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Abstract— In this paper, we present a work which is performed
by biologists and computer scientists both. The aim of this
work is to evaluate the migratory potential of cancerous cells.
Cancer is characterised by primary tumour. When some cells
move they create new tumours, which are called metastases.
It is very important to understand this migration process in
order to be able to arrest it and increase the chances of a cure.
Today, biologists analyse images from different cell cultures and
manually count one by one the cells present therein. It is a
hard and fastidious work, so here we present some algorithms to
automatically perform these tasks of detection and counting. The
images that we have are very low contrasted, with a gradient of
illumination, and the cells are numerous and tightly aggregated.
In this paper different algorithms are evocated and results
compared for about 150 images comprising more than 65,000
cells.

Keywords— Biomedical image processing, cell detection, cell
counting, cell migration

I. INTRODUCTION

In this section, we expose the coarse principles of formation
of metastases.

A. The formation of metastases

Cancer is a disease characterized by abnormal cell pro-
liferation within the normal tissue of the body. These cells
are derived all from the same clone, the cell initiator of the
cancer, that has acquired certain characteristics allowing itm
to divide indefinitely and be able to metastase. Metastasis is
the migration of a cancerous cell from initial tumour tissue
through blood or lymphatic paths. An secondary tumor is
therefore formed from a distance of the initial tumour.

There are two types of cell migration: mesenchymatic and
amoeboid [?].

B. Cell migration of type mesenchymatic

Generally we consider that cell migration takes place in the
following way:

1) The cell is polarized and chooses a migration front. It
creates then at the front of migration the lamellipodes
and filopodes which are membrane protrusions.

2) The lamellipode form new points of adhesion to the
extracellular matrix.

3) The cell contracts due to the acto-myosin complex, the
driving force of the cell.

4) The points of adhesion present on the posterior part of
the cell detach themselves of the extracellular matrix.

It is a slow migration (about 0,1 to 1 x4 m/min).

C. Cell migration of type amoeboid

This is a fast migration (0,1 to 20x m/min). The cells first
adopt an ellipsoidal form. This allows them fast movement
governed by weak and short-term interactions with the extra-
cellular matrix. These cells have high deformability. Thus, they
can slip through the extracellular matrix without deteriorate
it. In our project, we are interested in this type of migration,
noticeable by ellipsoid form adopted by the migrating cells.

D. The objective of the work

The biologists from the DYNAMIC team with the collabo-
ration of whom this study was conducted, study the occurrence
of metastases in cancer tissue. They carry out laboratory ex-
periments from cancer cells maintained in culture, a complex
process because of the difficulty to reproduce an environment
conducive to the development of metastases [?].

In an experiment therefore, the goal is to determine which
cells have begun the metastatic process and which have not.
To do this requires counting the proportion of elongated cells
and comparing it to the proportion of round cells.

This can of course be done by hand, but it is a tedious job
that takes a large amount of time. What would be interesting
is to get things done by a machine.

The goal is therefore to conceptualise reliable tools for iden-
tifying round and elongated cells on a scanned image, and
indicate the proportion of each class.

To analyse the migration potential of cancerous cells, we
proposed to create algorithms to automate the counting of cells
on high-resolution medical photographs in order to spare the
biologists of this task, who lose a significant amount of time
to this task, however necessary.

Our first and primary objective allows us to detect and count
cells in an image. Then at a later stage they could be classified
in two categories: long cells (migratory potentially) from those
round (non-migratory potentially) or pseudo-round (blebbing)
(Fig. 1). A first work in this regard was carried out by our
team [?] lead to primary segmentation and analysis of in vivo
cellular images. But now team DYNAMIC has provided us
new photography. The photographs are of much better quality
than those we had in the previously. Though we do and will
advantage of this increased information in the images, there
are new challenges introduced by the quality and manner of
photograpy in these images.



Fig. 1.

The 3 different types of cells.

The remaining paper is organised as follows: in section II
we present some works related to the detection and counting
of cells; in section III we present our images and the manner
in which there were acquired; section IV comprises to the
various pre-processings we had to use for our images and the
processings developed in the course of the work and finally
section V discusses the results obtained.

