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Abstract

In this paper it is shown that a laminate composed of identical anisotropic layers, like
for instance composite plies, cannot reach all the possible elastic states that are allowed
by the classical elastic bounds on anisotropic constants. The analysis is carried on and
facilitated by the use of particular tensor invariants, the so-called polar parameters.

1 Introduction

When some elastic layers are superposed and bonded together, they form a laminate. The
stack so obtained is a structure whose elastic behaviour is ruled by three tensors, describing the
in-plane, bending and coupled behaviour. When these tensors are normalized, they represent
the elastic behaviour of a sort of fictitious material by which one could realize a single-layer
plate, with the same overall thickness of the laminate and having the same in-plane, bending
and coupled response of the laminate in all the directions.

It is well-known that the elastic constants of a given anisotropic material are bounded,
because of the positive definiteness of the elastic energy. Such elastic bounds define an elastic
domain of admissible values for the elastic constants.

We show here that when a laminate is fabricated bonding together identical layers of a
given material, such an elastic domain is impossible to be entirely covered, because some
more restrictive bounds are to be taken into account. These new bounds can be considered as
geometrical bounds, because they are originated by some links that exist between the different
elastic constants of the fictitious material and these links are due to the geometry of the stack,
i.e. to the orientation of the layers and to their position in the stacking sequence. In other
words, we show that the geometric domain is always smaller than and contained in the elastic
domain. We propose also a degree of filling of the elastic domain by the geometric domain,
which measures how much a laminate composed of a given material is far from covering all the
elastic possible states. All the computations are developed in the same manner and separately
for the tensors describing the in-plane and the bending properties. The case of the coupling
tensor is not considered because it is not positive definite, actually it is not definite.

All the computations are done in a space of dimensionless invariant elastic constants, that
can be introduced using the polar formalism. Its use greatly simplifies the analytical develop-
ments, basically for two reasons: on one side, it is based upon the use tensor invariants and
gives a precise invariant statement of all the types of elastic symmetries and of the elastic
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bounds. On the other side, the polar formalism allows for reducing to the same space of
invariant dimensionless parameters the elastic and geometrical bounds for the laminate’s ten-
sor. In addition, it offers a new physical interpretation of the classical lamination parameters
too.

The paper is organized as follows: first, the basic equations, written using the polar for-
malism, are recalled; then, the elastic and geometric bounds are introduced for the case of
orthotropic behaviour and rewritten in the space of suitable invariant dimensionless parame-
ters. The proof that the geometric domain is always smaller than the elastic one is then given
and discussed. Then, a measure of the degree of filling of the elastic domain is introduced
as function of the type of the orthotropies of the basic layer and of the laminate’s tensor
and some numerical examples are given. Finally, the more involved case of non-orthotropic
behaviour for the laminate’s tensor is briefly treated and discussed. Some final remarks end
the paper.

2 Basic equations

The in-plane, bending and coupling response of a laminate are given by the fundamental
laminate’s law, [4], {

N
M

}
=

[
A B
B D

]{
ε
κ

}
, (1)

where N and M are respectively the in-plane forces and bending moments tensors, ε is the
in-plane strain tensor, κ the curvature tensor, while the fourth-order elastic tensors A, B and
D describe respectively the extension, coupling and bending behaviour of the laminate.

The above three elastic tensors are usually normalized as follows:

A∗=
A

h
, B∗=2

B

h2
, D∗=12

D

h3
, (2)

h being the total thickness of the laminate. In this way, the components of the three normal-
ized tensors have the same dimensions, a force per unit of surface, so they can be compared.
In addition, A* and D* can be considered as the elastic tensors of two fictitious materials by
which one can imagine to construct a single layer plate with thickness h, having the same elas-
tic response of the laminate, respectively in extension and bending, for all the directions. As a
consequence, the components of A* and D*, that are, generally speaking, anisotropic, must
satisfy some conditions in order to satisfy the requirement of positive definiteness, just like
any other elastic tensor. Such conditions bound an elastic domain containing the admissible
values of the elastic parameters.

The case of B* is different, because it is not positive definite, actually it is simply not
definite. In addition, the idea of a fictitious material for the coupled response has not a precise
and direct mechanical meaning; for these reasons, the case of the coupling tensor will not be
considered in the following.

