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The multi-scale strategy in studying b i o l o g i c a l regulatory networks analysis is based on two level of analysis. The first level is structural and consists in examining the architecture of the interaction graph underlying the network and t h e s e c o n d l e v e l i s functional and analyse the regulatory properties of the network. We apply this dual approach to the "immunetworks" involved in the control of the immune system. As a result, we show that the small number of attractors of these n e t w o r k s i s d u e to the presence of intersecting circuits in their interaction graphs. We obtain an upper bound of the number of attractors of the whole network by multiplying the number of attractors of each of its strongly connected components. We detect first the strongly connected components in the architecture of the interaction digraph of the network. Secondly, we study the dynamical function of the attractors by looking further inside these components, notably when they form circuits (intersecting or not).

I. INTRODUCTION

The theory of biological regulatory networks is born parallelly to that of neural networks [START_REF] Delbrück | Discussion, in: Unités biologiques douées de continuité génétique[END_REF][START_REF] Thomas | On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations[END_REF][START_REF] Kauffman | The Origins of Order[END_REF] and is now a research topic of intense activity for interpreting the "omic" data from the bio-arrays devices. The networks are made of elements (genes, proteins, neurons,...) in interaction and the central tool used for representing these interactions is a directed graph (digraph), called interaction graph, whose signed arrows (positive or negative) are related to the influence (activation or inhibition) exerted by an element (repressor or inducer) on another. Researches have focused on modelling real genetic networks of size n, with about 2n interactions networks, for which many authors have noticed that the number of attractors observed experimentally (i.e., the number of their different possible temporal asymptotic behaviours such as fixed or cyclic configurations of expressed and/or silent genes) is relatively small, of the order of magnitude √n. We will see in this paper that we can relate this small number of empirical attractors to the existence of intersecting circuits inside the architecture of the network. The attractors number is crucial in applications because it is related to the number of differentiation fate possibilities of the cells controlled by the network [START_REF] Delbrück | Discussion, in: Unités biologiques douées de continuité génétique[END_REF].

In an arbitrary network, besides nodes belonging to circuits, all other nodes belong to trees that are either down-trees (i.e., that have no influence on the rest of the network), or up-trees (i.e., that undergo no influence from the rest of the network and only eventually act punctually on i t b y allowing or disallowing it to have its own dynamics), or trees that connect nontrivial strongly connected components and only serve as information pathways. Now the theory of the random networks [START_REF] Demongeot | On the number of attractors of Boolean automata[END_REF][START_REF]General Iteration graphs and Boolean automata circuits[END_REF] enables us to predict exactly the number of isolated and intersecting circuits, as well as the number of up-a n d d o w n -trees. Therefore, in order to estimate the number of attractors in an arbitrary network, one may focus on the dynamics that is induced by the underlying circuits of the network. In a Section 2, we will introduce basic concepts about random Boolean graphs and networks. After we will focus on the crucial problem of sampling these networks in order to count their attractors. In Section 4, we give new results about intersecting circuits and we apply these results to the "immunetworks", i.e., the genetic regulatory networks used for creating and controlling the immune genome [START_REF] Thuderoz | Immunetworks" I, attractors and intersecting circuits[END_REF].