II. RELATED LITERATURE
A. Segmentation

Image segmentation is an image processing which aims to
gather pixels among themselves according to predetermined
criteria. Each group of pixels then forms a region, and we
get a paving of the image by regions. The goal of image
segmentation is therefore to divide an image into groups of
pixels corresponding to some “objects” in the image.

Here we discuss two methods of segmentation we have applied
in various passes of the image segmentation process.

1) Otsu’s thresholding algorithm: Otsu [?] suggested min-
imizing the weighted sum of within-class variances of the
foreground and background pixels to establish an optimum
threshold. Recall that minimization of within-class variances
is tantamount to the maximization of between-class scatter.
This method gives satisfactory results when the numbers of
pixels in each class are close to each other. The Otsu method
still remains one of the most referenced thresholding methods.
The way of accomplishing this is to set the threshold so as to
try to make each cluster as tight as possible, thus minimizing
their overlap. Obviously, we can’t change the distributions, but
we can adjust where we separate them (threshold them). As
we adjust the threshold one way, we increase the spread of
one and decrease the spread of the other. The goal then is to
select the threshold that minimizes the combined spread. The
algorithm operates directly on the gray level histogram (e.g.
256 levels), so it is a fast algorithm (once the histogram is
computed).

Its limitations are:

o the histogram (and the image) are supposed bimodal.

« we make no use of spatial coherence, nor any other notion
of object structure.

e Wwe assume stationary statistics, not locally adaptive.

o we assume uniform illumination (implicitly), so the bi-
modal brightness behavior arises from object appearance
differences

B. The Hough transform

As part of recognition of circles, the Hough transform [?] is
a commonly used method for detecting centers of circles [?]. It
is indeed an efficient method that has good resistance to noise
and occlusions. However, it is a method whose complexity
increases with the complexity of the geometrical figure sought.
The search for circles will be in O(n?), research circles O(n?3)
and the search for ellipses in O(n®).
The Hough transform can be used to determine the parameters
of a circle when the number of points that fall on the perimeter
is known. A circle with radius R and center coordinates (a, b)
can be described with the cylindrical equations :

{x =a+ Rcos(f)

y =a+ Rsin(f) M

When the angle 6 sweeps through the full 360 degrees range,
the points (z,y) trace the perimeter of a circle.

If an image contains many points, some of which fall on
perimeters of circles, then the job of the algorithm is to find
triplets (a,b, R) to describe each circle. The fact that the
parameter space is 3D makes a direct implementation of the
Hough technique more expensive in computer memory and
time.

Ayala-Ramirez et al. present in [?] a circle detection method
based on genetic algorithms. Fitness function evaluates if these
candidate circles are really present in the edge image, which
is better adapted that the Hough transform to deal with large
images. Their encoding scheme reduces the search space by
avoiding trying unfeasible individuals, this results in a fast
circle detector. Their algorithm consider as individuals triplets
because only one circle passes through 3 points and this is the
circle circumscribed to the triangle formed by these 3 points.
The research space is reduced leaving aside the issues leading
to impossible circles.

C. Detection of cells

In the literature, the work on detection and counting of
cells on smear images is conspicuous by its absence. Detection
alone has been an obvious outcome of work involving image
segmentation, so has been extraction of cells, but the presence
of overlapping and clustered cells has probably hindered
pinpointing the location of the entirety of cells present on an
image. One can observe two almost separate research streams
in microbiology addressing the problem of smear analysis in
general and blood smear analysis in particular. For the large
part, blood smear image analysis has been tackled by using
conventional image processing techniques like morphology



[?], edge detection [?], region growing [?] etc., which all have
shown certain degrees of success with respect to the used data.
One of the most recent studies addressed the problem of
parasitemia estimation using edge detection and splitting of
large clumps made up from erythrocytes [?]. The outcome of
the approach was shown to be satisfactory for well-stained
samples with well-separated erythrocytes.