Tensors A* and D* are given by composition laws, that in the case, assumed in the rest
of the paper, of identical layers, are

A∗= 1
n

n∑
j=1

Q (δj),

D∗= 1
n3

n∑
j=1

dj Q (δj).
(3)
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In eq. (3), n is the number of the layers, δj is the orientation of the j -th layer, Q is the
reduced stiffness tensor of the basic layer and the coefficients dj are given by

dj=12j(j−n−1)+4+3n(n+2). (4)

To be remarked that the sum of the coefficients dj over the layers is equal to n3. The above
composition laws, eq. (3), are independent from the tensor representation; so they can be
applied not only to the Cartesian components, but also to any other tensor components, in
particular to tensor invariants.

The use of tensor invariants can be very profitable in some situations; in particular, with
the elastic tensor of an anisotropic material, the use of invariants is interesting, because they
are frame independent quantities, hence they represent intrinsic elastic properties. Among the
different possible choices of tensor representation, we adopt in the rest of the paper the polar
formalism, introduced as early as 1979 by G. Verchery for bi-dimensional tensors, [13]. The
polar invariants are directly linked to the elastic symmetries, allow for a simple expression of
the elastic properties in a rotated frame and of the elastic bounds by invariants. A deeper
insight in the matter can be found in [9], here only the essential points for the rest of the
paper are briefly recalled.

The six Cartesian components of the tensor Q(δj) can be given as function of six other
parameters, the polar components, in the following way:

Qxxxx(δj)=T
L
0 +2TL1 +RL

0 cos 4
(
ΦL

0−δj
)

+4RL
1 cos 2

(
ΦL

1−δj
)
,

Qxxxy(δj)=R
L
0 sin 4

(
ΦL

0−δj
)

+2RL
1 sin 2

(
ΦL

1−δj
)
,

Qxxyy(δj)=−TL0 +2TL1 −RL
0 cos 4

(
ΦL

0−δj
)
,

Qxyxy(δj)=T
L
0 −RL

0 cos 4
(
ΦL

0−δj
)
,

Qxyyy(δj)=−RL
0 sin 4

(
ΦL

0−δj
)

+2RL
1 sin 2

(
ΦL

1−δj
)
,

Qyyyy(δj)=T
L
0 +2TL1 +RL

0 cos 4
(
ΦL

0−δj
)
−4RL

1 cos 2
(
ΦL

1−δj
)
.

(5)

The four polar components TL0 , TL1 , RL
0 and RL

1 are invariant elastic moduli, while the two
polar parameters ΦL

0 and ΦL
1 are angles. The difference of the two polar angles, ΦL

0 − ΦL
1 , is

the fifth independent tensor invariant of Q. The superscript L stands for layer and denotes
all the polar quantities relative to the basic layer.

The inversion of eqs. (5) gives the expression of the polar parameters as functions of the
Cartesian components, here written, for the sake of clarity, in the x-y frame, i.e. for δj = 0:

8TL0 =Qxxxx−2Qxxyy+4Qxyxy+Qyyyy,
8TL1 =Qxxxx+2Qxxyy+Qyyyy,

8RL
0 e

4iΦL0 =Qxxxx−2Qxxyy−4Qxyxy+Qyyyy+4i (Qxxxy−Qxyyy) ,

8RL
1 e

2iΦL1 =Qxxxx−Qyyyy+2i (Qxxxy+Qxyyyy) .

(6)

The polar invariants are linked to the elastic symmetries; it has been shown that ordinary
orthotropy is defined by the condition

ΦL
0 − ΦL

1 = K Lπ

4
, K L ∈ {0, 1} , (7)

while two special orthotropies exist and are defined by the two independent conditions

RL
0 = 0, (8)

RL
1 = 0. (9)
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The fact that two values are possible for KL in eq. (7) means that actually two different
types of ordinary orthotropy can exist for the same set of the invariant moduli T0, T1, R0

and R1. The influence of this parameter on the elastic behaviour, namely on the solution to
some optimal problems, has been discussed in [10]. The special orthotropy determined by eq.
(8) is named R0-orthotropy and is deeply analysed in [8] and [11]. The special orthotropy
determined by eq. (9) is the classical case of the so-called square symmetry, i.e. the bi-
dimensional corresponding of the cubic syngony: all the quantities are periodic of π/2.

