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Abstract. This paper proposes an organized generalization of Newman

and Girvan’s modularity measure for graph clustering. Optimized via a de-

terministic annealing scheme, this measure produces topologically ordered

graph partitions that lead to faithful and readable graph representations

on a 2 dimensional SOM like planar grid.

1 Introduction

Large and complex graphs are natural ways of describing real world systems that
involve interactions between objects: persons and/or organizations in social net-
works, articles in citation networks, web sites on the world wide web, proteins in
regulatory networks, etc. [8]. However, the complexity of real world graphs lim-
its the possibilities of exploratory analysis: even one hundred nodes are difficult
to display in a meaningful way. As pointed out in [10], a possible solution for
this problem is provided by graph clustering methods [12]: the graph is first clus-
tered into a simplified graph and then rendered via standard graph visualization
methods [4]. We explore in this paper a more direct approach, inspired by our
previous work on social network analysis [1]. We build a topologically ordered
clustering of the graph which is displayed on a 2 dimensional Self-Organizing
Map like planar grid. Our method is based on an extension of the well known
modularity measure [10]: Section 2 recalls its definition and introduces its topo-
logically organized generalization. Section 3 presents the deterministic annealing
scheme used to optimize the organized modularity. Finally, Section 4 gives some
experimental results obtained on a real world coauthorship network.

2 Graph clustering quality measures

2.1 Modularity

Given a non oriented graph of size N described by its (symmetric) weight matrix,
W , we denote ki =

∑
j Wij the degree of node i. The total weight of the

graph is denoted m = 1
2

∑
i,j Wij . Let us consider a partition of the graph into

C clusters given by the N × C assignment matrix M such that Mik ∈ {0, 1}
and

∑
k Mik = 1 (Mik = 1 when the node i is assigned to cluster Ck). A

quality measure for such a partition is the modularity [10] given by Q(M) =
1

2m

∑
i,j

∑
k MikMjk (Wij − Pij) where P is a size N square symmetric matrix



defined by Pij =
kikj

2m . The rationale of the measure is to compare the weight of
a link between two nodes in a cluster, Wij , to a simple random model, Pij , in
which the weights are proportional to the degrees of the nodes and independent
of the clusters. A good partition tends to cluster nodes that are more connected
that one expects based solely on the degrees of the nodes: this corresponds to
Wij > Pij and to higher values of Q(M).

2.2 Organized modularity

We propose a generalization of the modularity inspired by the Self-Organizing
Map (SOM) principle. Our goal is to cluster a graph into a high modularity
partition that can be represented faithfully on a two dimensional plane. As
in the SOM, the positions of the clusters in the representation space is chosen
by the user, e.g., on a regular grid. Then a clustered graph is displayed using a
glyph for each cluster at the specified position and segments between glyphs that
summarize the edges between the clusters’ elements. For instance, a partition in
C clusters (Ck)1≤k≤C , can be represented by C squares with areas proportional
to |Ck| and with a segment of thickness skl, proportional to

∑
i∈Ck,j∈Cl

Wij ,
between squares k and l.

Such a representation is faithful and readable only for a well chosen parti-
tion. Firstly the clusters must have a limited substructure: the subgraph with
nodes in Ck should be as complete as possible. Secondly, the connection be-
tween nodes from different clusters must be as limited as possible. Finally, long
distance connections must be prohibited to avoid segment crossing as this is a
well known major readability issue in graph drawing [2, 4]. The two first criteria
are controlled by modularity optimization. We propose to take into account the
last one via an organized version of the modularity.

We assume given a prior structure in R
2 which is represented by a symmetric

C by C matrix S of prior similarities between clusters. For instance Skl =
exp(−σ‖xk − xl‖

2) where xk is the prior position of cluster Ck in R
2. Then

we propose to maximize O(M) = 1
2m

∑
i,j

∑
k,l MikSklMjl (Wij − Pij). In the

standard modularity, the term Wij − Pij is taken in account only when i and j

belong to the same cluster. In the organized version, this term is always taken
in account, but with a weight Skl equal to the prior similarity between Ck (with
i ∈ Ck) and Cl (with j ∈ Cl). This favors connected clusters to be close in the
prior structure. If there are indeed significative connections between nodes in
two clusters Ck and Cl (i.e., Wij − Pij > 0), then the value of O(M) will be
higher if Skl is high than if it is low. This is similar to the SOM principle in
which a prototype has to be close to observations assigned to its unit but also,
to a lesser extent, to observations assigned to neighboring units in the prior
structure.