II. RANDOM GRAPHS AND RANDOM BOOLEAN NETWORKS

Let us focus now on how one may build the underlying digraph representing the architecture of a random network. Assuming we want to keep the connectivity c (mean number of oriented interactions coming to a node) of the digraph constant, it is possible to choose the interaction arcs according to various probability distributions that respect this connectivity [START_REF] Bollobas | Random Graphs[END_REF][START_REF] Wormald | The asymptotic distribution of short cycles in random regular graphs[END_REF]. For instance, focusing on d-regular digraphs (the number of non oriented interactions per node being constant equal to d), in order to obtain a digraph of connectivity c equal to 2d/3 [START_REF] Demongeot | Robustness of regulatory networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic[END_REF], one may choose uniformly at random a d-regular digraph in the set of all d-regular digraphs. Using an d-regular non-oriented graph having m=nd/2 e d g e s , o n e m a y a l s o c o n s t r u c t a d i g r a p h o f connectivity c if d is chosen equal to 3c/2 [START_REF] Demongeot | Robustness of regulatory networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic[END_REF]. Let X s denote the random variable representing the number of (nonoriented) cycles of length s in a random d-regular graph of size n. In [START_REF] Mckay | Short cycles in random regular graphs[END_REF][START_REF] Fox | From topology to dynamics in biochemical networks[END_REF][START_REF] Aldana | A natural class of robust networks[END_REF], it is s h o w n t h a t X s , for 3≤ s≤ g, is asymptotically distributed as independent Poisson variable with mean equal to (d-1) s /2s=(3c-2) s /s2 s+1 (2 s-1 /s, if c=2), with d=d(n) and g=g(n) allowed to increase with n, provided that: (d-1) 2g-1 =o(n). Hence we have: g=[Log 2 [o(n)]+1]/2, if c=2, which holds for g ≤ 5, if n=22.10 3 ≈2 14. 5 and o(n)=n 2/3 . When d=3, the graph yields on average 2s-1/ s cycles of length s. To construct a signed digraph from a d-regular non-oriented graph, each edge of the graph is replaced by one or two signed arcs (loops are counted twice). Hence, each cycle of the d-regular graph may yield at most two circuits in the digraph.

III. NETWORK SAMPLING FROM M I N I M A L REPRESENTATION

In order to avoid the over-representation of certain graphs in the random sampling of Boolean Hopfield-like threshold networks, a representation using minimal vectors made of the parameters (weights and thresholds) has been proposed [START_REF] Demongeot | Robustness in neural and genetic networks[END_REF][START_REF] Ben Amor | Structural Sensitivity o f N e u r a l a n d G e n e t i c N e t w o r ks[END_REF][START_REF] Elena | Interaction motifs in regulatory networks and structural robustness[END_REF][START_REF] Elena | Motifs in regulatory networks and their structural robustness[END_REF][START_REF] Elena | Robustesse des réseaux d'automates à seuil[END_REF][START_REF] Glade | Determination, optimization and taxonomy of regulatory networks. The example of Arabidopsis thaliana flower morphogenesis[END_REF]. This sampling methodology allows a non biased representation of the attractors in a given category of networks. For e x a m p l e , T a b l e 1 g i v e s t h e n u m b e r o f attractors for networks of size n=3,…,6 for the different categories: Cy (resp. Fi; Mi) networks having only limit cycles (resp. only points remaining fixed; both fixed points and cycles) as attractors for any updating modes going from the synchronous to the sequential ones, and Ev networks whose nature of attractors (cycles or fixed points) depends on the updating mode and therefore passing through the previous categories when this mode evolves. The attractor number of isolated circuit has been extensively studied in [START_REF] Demongeot | On the number of attractors of Boolean automata[END_REF] and applied in [START_REF] Demongeot | Robustness of regulatory networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic[END_REF].