As it is immediately recognized looking at eq. (5), the two polar invariants TL0 and TL1
determine the entire isotropic part of Q, while RL

0 , RL
1 , ΦL

0 and ΦL
1 affect the anisotropic part

only. Then, isotropy is simply obtained when eqs. (8) and (9) are satisfied at the same time:
isotropy corresponds to the simultaneous presence of the two special orthotropies.

A frame can be fixed by choosing a value for one of the two polar angles; normally the
choice ΦL

1 = 0 is done; for usual unidirectional plies, this choice corresponds to putting the
x-axis of the material frame in the direction of the fibres.

The polar representation stated in eq. (5) for tensor Q, applies as well to any other bi-
dimensional elastic tensor, hence to A* and D* too. Let us denote in the following by T0,
T1, R0 and R1, Φ0 and Φ1 the polar parameters of A* or D*. Applying the composition laws
(3) to the polar components of A* or D* gives then, [12],

T0=T
L
0 ,

T1=T
L
1 ,

R0e
4iΦ0=RL

0 e
4iΦL0 (ξ0+iξ2) ,

R1e
2iΦ1=RL

1 e
2iΦL1 (ξ1+iξ3) .

(10)

In eq. (10) ξ1 to ξ4 are the so-called lamination parameters, introduced first by Tsai and
Hahn in 1980, [7], defined as 

ξ0+iξ2=
1
n

n∑
j=1

e4iδj ,

ξ1+iξ3=
1
n

n∑
j=1

e2iδj ,
(11)

for tensor A*, and as 
ξ0+iξ2=

1
n3

n∑
j=1

dj e
4iδj ,

ξ1+iξ3=
1
n3

n∑
j=1

dj e
2iδj ,

(12)

for tensor D*. Though defined in a slightly different way, the lamination parameters of A*
and D* must satisfy some limitations that are the same in both the cases; these limitations
are specified in the next section.

It is apparent, looking at eq. (10), that the isotropic part of A* or D* is just that of Q,
i.e. of the basic layer, while the anisotropic part changes, though R0 is affected only by RL

0

and R1 only by RL
1 . This has a certain importance for the following developments.

Without loosing in generality, some simplifications can be made in eq. (10). In fact, all
the layers are actually orthotropic, so eq. (7) can be used. In addition, as previously specified,
the frame is fixed choosing a value for one of the two polar angles. So, once and for all, we
put

ΦL
1 =Φ1=0. (13)

Finally, we consider for the while the case of ordinarily orthotropic A* or D*, when

ξ2=ξ3=0, (14)
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because, by eqs. (13) and (7), the imaginary parts of eqs. (103,4) are null; the more general
case of complete anisotropy will be considered later on. In this way, eqs. (103,4) become{

(−1)KR0=(−1)K
L
RL

0 ξ0,
R1=R

L
1 ξ1.

(15)

3 Elastic and geometrical bounds

Let us now consider the bounds that must be satisfied by the quantities introduced above.
These are of two types: the elastic and geometrical bounds.

Elastic bounds are the result of the positive definiteness of the strain energy: tensors A*
and D* must be positive definite. For anisotropic tensors, normally these bounds concern the
Cartesian components and are rather complicate. But with the polar formalism, the bounds
are rather simple and concern invariant quantities. For an orthotropic tensor, the bounds are,
[9], {

T0−R0>0,

T1

[
T0+(−1)KR0

]
−2R2

1>0.
(16)

In addition, the parameters R0 and R1 can be interpreted as norms of complex quantities,
eqs. (6) so they are non negative: {

R0≥0,
R1≥0.

(17)

Of course, eqs. (16) and (17) can be written not only for A* and D*, but also for Q,
simply adding the superscript L to all the quantities.

Let us now consider the geometric bounds, i.e. those that are inherent to the construction
of the stack. First of all, taking the norms of eqs. (103,4) one gets{

R0=R
L
0

√
ξ20+ξ22 ,

R1=R
L
1

√
ξ21+ξ23 .

(18)

It can be proved, see [2], that the following bounds exist, in the most general case, for the
lamination parameters of A* or D*:

2ξ21 (1−ξ0) +2ξ23 (1+ξ0) +ξ20+ξ22−4ξ1ξ2ξ3≤1,
ξ21+ξ23≤1,
−1≤ξ0≤1.

(19)

These bounds, concerning purely geometric quantities, i.e. combinations of the circular func-
tions of the layer orientations, come from the trigonometric nature of the quantities involved
in the definition of the lamination parameters, eqs. (11) and (12), along with the fact, for
D*, that the sum of the coefficients dj is n3.

