difference modality, but no converse operators. Differently from H + (point iii), pattern-based blocking is applied there to block the application of any nominal generating rule. Spartacus [START_REF] Götzmann | Spartacus: A tableau prover for hybrid logic[END_REF][START_REF] Götzmann | Spartacus: A Tableau Prover for Hybrid Logic[END_REF], the prover implementing tableaux for HL(@, E) on the basis of the works in question, processes nominal equalities by merging the content of the corresponding "nodes", and electing one of them as the representative of both. Again, nominal generating formulae are there treated by pattern-based blocking.

Guidelines for future work include, on the practical side, the extension of the already mentioned prover [START_REF] Mayer | Two tableau provers for basic hybrid logic[END_REF][START_REF] Cialdea Mayer | Herod and Pilate: two tableau provers for basic hybrid logic[END_REF], which at present implements only the restricted calculus H, and its refinement so as to include some basic optimization techniques. This would allow for an experimental verification of the fact that the extended calculus still benefits of the computational advantages of substitution with nominal deletion. On the theoretical side, the integration of the substitution mechanism used in this work with still more expressive languages can be studied.

  The relation ≺ + Θ is the transitive closure of ≺ Θ and ≺ * Θ the reflexive and transitive closure of ≺ Θ . If a ≺ + Θ b we say that b is a descendant of a and a an ancestor of b in the branch Θ.

•

  A nominal a occurring in S is directly blocked by a nominal b in S if b ≺ + Θ a and a and b are twins in S. It is indirectly blocked by b in S when b ≺ + Θ a and b is directly blocked in S. Finally, a is blocked in S when it is either directly or indirectly blocked in S.

Lemma 3 . 2 (

 32 Quasi-subformula property) Let Θ be a branch in a tableau rooted at S 0 . Then for every nominal a, the set of native formulae labelled by a in Θ is a subset of the finite setS * 0 ∪ {3 τ b | b is a native nominaland τ is in the language of S 0 } Moreover, any formula @ a F occurring in Θ with F non-native is a relational formula (i.e. F has the form 3 τ b).

Theorem 3 . 5 (

 35 Termination) Every tableau is finite. Proof. By Lemma 3.4, if an infinite branch Θ exists, then there is an infinite chain of nominals b 1 ≺ Θ b 2 ≺ Θ b 3 ... . By Lemma 3.2, if @ a F occurs in Θ and F is native, then F is an element of the finite set Σ = S * 0 ∪ {3 τ b | b is a native nominal and τ is in the language of S 0 }, where S 0 is the initial set.

Definition 3 . 6

 36 Let Θ be a tableau branch, S a node of Θ and b a nominal occurring in S. The representative of b in S, written ρ S (b), is the nominal a ≺ * Θ b such that a is a twin of b and a is not blocked, if it exists (undefined otherwise).

Lemma 3 . 7

 37 Let Θ be a tableau branch and S a node of Θ. Then: (i) For any nominal a occurring in S, a is non-blocked in S if and only if ρ S (a) = a.In particular, if a is a root nominal, ρ S (a) = a. (ii) Let a be a non-blocked nominal in S and b a nominal occurring in S. If either a ≺ Θ b or b ≺ Θ a, then ρ S (b) is defined.

  * a |= p by definition, because N * (a) = a. If @ a ¬p ∈ S, since S is open, @ a p ∈ S and again M * a |= ¬p by construction. (ii) F is a nominal b. Then necessarily b = a, since S is saturated, and the result is trivial, since N * (a) = a. (iii) F is ¬b, for some nominal b. Since S is open, b = a. By Lemma 3.2, b is a native nominal, hence it is non-blocked and belongs to W , so that N * (b) = b = a. Therefore M * a |= ¬b. Induction Step Several cases have to be considered, according to the form of F . Here follows the treatment of some of them, the others being either very simple or similar to those shown below. (i) F = EG. If @ a EG ∈ S, since S is saturated, there is a nominal b such that ρ S (b) = b and @ b G ∈ S. By Lemma 3.7.i, b is not blocked in S, so that b ∈ W . By the inductive hypothesis, M * b |= G, thus M * a |= EG. (ii) F is 3 τ G. We distinguish two cases. (a) G is a nominal b. By hypothesis, ρ S (b) is defined and belongs to W . So, let ρ S (b) = c. By construction of M * , we have: N * (a) = a, N * (b) = ρ S (b) = c and aR τ c. Hence M * a |= 3 τ b. (b) G is not a nominal, and therefore it is native. Since S is saturated and a ∈ W is not blocked, there is a nominal b such that ρ S (b) is defined and @ a 3 τ b, @ b G ∈ S. Since ρ S (b) is a twin of b and G is native, if c = ρ S (b) we have @ c G ∈ S by Lemma 3.7.iii. By construction of M * , aR τ c, and, by the inductive hypothesis, M

2 Theorem 3 . 11 (

 2311 (iv) F = 2 - τ G. Let b be any element of W such that bR τ a. By definition, there are two nominals c and d such that a = ρ S (c), b = ρ S (d) and @ d 3 τ c ∈ S. Since a and c are twins and 2- τ G is native, @ c 2 - τ G ∈ S by Lemma 3.7.iii. And since S is saturated, @ d G ∈ S, so that also @ b G ∈ S because b and d are twins and G is native (Lemma 3.7.iii again). By the induction hypothesis, thenM * b |= G. Therefore M * a |= 2 - τ G.Completeness is proved by lifting the model existence property upwards to the root set. Completeness) If S is unsatisfiable, then every complete tableau for S is closed.

•

  F has not the form 3 τ b for some b with ρ S k (b) undefined.

  and c[a → b] = c otherwise. Since N (a) = N (b), M N (c[a →b]) |= F . If c[a → b] = c, we are done. Otherwise, if c[a → b] = b then c = a, so N (c[a → b]) = N (b) = N (a) = N (c). Hence, also in this case M N (c) |= F . 2

Table 1

 1 Logical rules of the tableau system

The destructive versions of the label and boolean rules would in fact be more faithful to a possible implementation. Though such a choice would affect only technical details, the completeness and termination proofs would however become more fastidious.

If blocks on nominals are never undone then blocking is static. Otherwise it is called dynamic. In H + blocking is dynamic because the "twin" relation may be destroyed when new formulae are added to the branch.

One of the tableau decision procedures presented in[START_REF] Bolander | Tableau-based decision procedures for hybrid logic[END_REF] for HL(@, E) uses in fact substitution -without nominal deletion -and (anywhere) subset blocking.

Note that, here, 3 τ G is necessarily labelled by a, because of the of the interaction between substitution and the active/inactive markings.
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