Intersecting circuits

The attractor number of intersecting circuit has been extensively studied in [START_REF]General Iteration graphs and Boolean automata circuits[END_REF] and applied in [START_REF] Demongeot | Robustness of regulatory networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic[END_REF]. By looking on the networks of the Figure 1, we see that each is made of 4 main paths of opposite sense: two are up, A and C, and two down, B and D, of respective lengths  A ,  B ,  C ,  D , and parity s A , s B , s C , s D , equal to 1 (resp. -1), if they have an even (resp. odd) number of negative arcs: s A = Π a∈A s a , where the sign s a of the arc a of A is equal to -1 if a is negative (inhibition) and 1 if a is positive (activation). For example, in Figure 1, the path A of N 1 is such as  A =3 and s A =-1. The main paths have in N 1 two common nodes, 10 and 13, and in N 2 only one common node 23. Finally, N 1 having only 4 paths having two common nodes, there are 6 combinations two by two of the 4 possible circuits (A,B), (B,C), (C,D) and (A,D), each circuit circuit like (A,C) having the parity s A,C = s A s C . As a conjecture, we can say that two intersecting circuits both managing to cycle together may not induce more attractors than would any of the two circuits if they were isolated. In addition, the period of any attractor induced by the intersection is no greater than the largest period of an attractor induced by a circuit of size that of the largest circuit encircling the two intersecting circuits (if it were isolated). The Propositions 4.1. to 4.3. below make more precise the context of the Conjecture, which could become: the number of attractors of N 1 is less than the number of attractors of N 2 , whose two circuits (tangential in 23) have respectively as signs sup(s A ,s B )s C and sup(s A ,s B )s D , with x 200 (t) = x 20 (t), and the proof is then given in the Proposition 2.

Let us now consider the Hamiltonian H of a circuit (A,C) as defined by:

H(A,C)(t) = ∑ i∈(A,C) (x i (t) -x i (t-1)) 2 = ∑ i∈(A,C) (s i(i-1) x i-1 (t-1) - x i (t-1)) 2 =∑ i∈(A,C) (s (i-1)i x i-1 (t-1)-x i (t-1)) 2
The Hamiltonian H(A,C) is equal to twice the sum of the kinetic energies over all nodes of the circuit (A,C), and is equal to the frustration of (A,C), i.e., to the number of couples of successive nodes whose states are such as the second one is not equal to the predicted by the first one. The conservation of kinetic energy is for example ensured in continuous Hamiltonian systems like the simple pendulum, for which the dynamical differential equations are: and its Hamiltonian equals (x 2 +y 2 )/2, i.e., the kinetic energy. For example, for a positive circuit of size n=8, we have the following even values of frustration (they are odd for a negative circuit) and the number of frustration configurations (table 2), with the corresponding number and length of attractors (fixed state configurations or limit cycles of state configurations): For a positive circuit of size n=6, we have the following even values of frustration and the number of frustration configurations (Table 3), with the corresponding number and length of attractors (fixed state configurations or limit cycles of state configurations): For a positive circuit of size n=4, we have the following even values of frustration and the number of frustration configurations (Table 4), with the corresponding number and length of attractors (fixed state configurations or limit cycles of state configurations): We will try now to solve in the Propositions 4.1. to 4.3. the two questions: Are the attractors of the network N 2 , with the coupling x 200 (t) = x 20 (t), identical to the attractors of N 1 ? and What are the constraints about the period of these attractors? Proof. From an initial condition identical for N 1 and N 2 , where x 200 (0) = x 20 (0) = x 10 (0), the trajectories are the same for all nodes, if x 200 (t) = x 20 (t), for any t ≥ 1. For the node 10 of the network N 1 , we have, if the mixing rule is monotonic, e.g., ∨ in N 1 and N 2 (the reasoning would be the same, if the rule is ∧ or any composition of ∨ and ∧):

H (frustration)
H (frustration) Configuration Nb Attractor Nb Attractor Length 0 1 2 fixed points 1 2 3 = C n -H +2 H -1 /2 5 6 4 2 3 ( symmetrized) 3 = C H +2 n -H -1 /2 4 4 6 6 1 1 2
H (frustration) Configuration Nb Attractor Nb Attractor Length 0 1 2 fixed points 1 2 2 = C n -H +2 H -1 /2) 3 4 4 1 1 2
x 10 (t) = [s B × x 13 (t- B )] ∨ [s D × x 13 (t- D )] x 200 (t) = s B × x 23 (t- B ) and x 20 (t) = s D × x 23 (t- D ) By imposing x 200 (t) = x 20 (t), for any t ≥ 1, then s B × x 23 (t- B ) = s D × x 23 (t- D )
, and we have in the network N 1 :

