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Abstract — The multi-scale strategy in studying biological 

regulatory networks analysis is based on two level of analysis. The first 

level is structural and consists in examining the architecture of the 

interaction graph underlying the network and the second level is 

functional and analyse the regulatory properties of the network. We 

apply this dual approach to the “immunetworks” involved in the 

control of the immune system. As a result, we show that the small 

number of attractors of these networks is due to the presence of 

intersecting circuits in their interaction graphs. We obtain an upper 

bound of the number of attractors of the whole network by multiplying 

the number of attractors of each of its strongly connected components. 

We detect first the strongly connected components in the architecture 

of the interaction digraph of the network. Secondly, we study the 

dynamical function of the attractors by looking further inside these 

components, notably when they form circuits (intersecting or not). 
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I. INTRODUCTION 

 

The theory of biological regulatory networks is born 

parallelly to that of neural networks [1-3] and is now a 

research topic of intense activity for interpreting the "omic" 

data from the bio-arrays devices. The networks are made of 

elements (genes, proteins, neurons,...) in interaction and the 

central tool used for representing these interactions is a 

directed graph (digraph), called interaction graph, whose 

signed arrows (positive or negative) are related to the 

influence (activation or inhibition) exerted by an element 

(repressor or inducer) on another. Researches have focused 

on modelling real genetic networks of size n, with about 2n 

interactions networks, for which many authors have noticed 

that the number of attractors observed experimentally (i.e., 

the number of their different possible temporal asymptotic 

behaviours such as fixed or cyclic configurations of 

expressed and/or silent genes) is relatively small, of the 

order of magnitude √n. We will see in this paper that we can 

relate this small number of empirical attractors to the 

existence of intersecting circuits inside the architecture of 

the network. The attractors number is crucial in applications 

because it is related to the number of differentiation fate 

possibilities of the cells controlled by the network [1].  
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In an arbitrary network, besides nodes belonging to circuits, 

all other nodes belong to trees that are either down-trees 

(i.e., that have no influence on the rest of the network), or 

up-trees (i.e., that undergo no influence from the rest of the 

network and only eventually act punctually on it by 

allowing or disallowing it to have its own dynamics), or 

trees that connect nontrivial strongly connected components 

and only serve as information pathways. Now the theory of 

the random networks [4, 5] enables us to predict exactly the 

number of isolated and intersecting circuits, as well as the 

number of up- and down-trees. Therefore, in order to 

estimate the number of attractors in an arbitrary network, 

one may focus on the dynamics that is induced by the 

underlying circuits of the network. In a Section 2, we will 

introduce basic concepts about random Boolean graphs and 

networks. After we will focus on the crucial problem of 

sampling these networks in order to count their attractors. In 

Section 4, we give new results about intersecting circuits 

and we apply these results to the “immunetworks”, i.e., the 

genetic regulatory networks used for creating and 

controlling the immune genome [6]. 

 

II. RANDOM GRAPHS AND RANDOM BOOLEAN NETWORKS 

 

Let us focus now on how one may build the underlying 

digraph representing the architecture of a random network. 

Assuming we want to keep the connectivity c (mean number 

of oriented interactions coming to a node) of the digraph 

constant, it is possible to choose the interaction arcs 

according to various probability distributions that respect 

this connectivity [7, 8]. For instance, focusing on d-regular 

digraphs (the number of non oriented interactions per node 

being constant equal to d), in order to obtain a digraph of 

connectivity c equal to 2d/3 [9], one may choose uniformly 

at random a d-regular digraph in the set of all d-regular 

digraphs. Using an d-regular non-oriented graph having 

m=nd/2 edges, one may also construct a digraph of 

connectivity c if d is chosen equal to 3c/2 [9]. Let Xs denote 

the random variable representing the number of (non-

oriented) cycles of length s in a random d-regular graph of 

size n. In [10-12], it is shown that Xs, for 3≤ s≤ g, is 

asymptotically distributed as independent Poisson variable 

with mean equal to (d-1)
s
/2s=(3c–2)

s
/s2

s+1 
(2

s-1
/s, if c=2), 

with d=d(n) and g=g(n) allowed to increase with n, provided 

that: (d-1)
2g−1

=o(n). Hence we have: g=[Log2[o(n)]+1]/2, if 

c=2, which holds for g ≤ 5, if n=22.10
3
≈2

14.5
 and o(n)=n

2/3
. 