Extended maxima transform [?] and watershed transform
were also employed, given that local maxima indicate the
centers of convex shapes, i.e. blood components particularly
erythrocytes. This concept, however, is only justifiable for
images which exhibit a small degree of cell overlap.
Tackling the challenge from another angle, Pinzon er al. [?]
suggested that the problem of erythrocyte segmentation could
be reduced to a peak selection problem in the Hough space.
The study focused on detecting erythrocytes of circular shape
and uniform size, an assumption which must be made with
caution, and which has to be relaxed for the purpose of our
study.

III. MATERIALS

The same colorectal line of cells (SW20) have been studied

in two situations : a promigratory environment (PAI-1) and a
nonpermissive environment. The material includes two series
of 256 greyscale images of 1388x 1040 pixels in TIFF for-
mat, composed of 79 and 63 images respectively. They have
been acquired though a CCD camera adapted to an optical
microscope in conditions very far from optimal. Only SW20
metastatic colorectal cell line was included in this study.
The cells were studied with a Zeiss AXIOVERT 200 inverted
microscope. coupled with a Siemens CCD camera and dig-
itized on a image processing unit at a final magnification
of 5000x and 0.05mm per pixel. Each image contain about
471 cells. We will try to establish their morphology in PAI-1
(20 mg/cm?) (Fig. 2.a) and collagen (20 mg/cm?) enriched
environments (Fig. 2.b).

(@ (b)

Fig. 2. Sample images in (a) PAI-1 and (b) collagen environments.

IV. EXPERIMENTATION

A. Challenges posed by our data

This study utilized a common, relatively low-end micro-
scope in combinations with a digital camera, trading off image
quality for affordability. Consequently, the image analysis
process has to cope with numerous challenges, due to the
various inherent limitations of the acquisition process, such
as the presence of blurring, over- or under-exposure, and non-
uniform illumination [?].

The analysis of the data also showed that conventional as-
sumptions, like the equal-sized circular shape of cells, does not
always hold. Additionally, more often than not, cells overlap
each other, forming clusters and, thus, complicate the analysis.

This work is built around that done earlier [?], but ever
since the data have changed in that the images have undergone
a significant improvement in resolution since new details in
the cellular shape and texture have become available. Indeed,
the amoeboid outgrowths of blebbing cells were absent with
our previous imaging technique. Even though the images still
do not reveal the full details of the internal structure of cells
and its organelles like the nucleus, the blebs and certain other
granular micro-structures give a texture to the cells. There is
also an effect of illumination that, subject to its remaining
constant or subject to the knowledge of its change, can be
used at a latter stage to track the movements of individual
cells in an image flux.

A simplified scheme in Fig.3 gives a survey of the work.
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Fig. 3. An overview of the cells image analysis process.

However, the new data does not reveal its information
readily. There are several constraints that the data impose on
its processing, and each has made our fundamental task more
complex and interesting compared to what we had with the
previous series of images. Let us take a look at each of these
challenges one by one, with respect to the situation with the
previous data:



1) The image data are particularly challenging because at

the step of image acquisition, no efforts had been made
to standardize the acquisition process. This means that
the degree of zoom and the lighting conditions, among
other things, are not uniform for the entire data.

There is a directional luminous effect in the images. This
not only means that the cells have been illuminated from
one side and are darker on the opposite one, but also that
globally some parts of the image are lighter than the rest
(Fig. 4). This effect of illumination is rendered even more
complex by the fact that the direction and intensity of the
light varies from one image to another. In many images
this global luminosity is directed from the sides of the
image, that is to say sourced from a point outside the
image borders, while in others it is centred on the image
itself.

Fig. 4. The global illumination gradient.

Removing the illumination gradient: A problem that is
encountered with nearly all camera lenses is uneven
illumination. This plagues our data images as well. Since
the direction of this gradient is not the same for all
images, an ad hoc method for adjusting intensity levels
[?] cannot be used, nor can they be extended because the
gradient may not be from one end of the image to another
(but parabolic somewhere on the interior).