It is sufficient a quick glance at eqs. (11) and (12) to check that eq. (192) is valid also for
ξ0 and ξ2:

ξ20+ξ22≤1. (20)

So, through eqs. (18), (192) and (20) we get the bounds:{
R0≤RL

0 ,
R1≤RL

1 .
(21)
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Finally, in the case of A* or D* orthotropic, the bounds in eq. (19) become, through eq.
(14), 

2ξ21 (1−ξ0) +ξ20≤1,
ξ21≤1,
−1≤ξ0≤1,

(22)

that are usually written in the equivalent form, [5], [6],{
−1≤ξ1≤1,
2ξ21−1≤ξ0≤1.

(23)

Actually, from eqs. (152) and (172) it follows that ξ1 in (23) must be limited to non negative
values. As it is suddenly recognized from eqs. (11) or (12), negative values of ξ1 correspond
to stacking sequences where the angle π/2 have been added to all the orientations, i.e. to a
rotation of the laminate of −π/2, which is meaningless. Finally, the bounds to be taken into
account are 

R0<T0,

2R2
1<T1

[
T0+(−1)KR0

]
,

0≤R0,
0≤R1,
R0≤RL

0 ,
R1≤RL

1 ,
0≤ξ1,
ξ1≤1,
2ξ21−1≤ξ0,
ξ0≤1.

(24)

The first four bounds in (24) are elastic bounds, while the other are geometric bounds. These
bounds, that are written for a part in the space of the elastic invariants, and for the other
part in the space of the lamination parameters, can all be written in a space of adimensional
invariant parameters of A*, or D*, and Q. This will first reduce the number of independent
bounds in eq. (24), secondly will allow to put in direct relation the invariants of A*, or D*,
with those of Q and finally will let appear explicitly the type of orthotropy of the basic layer
and that of the laminate.

4 Introducing dimensionless invariant parameters

Let us introduce the following dimensionless quantities:

ρ=
RL

0

RL
1

, ρ0=
R0

RL
0

, ρ1=
R1

RL
1

, τ0=
TL0
RL

0

, τ1=
TL1
RL

1

. (25)

Among them, ρ, τ0 and τ1 concern the basic layer, hence the material composing the laminate,
while ρ0 and ρ1 have at the numerator a quantity concerning the laminate, while at the
denominator one regarding the material. All of them are invariant quantities, as ratios of
invariant parameters. In addition, thanks to the fact that R0 and R1 are non negative
quantities and through eq. (241,2), it is also

ρ>0, ρ0>0, ρ1>0, τ0>1, τ1>0. (26)
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Using eq. (25) into eq. (15), we obtain the following expressions for the lamination
parameters ξ0 and ξ1: {

ξ0=(−1)K−K
L

ρ0,
ξ1=ρ1.

(27)

This result gives, on one side, a new interpretation of the lamination parameters, at least for
the orthotropic case: they are the ratios of homologous polar invariants for the laminate and
for the material. On the other side, it makes appear explicitly the orthotropy types of the
laminate and of the material, specified by K and KL respectively.

After inserting eqs. (25) and (27) into eq. (24) and remembering that the isotropic part
of A* or D* is just identical to that of the material, eq. (101,2), we obtain the dimensionless
and invariant version of bounds (24):

ρ0<τ0,

2ρ21<ρτ1

[
τ0+(−1)Kρ0

]
,

0≤ρ0,
0≤ρ1,
ρ0≤1,
ρ1≤1,
0≤ρ1,
ρ1≤1,

2ρ21−1≤(−1)K−K
L

ρ0,

(−1)K−K
L

ρ0≤1.

(28)

It is apparent that some of the bounds (28) are redundant: eqs. (284,7) are the same,
while it is immediately recognized that eq. (2810), thanks to (283), is never more restrictive
than (285), so it can be discarded. Also the identical eqs. (286,8) can be eliminated, because
such condition is never more restrictive than that given by eqs. (285,9). Finally, also (281)
can be eliminated, because, by eq. (264), it is always less restrictive than (285).

It is interesting to notice that this last result has been obtained because, though eq. (211)
concerns the polar invariants of the laminate, the isotropic invariant T0 is exactly equal to
the corresponding one of the material, TL0 , see eq. (101). So, it can replace T0 in (101), which
divided by RL

0 gives eq. (281). As τ0 is an invariant parameter concerning a real material,
condition (264) is necessarily satisfied, which allows for discarding the bound (281). This is
one of the advantages of using the polar formalism.