x 10 (t) = [s B × x 13 (t- B )] ∨ [s D × x 13 (t- D )] = x 200 (t) = x 20 (t)
By recurrence on t, this common value for x 10 (t), x 200 (t) and x 20 (t) is equal to: s B × x 13 (0) = s B × x 23 (0), for any t=k B , with k ≥ 0. The same reasoning can be made for t ≡ 1,..., B -1 (mod  B ). Then, the trajectories being the same, the attractors of N 2 , with the coupling x 200 (t) = x 20 (t), are attractors of N 1 . Remark: let us note that, if  D = B , that imposes, for observing the equality x 200 (t) = x 20 (t), the constraint s D = s B ; if not, the attractors of N 1 are not attractors of N 2 , with x 200 (t) = x 20 (t), and the converse of the Proposition 1. is then not available. But we have the following result: 

) -i n f ( B , D )) ⇔ p(sup( B , D ) - inf( B , D )) (resp. p divides (sup( A , C ) -i n f ( A , C ))⇔ p(sup( A , C ) -inf( A , C )) -if s B × s D = -1 (resp. s A × s C = -1), p does not divide (sup( B , D ) -i n f ( B , D )) and p divides 2(sup( B , D ) - inf( B , D )) ⇔ ¬[p(sup( B , D ) -inf( B , D ))]∧ p2(sup( B , D ) -inf( B , D )) (resp. p does not divide (sup( A , C ) -inf( A , C )) and p divides 2(sup( A , C ) -inf( A , C )) ⇔ ¬[p(sup( A , C ) - inf( A , C ))]∧ p2(sup( A , C ) -inf( A , C )))
Proof. If p denotes the length (or period) of an attractor of N 2 , with the coupling x 200 (t) = x 20 (t), then we have:

∀ t ≥ 1, x 200 (t)=x 20 (t)⇔∀ t ≥ 1, s B × x 23 (t- B ) = s D × x 23 (t- D ) ⇔ ∀ t ≥ 1, x 23 (t) = s B s D x 23 (t+ B - D ), and ∀ t ≥ 1, x 200 (t)=x 20 (t)⇔∀ t ≥ 1, s A × x 23 (t- A ) = s C × x 23 (t- C ) ⇔ ∀ t ≥ 1, x 23 (t) = s A s C x 23 (t+ A - C ) Hence, we have, if s B × s D =1: x 200 (t) = x 20 (t) ⇔ ∀ t ≥ 1, x 23 (t) = x 23 (t+ sup( B , D ) -inf( B , D )) ⇔ ∀ t ≥ 1, p(sup( B , D ) -inf( B , D )
). The proof in the case s B × s D = -1 is similar.  

APPLICATION TO IMMUNETWORKS

The previous results can be applied to real biological genetic networks like the "immunetworks" controlling the building of the immune genome in mammals (made of the genes of the TCR-α and -β and of the chains CD3-δ, -ε and -γ). The creation of the immune genes come from rearrangements of the chromosome 14 ruled by an enzyme, the RAG-1 (Recombination Activating protein G), controlled by a specific network having two negative circuits (of sign -1, i.e. having an odd number of inhibitions), one of length 6 (in blue on Figure 2) and the other of length 2 (in red on Figure 2). By calculating the number of attractors brought by these circuits intersecting on gene PU.1, we see that this number is reduced from 6 (blue on Table 5 bottom) if the circuits were isolated, or 16 (green on Table 5 bottom) if the circuits are added to form an unique circuit, to only 1 (green on Table 5 top). The prediction by the model is then in this case that the only attractor brought by the network controlling the RAG-1 expression has been possibly selected during the evolution for having only two behaviours: i) the RAG-1 is expressed and ii) the RAG-1 is inhibited by micro-RNAs, notably has-miR 30 in human. We given in this paper mathematical results necessary to understand the asymptotic (attractor) behaviour of genetic networks. Some behaviours induce difficult mathematical problems, e.g., because the expression of RAG-1 authorizes the updating or not of the up-tree controlling the genes TCR-α (in red in Figure 2), its implies a state-dependent updating (Figure 3) constituting a real mathematical challenge as perspective of the present work.
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 1 Figure 1 : number of attractors for networks of size 3 to 6 depending on their attractor classLet us notice that the order of magnitude of √n for the attractor number is respected, despite of the fact that the networks have been sampled in the whole set of networks of size n, without respecting the connectivity 2.
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  IV. ATTRACTORS OF INTERSECTING CIRCUITS4.1. Tangential circuits