When d=3, the graph yields on average 2s−1/ s cycles of 

length s. To construct a signed digraph from a d-regular 

non-oriented graph, each edge of the graph is replaced by 



one or two signed arcs (loops are counted twice). Hence, 

each cycle of the d-regular graph may yield at most two 

circuits in the digraph.  

III. NETWORK SAMPLING FROM MINIMAL 

REPRESENTATION 

In order to avoid the over-representation of certain graphs in 

the random sampling of Boolean Hopfield-like threshold 

networks, a representation using minimal vectors made of 

the parameters (weights and thresholds) has been proposed 

[13-18]. This sampling methodology allows a non biased 

representation of the attractors in a given category of 

networks. For example, Table 1 gives the number of 

attractors for networks of size n=3,…,6 for the different 

categories: Cy (resp. Fi; Mi) networks having only limit 

cycles (resp. only points remaining fixed; both fixed points 

and cycles) as attractors for any updating modes going from 

the synchronous to the sequential ones, and Ev networks 

whose nature of attractors (cycles or fixed points) depends 

on the updating mode and therefore passing through the 

previous categories when this mode evolves.   

Figure 1 : number of attractors for networks of size 3 to 6 depending on 

their attractor class 

 

Let us notice that the order of magnitude of √n for the 

attractor number is respected, despite of the fact that the 

networks have been sampled in the whole set of networks of 

size n, without respecting the connectivity 2. 
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IV. ATTRACTORS OF INTERSECTING CIRCUITS 

 

4.1. Tangential circuits 

 

The attractor number of isolated circuit has been extensively 

studied in [4] and applied in [9]. 

 

4.2. Intersecting circuits 

 

The attractor number of intersecting circuit has been 

extensively studied in [5] and applied in [9]. 

 

 

 

 
 

 

Figure 1. The two coupled networks (left N1 and right N2) are each made of 

the sub-networks, whose vertices (or nodes) are denoted respectively ij and 

i0k (i=1,2; j=0,1,2,3,4,5; k=0,1,2) 

 

By looking on the networks of the Figure 1, we see that each 

is made of 4 main paths of opposite sense: two are up, A and 

C, and two down, B and D, of respective lengths A, B, C, 

D, and parity sA, sB, sC, sD, equal to 1 (resp. -1), if they have 

an even (resp. odd) number of negative arcs: sA = Πa∈A sa, 

where the sign sa of the arc a of A is equal to -1 if a is 

negative (inhibition) and 1 if a is positive (activation). For 

example, in Figure 1, the path A of N1 is such as A=3 and 

sA=-1. The main paths have in N1 two common nodes, 10 

and 13, and in N2 only one common node 23.  Finally, N1 

having only 4 paths having two common  nodes, there are 6 

combinations two by two of the 4 possible circuits (A,B), 

(B,C), (C,D) and (A,D), each circuit circuit like (A,C) 

having the parity sA,C = sA sC. As a conjecture, we can say 

that two intersecting circuits both managing to cycle 

together may not induce more attractors than would any of 

the two circuits if they were isolated. In addition, the period 

of any attractor induced by the intersection is no greater than 

the largest period of an attractor induced by a circuit of size 

that of the largest circuit encircling the two intersecting 

circuits (if it were isolated). The Propositions 4.1. to 4.3. 

below make more precise the context of the Conjecture, 

which could become: the number of attractors of N1 is less 

than the number of attractors of N2, whose two circuits 

(tangential in 23) have respectively as signs sup(sA,sB)sC and 

sup(sA,sB)sD, with x200(t) = x20(t), and the proof is then given 

in the Proposition 2.  

 

Let us now consider the Hamiltonian H of a circuit (A,C) as 

defined by: 

H(A,C)(t) = ∑i∈(A,C)(xi(t) - xi(t-1))
2 
= ∑i∈(A,C)(si(i-1)xi-1(t-1) - 

xi(t-1))
2
=∑i∈(A,C)(s(i-1)i xi-1(t-1)-xi(t-1))

2
 

The Hamiltonian H(A,C) is equal to twice the sum of the 

kinetic energies over all nodes of the circuit (A,C), and is 

equal to the frustration of (A,C), i.e., to the number of 

couples of successive nodes whose states are such as the 

second one is not equal to the predicted by the first one. The 

conservation of kinetic energy is for example ensured in 

continuous Hamiltonian systems like the simple pendulum, 

for which the dynamical differential equations are:  

                              dx/dt = y and dy/dt = -x               

d 

d 

d 
 

d 

    A  B  D   C      

 

 



and its Hamiltonian equals (x
2
+y

2
)/2, i.e., the kinetic energy. 