Finally, the dimensionless independent bounds are

0≤ρ0,
0≤ρ1,
ρ0≤1,

2ρ21−1≤(−1)K−K
L

ρ0,
2ρ21
ρτ1
−τ0<(−1)Kρ0.

(29)

5 The geometric and elastic domains

In the sector ρ1 ≥ 0, ρ0 ≥ 0, eq. (294) and (295), two parabolas, define each one a sub-domain,
together with the other conditions in eq. (29). We show in this section that the sub-domain
defined by eq. (294), a geometric condition, is always smaller than and contained in that
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defined by eq. (295), an elastic condition. Conventionally, to have a finite elastic domain,
whenever K = 0 the condition (293) is also used to bound the elastic domain, otherwise
unbounded.

The parabolas defined by eqs. (295,6) depend on the parameters KL and K, i.e. on the
type of ordinary orthotropies of the material and of the laminate. We want hence to show that
the only possible four situations are those described in Fig. 1, where G stands for geometric
and denotes the parabola (294), while E stands for elastic and denotes the parabola (295).

!

1 

1 0 

KL=0, K=0 
G 

E 

1 

0 

KL=1, K=0 

G 
E 

1 

1 0 

KL=1, K=1 
G 

E 

1 

0 

KL=0, K=1 

G 

E 

1 

!"! !"!

!"!!"!

!1! !1!

!1! !1!

!1
0!

!1
0! !1

0!

!1
1! !1

1!

!1
1! !1

1!

!1
0!

""!
""!

Fig. 1 The four possible cases of geometric and elastic domains.

Let us denote by ρ01 the intersection of parabola E with the axis ρ0 = 0 and by ρ11 its
intersection with the straight line ρ0 = 1; through eq. (295) we have

ρ01 =

√
ρτ0τ1

2
, ρ11 =

√
1

2
ρτ1 (τ0 + (−1)K). (30)

Then, to show that the only possible situations are those represented in Fig. 1, it is sufficient
to show that 

τ0 > 1,
ρ01 >

1√
2
,

ρ11 > 1.

(31)
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Putting eq. (30) into conditions (31) gives
τ0 > 1,
ρτ0τ1 > 1,
ρτ1 (τ0 + 1) > 2 for K = 0,
ρτ1 (τ0 − 1) > 2 for K = 1.

(32)

The conditions in eq. (32) concern only invariant dimensionless parameters of the material,
hence they do not depend on the stacking sequence. Moreover, all of them are always satisfied.
In fact, using the definition of the dimensionless parameters, eq. (25), it is easily checked that
conditions (321,4) are actually the bounds in eq. (16), always satisfied for any material with
K = 1. After using eq. (25) in eq. (322), this last becomes

TL0 T
L
1 >

(
RL

1

)2
, (33)

which is another necessary condition for the positive definiteness of an orthotropic material,
see [9]. Finally, condition (323) is equivalent to

2ρτ1 + ρτ1 (τ0 − 1) > 2, (34)

which is always satisfied because of conditions (262,5) and (324). This shows that the elastic
domain, defined by eq. (295), always contains the geometric domain, bounded by eq. (294).

An accessory result is that whenever KL = 1, then ρ01 > 1; in fact, if K = KL = 1,
ρ01 > ρ11 > 1, and as ρ01 does not depend upon K, it is always greater than 1. Using once more
eq. (25), it is easily checked that

ρ01 > 1 for KL = 1 −→ TL0 T
L
1 > 2

(
RL

1

)2
, (35)

which is obvious, by condition (162) when KL = 1.
The analysis made above concerns the case of ordinary orthotropy, corresponding to eq.

(7). The type of the ordinary orthotropy of the material and of the laminate, determined
by the value of the coefficients KL and K respectively, appears directly in the equations
specifying the bounds, eqs. (294,5). This is just an useful peculiarity of the polar method.