Figure 1 .

 1 Figure 1. The two coupled networks (left N1 and right N2) are each made of the sub-networks, whose vertices (or nodes) are denoted respectively ij and i0k (i=1,2; j=0,1,2,3,4,5; k=0,1,2)

  dx/dt = y and dy/dt = -x

Proposition 4 . 1 .

 41 The attractors of the network N 2 , with the coupling x 200 (t) = x 20 (t), are attractors of N 1 .

Proposition 4 . 2 .Proposition 4 . 3 .

 4243 The attractors of N 1 are the attractors of M 2 , whose two circuits (tangential in 23) have respectively as signs sup(s A ,s B )s C and sup(s A ,s B )s D , with x 200 (t) = x 20 (t). Proof. Let us consider an attractor of N 1 , for which x 10(t) = [s B × x 13 (t- B )] ∨ [s D × x 13 (t- D )]. Ifwe identify x 10 (t) and x 20 (t), then, if x 13 (0) = x 23 (0), this attractor is an attractor of M 2 , where the 2 circuits (tangential in 23) have respectively as signs sup(s A ,s B )s C and sup(s A ,s B )s D and x 200 (t) = x 20 (t).  The attractors of N 2 , with the coupling x 200 (t) = x 20 (t), are characterized by the property (P) on their length (or period) p: -if s B × s D = 1 (resp. s A × s C = 1), we have: p divides ( sup( B , D

Figure 2 :

 2 Figure 2: Immunetworks (from[START_REF] Georgescu | A gene regulatory network armature for T lymphocyte specification[END_REF]) ruling RAG-1, a Recombination Activating protein G responsible in human and mouse for the regulation of the rearrangements V(D)J creating the genes of the lymphocyte T receptors TCRα[START_REF] Pasqual | Quantitative and Qualitative Changes in ADV-AJ Rearrangements During Mouse Thymocytes Differentiation: Implication For a Limited TCR ALPHA Chain Repertoire[END_REF][START_REF] Baum | IMGT/GeneInfo : enhancing V(D)J recombination database accessibility[END_REF][START_REF] Thuderoz | From the TCRAD rearrangement quantification to the computational simulation of the locus behavior[END_REF][START_REF] Fuschiotti | Quantitative analysis of ADV families utilization in mouse CD4+ and CD8+ T cell subpopulations in the thymus and periphery[END_REF][START_REF] Simonet | Modelling Rearrangements Mechanisms in Immune Genome. Toward a prediction tool[END_REF][25] 

Figure 3 :

 3 Figure 3: Regulation of intersecting circuits with chromatine-dependent non-homogeneous updating VI. CONCLUSION

Table 2 :

 2 Values of Hamiltonian energy, attractor number and length (n =8)

		Configuration Nb	Attractor Nb	Attractor Length
	0	1		2 fixed points	1
	2	4 = C n -H +2 H -1	/2	7	8
	4			3	4 (symmetrized)
		10 = C n -H +2 H -1 /2		
	4			16	8
	6	4 = C H +2 n -H -1 /2	7	8
	8	1		1	2

Table 3 :

 3 Values of Hamiltonian energy, attractor number and length (n =6)

Table 4 :

 4 Values of Hamiltonian energy, attractor number and length (n =4)