If there were no illumination gradient, the background
would be at all pixel locations have the same intensity
value, except for random noise, and the only places
intensity levels would vary around this mean background
intensity would be the cells. The illumination gradient can
be thought of as a varying mean value. The idea to remove
the illumination gradient can be formulated as removing
the variation in this mean. This variation is systematic
and not random. So it can be approximated by a surface
obtained by mean filtering that is either repeated or has
a large scope or both. The idea is that the application
of a very large averaging filter will blur an image to
such a point that any object will be indistinguishable
from the background. This background will therefore be
what would result of the image if we ignored all local
variations and kept only global ones, those encompassing

Fig. 5.

very large areas. Of which is the illumination gradient is
the kind present in our images. This surface of variations
in the background is then subtracted from the image,
leaving a uniform, single-meaned background.

Fig. 5.a-c depict the process used to compensate illumi-
nation irregularities.

150

©

(a) 3D plot of greylevel intensities, a gradient in the non-cell portion

is evident, (b) The surface formed by the continuous illumination gradient,
(c) The image after the illumination surface has been flattened.

2)

3)

This correction for illumination gradient makes it possible
for us to use a global thresholding algorithm, that of Otsu,
to binarise (segment into two classes) our images (Fig.
6).

The cells and in the background are the same grey-
levels (Fig. 2.a-b.). They can said to have therefore been
generated by the same Markovian random process. The
reasons for this are that, unlike the old data, these cells
haven’t been coloured, and that the fixing substrate has
the same probability distribution of greylevels as the cells.
The global lighting problem engenders a local one, which
we call directional lighting. This means that for any given
cell on the image, one side of the cell is lighter and the
other is darker, in fact casting a shadow (Fig. 7). On our
greyscale images, which are neither too bright or too dark,
this causes local islands of black and white embedded in
a generally grey background. The lighter side is white or
nearly so and the darker side is black or nearly so.
Now this is the problem that has plagued the data to



(a)

(b)

Fig. 6. Otsu segmentation (a) with and (b) without the illumination gradient

this day and has caused most of our algorithms to
underperform. Let us explain in greater detail:

a) Directional local lighting introduces a external dis-

criminating factor between the cells and the back-
ground. This lighting factor is so dominant that most
cells would simply be invisible if it didn’t exist, since
the cell wall is not visible on its own, and discerning
the shape of cells was therefore otherwise impossible
(Fig. 7). This means that some of the characteristics
we will know our cells by are not intrinsic to them but
depend on an external factor which may not exist for
another set of images of the same cell culture slides.

Cells indiscerneable from background but for local directional

illumination.

Correcting for locally directional lighting and similar-
ity of intensity levels of cell and non-cell portions: To
circumvent this problem we decided to use a quantity
other than the intensity level. Since the cell part of
an image is more textured than the background, it
carries more variation in its intensity levels than the
background, allowing for random noise. Therefore we
used an image of standard deviations calculated in a
neighbourhood of 3x3 calculated around each pixel
of our greylevel image (Fig.8). This is the image used
for latter processing steps e.g. the first binarisation
because it has the desireable property of the cells
appearing different from the background, thus making
them independent of the illumination conditions a
particular image has been subjected to.

Fig. 8.
of local

b)

c)

Fig. 9.
cells.

(a)

(b)

(a) A typical greylevel image, (b) The corresponding greylevel image
standard deviations.

The bright and dark zones have a very adverse
effect on image segmentation. Usually segmenta-
tion in greyscale images involves classifying various
greylevels into several classes, according to the his-
togram of greyscale values, whether global [?] or
local [?]]. The two cell sides go to the two opposite
extremes of the image histogram and therefore to
different classes.

The problem which this local directional lighting
creates is the mal-positioning of the edge pixels. The
detected edge lies inside the cell on the brighter
side and outside the cell on the darker side. Any
mechanism that establishes the position of the cell
wall by using gradient information therefore positions
the edge at the wrong place.

Lighting from an angle renders some cells more
prominent than others. In fact it is the round ones
(Fig. 9), the reason being that their cellular matter is
not spread out over a larger surface area so they tend
to have more height than their long counterparts. This
creates problems in the cell detection and counting
process, where round cells overshadow the presence
of long ones, giving us a lower cell count than the
number of cells actually present.