In the same way, the polar method allows for directly specifying the existence of a special
orthotropy, eqs. (8) and (9). There are four cases of interest for the special orthotropies, that
actually correspond to four degenerate cases of eq. (29). Among these four cases, two are
those of a laminate composed of a material having a special orthotropy, i.e. having RL

0 = 0
or RL

1 = 0. In such cases, both tensors A* and D* have both the same property, i.e. R0 = 0
or R1 = 0 respectively, as it is apparent from eq. (10). The other two degenerate cases are
those of a laminate composed of ordinary orthotropic layers, but for which tensor A* or D*
are specially orthotropic, i.e. with R0 = 0 or R1 = 0. In all these cases, the results found
above for the ordinary orthotropic case are still valid. In particular, it is easy to check that
whenever R0 = 0, the bounds reduce to

0 ≤ ρ1 ≤
1√
2
−→ R1 ≤

RL
1√
2
, (36)

while for R1 = 0 it is
0 ≤ ρ0 ≤ 1 −→ R0 ≤ RL

0 . (37)

The above results show also that the geometric conditions bounds more the term R1 than
the term R0.
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6 Degree of filling of the elastic domain

We introduce in this section a degree of filling, ω, of the elastic domain of the laminate: we
define ω as the ratio

ω =
ωg
ωe

(38)

between the airs ωg and ωe, respectively of the geometric and of the elastic domains defined
above.

The ratio ω measures, in some sense, how much the geometric bounds shrink the elastic
domain, giving hence an idea of what is lost, in terms of elastic possibilities, when a material
is used to construct a laminate. The air of the geometric domain depends only upon the type
of ordinary orthotropy of the material and of the laminate, i.e. upon KL and K : using eqs.
(291) to (294) it is easily seen that

ωg = 4−
√
2

3
' 0.862 if K = KL,

ωg =
√
2
3
' 0.471 if K 6= KL.

(39)

The air of the elastic domain depends, of course, on the material, see eq. (295); we define it
as

ωe = ρ11 −
∫ ρ11

ρ01

(
2ρ21
ρτ1
− τ0

)
dρ1 if K = 0, ωe = ρ11 +

∫ ρ01

ρ11

(
τ0 −

2ρ21
ρτ1

)
dρ1 if K = 1. (40)

Nevertheless, a glance at the diagrams in Fig. 1 allows us for giving some bounds on the
value of ω for the four possible cases:

for K = 0 and KL = 0, ωe ≥ ωg −→ ω ≤ 1,

for K = 0 and KL = 1, ωe > 1 −→ ω ≤
√
2
3
' 0.471,

for K = 1 and KL = 0, ωe > ωg −→ ω < 1,

for K = 1 and KL = 1, ωe > 1 −→ ω < 4−
√
2

3
' 0.862.

(41)

So, the ratio ω decreases when KL = 1.
Let us consider two practical cases; the first one is that of laminates composed of unidi-

rectional carbon-epoxy layers of type T-300/5208, whose elastic properties, [7], are condensed
in the reduced stiffness matrix Q:

Q =

181.8 2.89 0
2.89 10.35 0

0 0 7.17

 GPa. (42)

The corresponding polar constants, eq. (6), are

T0 = 26.88 GPa, T1 = 24.74 GPa,
R0 = 19.71 GPa, R1 = 21.43 GPa,
Φ0 = 0◦, Φ1 = 0◦, −→ KL = 0.

(43)

Then, injecting these values in eq. (25) we get

ρ = 0.92, τ0 = 1.36, τ1 = 1.15, (44)

which used in eq. (295) give the parabolas

(−1)Kρ0 = 1.89ρ21 − 1.36, (45)
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to which correspond

ρ01 = 0.848, ρ11 = 1.117, ωe = 0.989, ωg = 0.862, ω = 0.871 for K = 0,
ρ01 = 0.848, ρ11 = 0.436, ωe = 0.664, ωg = 0.471, ω = 0.709 for K = 1.

(46)

The second case is that of laminates whose layers are braided carbon-epoxy plies of the
type BR-45a, [1], with reduced stiffness matrix

Q =

55.56 20.22 0
20.22 26.96 0

0 0 25

 GPa. (47)

In this case we get, for the polar constants

T0 = 17.76 GPa, T1 = 15.37 GPa,
R0 = 7.24 GPa, R1 = 3.57 GPa,

Φ0 = 45◦, Φ1 = 0◦, −→ KL = 1,
(48)

for the adimensional parameters

ρ = 2.03, τ0 = 2.45, τ1 = 4.30, (49)

for the parabolas
(−1)Kρ0 = 0.23ρ21 − 2.45, (50)

and finally

ρ01 = 3.270, ρ11 = 3.880, ωe = 3.577, ωg = 0.471, ω = 0.132 for K = 0,
ρ01 = 3.270, ρ11 = 2.510, ωe = 2.904, ωg = 0.862, ω = 0.297 for K = 1.