For example, for a positive circuit of size n=8, we have the 

following even values of frustration (they are odd for a 

negative circuit) and the number of frustration 

configurations (table 2), with the corresponding number and 

length of attractors (fixed state configurations or limit cycles 

of state configurations):  

 
H (frustration)     Configuration Nb        Attractor Nb         Attractor Length 

       0                           1                          2 fixed points                    1                            

       2              4 =C
n−H +2

H −1
/2                        7                               8 

       4                                                                3                   4 (symmetrized) 

                      10 =C
n−H +2

H −1
/2                            

       4                                                               16                              8  

        

       6              4 =C
H +2

n−H −1
/2                        7                                8 

       8                           1                                   1                                2 

Table 2: Values of Hamiltonian energy, attractor number and length (n =8) 

 

For a positive circuit of size n=6, we have the following 

even values of frustration and the number of frustration 

configurations (Table 3), with the corresponding number 

and length of attractors (fixed state configurations or limit 

cycles of state configurations):  

 
 H (frustration)        Configuration Nb       Attractor Nb       Attractor Length               

       0                                    1                    2 fixed points                  1                            

       2                       3 =C
n−H +2

H −1
/2                  5                             6 

       4                                                                   2               3 ( symmetrized) 

                                3 =C
H +2

n−H −1
/2 

       4                                                                   4                             6 

       6                                    1                             1                             2 

Table 3: Values of Hamiltonian energy, attractor number and length (n =6) 

 

For a positive circuit of size n=4, we have the following 

even values of frustration and the number of frustration 

configurations (Table 4), with the corresponding number 

and length of attractors (fixed state configurations or limit 

cycles of state configurations):  

 
H (frustration)      Configuration Nb       Attractor Nb          Attractor Length 

       0                               1                      2 fixed points                      1                            

       2                  2 =C
n−H +2

H −1
/2)                 3                                   4 

       4                               1                             1                                    2 

Table 4: Values of Hamiltonian energy, attractor number and length (n =4) 

 

We will try now to solve in the Propositions 4.1. to 4.3. the 

two questions: Are the attractors of the network N2, with the 

coupling x200(t) = x20(t), identical to the attractors of N1? and  

What are the constraints about the period of these attractors? 

 

Proposition 4.1. The attractors of the network N2, with the 

coupling x200(t) = x20(t), are attractors of N1. 

 

Proof. From an initial condition identical for N1 and N2, 

where x200(0) = x20(0) = x10(0), the trajectories are the same 

for all nodes, if x200(t) = x20(t), for any t ≥ 1. For the node 10 

of the network N1, we have, if the mixing rule is monotonic, 

e.g., ∨ in N1 and N2 (the reasoning would be the same, if the 

rule is ∧ or any composition of ∨ and ∧): 

x10(t) = [sB × x13(t-B)] ∨ [sD × x13(t-D)] 

x200(t) = sB × x23(t-B) and x20(t) = sD × x23(t-D) 

By imposing x200(t) = x20(t), for any t ≥ 1, then sB × x23(t-B) 

= sD × x23(t-D), and we have in the network N1: 

x10(t) = [sB × x13(t-B)] ∨ [sD × x13(t-D)] = x200(t) = x20(t) 

  

By recurrence on t, this common value for x10(t), x200(t) and 

x20(t) is equal to: 

sB × x13(0) = sB × x23(0), for any t=kB, with k ≥ 0. 

The same reasoning can be made for t ≡ 1,...,B-1 (mod B). 

Then, the trajectories being the same, the attractors of N2, 

with the coupling x200(t) = x20(t), are attractors of N1. 

 

Remark: let us note that, if D=B, that imposes, for 

observing the equality x200(t) = x20(t), the constraint sD = sB; 

if not, the attractors of N1 are not attractors of N2, with 

x200(t) = x20(t), and the converse of the Proposition 1. is then 

not available. But we have the following result: 

 

Proposition 4.2. The attractors of N1 are the attractors of 

M2, whose two circuits (tangential in 23) have respectively 

as signs sup(sA,sB)sC and sup(sA,sB)sD, with x200(t) = x20(t). 