In the rest of the paper, we denote Bij = 1
2m (Wij − Pij) for i 6= j and

Bii = 0. It is clear that maximizing O(M) is equivalent to maximizing F (M) =∑
i6=j

∑
k,l MikSklMjlBij .



3 Deterministic Annealing

The main difficulty with (organized) modularity maximization is that it is a
discrete optimization problem. Following [7] for modularity, we propose to solve
it by deterministic annealing [11]. Deterministic annealing tries to solve the
complex combinatorial problem of maximizing F via an analysis of the Gibbs
distribution obtained as the asymptotic regime of a classical simulated annealing
(or via the principal of maximum entropy). In our case, the Gibbs distribution
for temperature 1

β
is P (M) = 1

ZP
exp(βF (M)) where the normalization constant

ZP is given by ZP =
∑

M exp(βF (M)), where the sum is taken over all partitions
into C clusters.

The main idea is to compute the expectations of the assignments at a fix
temperature with respect to the Gibbs distribution, i.e., the E (Mik), and then
to decrease the temperature while tracking the evolution of the expectations.
Unfortunately, F is not linear with respect to M and computing ZP and P is
therefore difficult. Following previous work on similar topics, we approximate
P by a distribution that factorizes (see e.g., [5]). This corresponds to approxi-
mating the interaction between say Mik and all the other variables via a mean

field Eik. More precisely, we consider the bi-linear cost function U(M,E) =∑
i

∑
k MikEik where E is a N by C matrix of partial assignment costs. For

a fixed temperature 1
β
, we look for a mean field E that gives a distribution

R(M,E) = 1
ZR(E) exp(βU(M,E)) close to P (M), in the sense that the Kullback-

Leibler divergence KL(R|P ) between R and P is minimal, with KL(R|P ) =∑
M R(M,E) ln R(M,E)

P (M) . At a minimum, the gradient of KL(R|P ) with respect

to E is zero. This leads to the following classical mean field equations:

∂ER (F (M))

∂Ejl

=
∑

k

∂ER (Mjk)

∂Ejl

Ejk, ∀j, l. (1)

They are obtained using the main consequence of the mean field approximation,
namely the independence between Mik and Mjl for i 6= j under the distribution
R, i.e., the fact that ER (MikMjl) = ER (Mik)ER (Mjl) for i 6= j.

To solve the mean field equations, we use a EM like approach. We consider
the ER (Mik) fixed and solve the equations for Ejl (maximization phase). Then
we compute the new values of the ER (Mik) (expectation phase). This latter
phase leads to the very simple standard deterministic annealing update rule:

ER (Mik) =
exp(βEik)∑
l exp(βEil)

. (2)

Moreover, the independence property recalled above gives

ER (F (M)) =
∑

i6=j

∑

k,l

ER (Mik)SklER (Mjl)Bij .

Then, some straightforward calculations show that equation (1) is fulfilled if the



mean field is given by

Ejk = 2
∑

i6=j

∑

l

ER (Mil)SklBij , (3)

or, in matrix notations, E = BER (M)S, using the symmetry of B and S.
Finally, given an annealing schedule, i.e., an increasing series (βl)1≤l≤L, the

organized modularity maximization algorithm proceeds as follows:

1. initialize ER (M) randomly (with ER (Mik) ∈ [0, 1] and
∑

k ER (Mik) = 1)

2. for l ∈ {1, . . . , L}:

(a) compute E using equation (3)

(b) compute ER (M) using equation (2) with β = βl

(c) go back to (a) until convergence

3. threshold ER (M) into a partition M

4 Experiments

We report results obtained on the coauthorship network of scientists working
on network theory and experiment compiled by M. Newman in May 2006 [9]1.
More precisely, we work on the largest connected component of the network,
which has 379 nodes. We compare several organization algorithms:

• the kernel SOM as described in [13, 1]. The experiments were conducted
with two kernels: the heat kernel [6], Kγ = e−γL and the generalized
inverse of the Laplacian [3], K = L+. The first kernel SOM will be denoted
by SOM-HK in the following and the second one by SOM-GI.