Rounds cells are more prominent, leading to non-detection of long



B. Detection, localisation and counting of cells

1) Using classic Hough transform for circle detection: As
mentioned earlier, an effective methods in image processing
to recognize geometric shapes is the Hough Transform. This
involves identifying a geometric shape using parameter space.
The more the shape is complicated, the more parameters will
be needed to recognize it and the calculation will be longer. It
is therefore a method that takes a lot of memory and computing
time. It is nevertheless an effective method. To locate a circular
or disc shaped object, we will build, at each point of the
contour, straight lines perpendicular to the contour through
this point. For a circle, all these lines intersect at the center
of the circle.

We will use an accumulator parameter space. It is a matrix
of the same size as the original image where all pixels are
initialized to 0. We will accumulate to perpendiculars over the
contours. It will thus calculate, for each contour point, the
equation of the line orthogonal to the contour, and increment
on the accumulator, the value of all pixels on this line. In
the end, the centers, intersections of many orthogonal lines,
are more often than other points. A method like we discuss
must then be used to identify the positions of the centers, and
therefore the presence of a circle.

Fig. 10. Normals drawn to cell walls adding to accumulator bins

2) Our correlation-based filter: the “Halo” transform:
The problem of finding cells can be reformulated to a peak-
finding problem in a correlation space. We notice that cells are
represented in the standard-deviation image by quasi-circular
bands around the cell walls with a murky interior. Standard
circle detection by the Hough transform can be used detect the
majority but not all of these circles, since the interior of these
circular objects is non-empty and since these circles are close
together, indeed touching or even overlapping. We therefore
taken a correlation-based approach with a circular filter as an
alternative to circle detection in our particular case.

The idea is that on a binary image, objects being represented
by 1, a circular object will give a higher coefficient of
correlation with a concentric circle of the same size (see
Fig.11). Indeed the correlation would be 1 if the object present
in the image is a perfect circle. Therefore if X is a vector of
size n of intensity values selected in a circular fashion from
a greylevel image containing a circle on a background at O,
and Y be our filter with s arranged in a circular manner in 2-
dimensions, then the Spearman’s rank correlation coefficient:

_ nleL}/z_ZZXzzlm
VY XE = (X)), Y = (2, V)2

p 2)

(@ (b)

Fig. 11. Correlation coefficient (b) between a circlular object and circles of
varying radii (a) peaks at 20, the radius of the object

boils down to:
o vVn— 1 Zz Xz
VX - (X))

and therefore the peak in this coefficient of correlation corre-
sponds to the radius of the filter that best matches that of the
circular object.

Since we do not have prior information on the size of individ-
ual cells, the images are not binary, and because the standard
deviation image contains inwardly-diffused discs for cells, we
propose a ring-shaped filter that has been weighted by a 2-
dimentional upturned Gaussian function to accentuate pixels
towards its peripheries and therefore along cells walls which
appear more accentuated in the standard deviation image.
This filter, by its construction, should also prompt peaks from
elongated cells because they too appear as motifs splayed out
towards their peripheries and have a rounded middle portion.
The proposed upturned truncated gaussian filter to highlight
circulish rings within greyscale images has the following
equation:

p 3)

_ (@—p2p)?(y—nzy)?

—€ 22 ’ (4)

_@—pip)?Fy—n1y)?

flz,y) =e 271

where 01 ~ 2 X g2 because we wish only to concentrate on the
peripheries of a cell and an intense centre part may influence
the position of the peak.

The application of this filter is explained in the following
section.

3) The halo transform and localization of peaks: Coeffi-
cients of correlation with the upturned truncated gaussian filter
with an equisized tile of the image are calculated and stocked
at each pixel of the image. This process is akin to convolving a
larger matrix with a filter. The resulting matrix is the same size
as the image and has the characteristic halos at the position of
each cell present in the image, centred on a bright nucleus,
corresponding to equivalents of votes in the Hough space,
where correlation with a circulish cell was relatively high.
In case of agglomerates of cells, the nuclii may be joined
together to form ridges. But there is always one pixel where



Fig. 12. 3D plot of the “halo” filter.

the coefficient of correlation was maximum, and this peak is
then located.