(51)

The curves delimiting the elastic and geometric domains and concerning the four cases
above are shown in Fig. 2.

7 The non-orthotropic case

The results above concern the case of a tensor A* or D* orthtropic. We consider in this
section the more general case of a tensor that is not orthotropic, though still composed of
orthotropic identical layers. This assumption is motivated by the fact that in real applications,
the layers composing a laminate are always at least orthotropic. We fix again the frame for
the layer and for the laminate by eq. (13), which still implies that ξ3 = 0, condition (142),
but not that ξ2 = 0, condition (141), because the tensor is no longer orthotropic. So, now
there are three geometric parameters, ξ0, ξ1 and ξ2, for the laminate to be controlled: this
will give three dimensional geometric and elastic domains, as specified below.

In this way, eq. (15) becomes{
R0e

4iΦ0=(−1)K
L
RL

0 (ξ0 + iξ2) ,
R1=R

L
1 ξ1,

(52)

and bounds (21) are still valid, as well as bounds (17). Unlike these last, elastic bounds (16)
are replaced by {

T0−R0>0,
T1 (T 2

0 −R2
0)−2R2

1 (T0 −R0cos4Φ0)>0,
(53)
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Fig. 2 The geometric and elastic domains relative to the numerical examples considered:
the orthotropic cases.

valid for anisotropic tensors, [9], while the geometric bounds (19) become now
2ξ21 (1− ξ0) + ξ20 + ξ22 ≤ 1,
ξ21≤1,
−1≤ξ0≤1,

(54)

because ξ2 6= 0.
After introducing once more the dimensionless quantities (25), we get, by eq. (52),

ξ0=(−1)K
L

ρ0 cos4Φ0,

ξ2=(−1)K
L

ρ0 sin4Φ0,
ξ1=ρ1.

(55)

Using eqs. (25) and (55) into eqs. (17), (19), (53) and (54), and eliminating the redundant
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bounds, likewise in Sec. 4, after some standard passages we get the dimensionless bounds

0≤ρ0,
0≤ρ1,
ρ0≤1,

2ρ21≤
1−ρ20

1−(−1)KLρ0 c0
,

2ρ21 < ρτ0τ1
1−

(
ρ0
τ0

)2

1− ρ0
τ0
c0
.

(56)

that replace eq. (29) for the non orthotropic case. In eq. (56) we have replaced the variable
Φ0 by

c0 = cos 4Φ0. (57)

Now, there are three dimensionless parameters to be taken into account, because with respect
to the previous orthotropic case, c0 is added to ρ0 and ρ1. All of them are still invariants:
having posed Φ1 = 0, Φ0 actually corresponds to the invariant Φ0 − Φ1.

To show that the geometric domain is entirely contained in the elastic one, it is sufficient
to show that

∆ = ρτ0τ1
1−

(
ρ0
τ0

)2
1− ρ0

τ0
c0
− 1− ρ20

1− (−1)KLρ0 c0
> 0 ∀ρ0 ∈ [0, 1], c0 ∈ [−1, 1], ρτ0τ1 > 1, τ0 > 1. (58)

Considering the values taken by ∆ on the boundary of the domain defined in eq. (58) and
in the only point, ρ0 = 0, c0 = 0, where grad ∆ = 0, it can be easily seen that the absolute
minima of ∆ can be only:

∆min
1 = ρτ0τ1 − 1, for ρ0 = 0,−1 ≤ c0 ≤ 1,

∆min
2 = ρτ1 (τ0 − 1) , for ρ0 = 1, c0 = −1.

(59)

Both these values are positive, by virtue of eqs. (26) and (322) and this proves the condition
(58).

Also in this case we can introduce a degree of filling of the elastic domain of the laminate,
ω, defined just like in eq. (38), but now it is

ωg =

∫ 1

0

∫ 1

−1

√√√√ 1− ρ20
2
(

1− (−1)K
L

ρ0 c0

)dρ0dc0, ωe =

∫ 1

0

∫ 1

−1

√√√√√√ρτ0τ1
1−

(
ρ0
τ0

)2
2
(

1− ρ0
τ0
c0

)dρ0dc0. (60)

In Fig. 3 the two numerical examples, considered in the previous section, of carbon-epoxy
T-300/5208 and braided carbon-epoxy BR45-a in the general anisotropic case are shown; once
more, G and E denote the boundaries of the geometric and of the elastic domains respectively.
Numerically, we obtain ω = 0.709 for the T-300/5208 and ω = 0.296 for the BR45-a.