• the optimization of the organized modularity by deterministic annealing,
as described in the previous sections. This algorithm will be denoted by
DA-OM.

In addition, deterministic annealing was used to build an ordinary (not orga-
nized) clustering on the basis of the optimization of the modularity (as described
in [7]): in the range of 8 to 16 clusters, the modularity stays slightly above 0.8
with no major variation. Above 16 clusters, the modularity starts to decrease:
even if the optimization algorithm manages to produce some empty clusters,
convergence to a global optimum is impaired by the use of a large number of
clusters. As a consequence, we have limited our exploration to a maximum of
16 clusters. As an example of the general tendency, we provide here the results
obtained on a 4× 4 squared grid (i.e., 16 clusters).

Each organization algorithm involves some parameters. We used a grid search
approach to optimize them. For DA-OM, we specified the prior structure via a

1The data are available at http://www-personal.umich.edu/~mejn/netdata/



Gaussian similarity Skl = exp(−σ‖xk − xl‖
2): the σ parameter was optimized

by the grid search. This value plays a similar role as the initial radius of neigh-
borhood which was also optimized. In addition, the γ of heat kernel was also
tuned.

To compare the methods, we compute two quality measures: the modular-
ity (to measure the quality of the clustering) and the percentage of crossing
edges on the grid (to measure the visual quality of the organization). For each
method, the grid search produced Pareto optimal points for these two quanti-
ties. They are reported in Table 1. Deterministic annealing for optimization

DA-OM SOM-GI SOM-HK
Modularity 0.836 0.825 0.816 0.771 0.024
% of edge crossing 0.019 0.016 0.005 xxx xxx

Table 1: Comparison of two quality measures for the organization algorithms

of the organized modularity provides good solutions either on a classification
point of view (high modularity) and on a visual point of view (small number of
edge crossing). The solutions obtained by SOM with generalized inverse kernel
(SOM-GI) are also quite good for both quality measures, with a tendency to
produce better organized mapping (in the sense of a higher number of crossing
edges) but worse modularity. On the contrary, SOM with heat kernel provides
much worse solutions and seems to fail to find a good tradeoff between clustering
and organization, at least on that example.

Finally, Figure 1 presents the obtained organizations of the collaboration
network by the two best methods (DA-OM and SOM-GI).

Fig. 1: Organizations obtained by DA-OM (left) and SOM-GI (right, for the
optimum with the best modularity ). The square surfaces are proportional to
cluster sizes and the edges’ width to the sum of weights between two clusters

Both methods give satisfactory simplifications of the network that are well-
organized on the grid. Interestingly, the DA-OM algorithm produces empty
clusters: this is a consequence of the use of the modularity measure which doesn’t
systematically increase with the number of clusters. This means in practice that



deterministic annealing leads to an automatic optimal choice of the number
of clusters, for both organized and standard modularities2. In addition, the
computational cost of DA-OM is less important than the one of SOM-GI. Indeed
the pseudo inverse of the Laplacian will generally be a full matrix leading to a
cost of O(N2C) per iteration of the kernel SOM. On the contrary, DA-OM can
leverage the sparsity of the matrix B to obtain a complexity of (m + N)C per
iteration of the deterministic annealing algorithm [7] in the case of modularity
and (m+N)C +NC2 for its organized version.

The approach proposed in this paper seems therefore to provide a good so-
lution for computing a topologically organized clustering of a graph. We are
currently investigating its application to larger graphs as well as the properties
of the organized modularity measure.
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