(a) (b)

Fig. 13. A zoom on a halos image and the peaks in the correlation space.

The only point in the intersection of a 3-dimentional func-
tion and its greyscale dilation should be the peak, since dilation
makes plateux around peaks of the same height as the peak
(Fig.14). Thence we can search for the isocontour peak pixel
in the original halos image.

(@) (b)

Fig. 14. 3D plot of (a) halos, (b) greylevel dilation around each peak.

The peaks thus located are found to lie inside the cells
(Fig.13.b), thus experimentally reinforcing the idea behind our
correlation-based filter.

C. Results and discussion

A comparison of the actual number of cells counted manu-
ally by a single human expert to the number of cells detected
by the Hough transform and by our correlation filtering for
our population of 142 images can be seen below (Tab. 1):

Table 1. Comparison of cell detection performances: human expert vs
“Halo” transform or Hough transform.

human | “Halo” Hough trans-
expert transform form
Number of cells | ¢¢ 991 | 57478 62,898
detected
% of cells de- | 85.9% 94.0%
tected

One factor contributing to the lower count determined by
the halo transform compared to actual counting by an expert
is that we had removed the partial cells touching the image
borders while the experts had counted them. The other was
the lack of contribution of long cells and overlapping cells to
peak formation in the correlation space. Since a minority of
the total number of cells are present in agglomerates, and since
they are difficult to distinguish and count even with the human
eye, the experts agree that processing of the agglomerates
can be forgone. They however chose to be rigorous this time,
aggravating the results of our algorithm.

Although apparently the approach of Pinzon et al. of finding
peaks in the Hough space seems to detect a higher percentage
of cells present on the image, but a brute count does not reveal
some very significant details: there have been more errors in
establishing this count. We found that errors may occur in the
localization of the peak - It might appear in the background or
the border of the image and not on the cell itself; the number
of peaks - multiple peaks might be found on one cell, either
due to interaction with neighbouring cells in an agglomerate or
due to a disproportionately large size of a cell; or the absence
of peaks, again due to interactions with other cells in a cluster.
One reason for the last is the manner of peak localisation, the
dilation operation for cells in a tight, overlapping agglomerate
overwrites all but the highest peak in an area corresponding
to the size of its structuring element.

A comparison of the number of each type of error counted
by hand on a sample of 14 images that well-represent the
diversity in our entire image data shows how each algorithm
has performed for each type of error (Tab. 2, Tab. 3). We notice
that the average error of the first two types is much lower
for the Halo transform, and for the third type, the number
of undetected cells, even though the average error is greater,
it shows twice as much standard-deviation, implying that the
error is concentrated in a few problem images. Nonetheless,
the other two errors that add detected cells when they are
not actually present, and therefore falsely augmenting the cell
count, are greatly diminished. The halos transform therefore
manages to remove the false positives appearing in the Hough
transform.



Table 2. Errors for the Hough transform.

Total no. | Detected in | Multiple de- | Missed
background tected
Number | 5642 74 212 1328
%o 1.312 3.785 23.538
I 5.286 15.143 94.857
o 1.7 4.752 23.86
Table 3. Errors for the “Halo” transform.
Total no. | Detected in | Multiple de- | Missed
background tected
Number | 5134 0 44 1594
%o 0 0.857 31.048
I 0 3.143 113.857
o 0 1.043 33.477

V. CONCLUSION AND PERSPECTIVES

We have presented an initial work towards the automatic

counting of “in vivo” cells. Initial results show that the
proposed filter, even if detects about 85% of the cells, commits
few errors and ensures that cells identified are almost all
in agreement with reality. These results were obtained from
nearly 150 images in a difficult context for which we propose
adaptative pre-processings.
Our future work will focus first on improving the correlation-
based (halo) filter to cater for long cells to increase the
percentage of cells detected to over 90%. Then we will be
able to move to the classification step to separate round cells
from long cells and look for blebbing round cells, the cells
illustrating the potential migration of the cancerous tumour.
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