 

Proof. Let us consider an attractor of N1, for which x10(t) = 

[sB × x13(t-B)] ∨ [sD × x13(t-D)]. If we identify x10(t) and 

x20(t), then, if x13(0) = x23(0), this attractor is an attractor of 

M2, where the 2 circuits (tangential in 23) have respectively 

as signs sup(sA,sB)sC and sup(sA,sB)sD and x200(t) = x20(t).  

 

Proposition 4.3. The attractors of N2, with the coupling 

x200(t) = x20(t), are characterized by the property (P) on 

their length (or period) p: 

- if sB × sD = 1 (resp. sA × sC  = 1), we have:  

p divides (sup(B,D) - inf(B,D)) ⇔ p(sup(B,D) - 

inf(B,D)) (resp. p divides (sup(A,C) - inf(A,C))⇔ 

p(sup(A,C) - inf(A,C)) 

- if sB × sD = -1 (resp. sA × sC  = -1), p does not divide 

(sup(B,D) - inf(B,D)) and p divides 2(sup(B,D) - 

inf(B,D))   ⇔ ¬[p(sup(B,D) - inf(B,D))]∧ p2(sup(B,D) 

- inf(B,D)) (resp. p does not divide (sup(A,C) - inf(A,C)) 

and p divides 2(sup(A,C) - inf(A,C))   ⇔ ¬[p(sup(A,C) - 

inf(A,C))]∧ p2(sup(A,C) - inf(A,C))) 

 

Proof. If p denotes the length (or period) of an attractor of 

N2, with the coupling x200(t) = x20(t),  then we have: 

∀ t ≥ 1, x200(t)=x20(t)⇔∀ t ≥ 1, sB × x23(t-B) = sD × x23(t-D) 

⇔ ∀ t ≥ 1, x23(t) = sB sD x23(t+B -D), and 

∀ t ≥ 1, x200(t)=x20(t)⇔∀ t ≥ 1, sA × x23(t-A) = sC × x23(t-C) 

⇔ ∀ t ≥ 1, x23(t) = sA sC x23(t+A -C) 

Hence, we have, if sB × sD=1: x200(t) = x20(t) ⇔ ∀ t ≥ 1,  

x23(t) = x23(t+ sup(B,D) - inf(B,D))  

⇔ ∀ t ≥ 1, p(sup(B,D) - inf(B,D)). 

The proof in the case sB × sD = -1 is similar.   



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Immunetworks (from [19]) ruling RAG-1, a Recombination Activating protein G responsible in human and mouse for the regulation of the 

rearrangements V(D)J creating the genes of the lymphocyte T receptors TCRα [20-25]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 5: Top: Number of attractors for intersecting negative circuits of respective size r and l.  Number of attractors of length p for isolated circuits of size n 



V. APPLICATION TO IMMUNETWORKS 

 

The previous results can be applied to real biological genetic 

networks like the “immunetworks” controlling the building 

of the immune genome in mammals (made of the genes of 

the TCR-α and -β and of the chains CD3-δ, -ε and -γ). The 

creation of the immune genes come from rearrangements of 

the chromosome 14 ruled by an enzyme, the RAG-1 

(Recombination Activating protein G), controlled by a 

specific network having two negative circuits (of sign -1, i.e. 

having an odd number of inhibitions), one of length 6 (in 

blue on Figure 2) and the other of length 2 (in red on Figure 

2). By calculating the number of attractors brought by these 

circuits intersecting on gene PU.1, we see that this number 

is reduced from 6 (blue on Table 5 bottom) if the circuits 

were isolated, or 16 (green on Table 5 bottom) if the circuits 

are added to form an unique circuit, to only 1 (green on 

Table 5 top). The prediction by the model is then in this case 

that the only attractor brought by the network controlling the 

RAG-1 expression has been possibly selected during the 

evolution for having only two behaviours: i) the RAG-1 is 

expressed and ii) the RAG-1 is inhibited by micro-RNAs, 

notably has-miR 30 in human.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Regulation of intersecting circuits with chromatine-dependent 

non-homogeneous updating 

 

VI. CONCLUSION 

 

We given in this paper mathematical results necessary to 

understand the asymptotic (attractor) behaviour of genetic 

networks. Some behaviours induce difficult mathematical 

problems, e.g., because the expression of RAG-1 authorizes 

the updating or not of the up-tree controlling the genes 

TCR-α (in red in Figure 2), its implies a state-dependent 

updating (Figure 3) constituting a real mathematical 

challenge as perspective of the present work. 
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