8 Final remarks

We have proved in this paper that the elastic domain of a tensor describing the behaviour
of a laminate always entirely contains the geometric domain. Mechanically, this means that
laminates constitute a sort of smaller elastic class, in the sense that they never can cover
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Fig. 3 The geometric and elastic domains relative to the numerical examples considered:
general anisotropic case.

the whole range of the elastic parameters that can be covered by a single elastic layer. In
addition, a measure quantifying the shrinkage of the elastic domain has been given.

All the analysis is based upon the use of the polar formalism, that has several advantages.
Namely, it allows for an analysis making use only of invariant quantities, which is particularly
important in the definition of the different bounds. Then, with the polar formalism the
different elastic invariants of the laminate depend only upon the corresponding quantity of
the material (e. g. R0 is a function of RL

0 alone and so on) and the isotropic part is separated
form the anisotropic one. Thanks to this last property and to eq. (10), it is easily seen that
the shrinkage of the elastic domain for the laminate concerns only its anisotropic part, while
the isotropic one is exactly the same of the material and hence has the same bounds.The use
of the polar formalism has also allowed for writing in a unique space of invariant dimensionless
parameters the elastic and geometrical bounds and offered a new physical interpretation of
the classical lamination parameters.

This study is interesting per se, because it mathematically shows and quantifies something
that has always been, more or less, tacitly understated in several studies on laminates. It is
particularly important in some procedures of optimization of laminated structures, like those
presented, for instance, in [3]. In such procedures, the field of the anisotropic constants is
optimized in a first step, with respect to an objective and with some imposed constraints, as
the one of a structure composed by a fictitious unique anisotropic layer. Then, in a second
step, a laminate realizing the optimal anisotropic field found in step one is looked for. So,
the present study shows that among the constraints to be taken into account in the first step
of the procedure, only the geometric bounds, and not the elastic ones, are to be taken into
account among the constraints to be imposed to the optimum. In fact, if elastic constants were
imposed in place of the geometric ones, one could perhaps find an optimal anisotropic field
with elastic parameters that could not be really obtained by a laminate during the following
second step. In order to avoid such a possibility, geometric bounds are to be imposed directly
to the optimum problem of the first step.

The results found in the paper are valid for both tensors A* and D* taken separately.
The case of stating bounds for the whole behaviour of the laminate, i.e. for A* and D* at

14



the same time, has not been treated in this paper. Actually, up till now no global geometric
bounds are known for the lamination and polar parameters of A* and D* taken together.
It is obvious that these parameters are not independent, because they depend upon a unique
stacking sequence. However, it seems very hard to state such bounds because, unlike those of
A*, the parameters of D* depend also on the stacking position, not only on the orientation
angle of the layers.
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optimization of laminated plates using polar representation. International Journal of
Solids and Structures 48, 2576–2584 (2011)

[4] Jones, R.M.: Mechanics of composite materials. McGraw-Hill (1975)

[5] Miki, M.: Material design of composite laminates with required in-plane elastic proper-
ties. pp. 1725–1731. ICCM 4 (Fourth International Conference on Composite Materials),
Tokio (1982)

[6] Miki, M.: Design of laminated fibrous composite plates with required flexural stiffness.
In: J.R. Vinson, M. Taya (eds.) Recent advances in composites in the USA and Japan -
ASTM STP 864, pp. 387–400. American Society for Testing and Materials, Philadelphia
(1985)

[7] Tsai, S.W., Hahn, T.: Introduction to composite materials. Technomic (1980)

[8] Vannucci, P.: A special planar orthotropic material. Journal of Elasticity 67, 81–96
(2002)

[9] Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005)

[10] Vannucci, P.: Influence of invariant material parameters on the flexural optimal design
of thin anisotropic laminates. International Journal of Mechanical Sciences 51, 192–203
(2009)

[11] Vannucci, P.: On special orthotropy of paper. Journal of Elasticity 99, 75–83 (2010)

[12] Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Inter-
national Journal of Solids and Structures 38, 9281–9294 (2001)

[13] Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. Colloque
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