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Impact of contamination on training and test error rates in

statistical clustering

C. Ruwet1 and G. Haesbroeck

University of Liège

Abstract

The k-means algorithm is one of the most common nonhierarchical methods of clus-

tering. It aims to construct clusters in order to minimize the within cluster sum of

squared distances. However, as most estimators defined in terms of objective func-

tions depending on global sums of squares, the k-means procedure is not robust with

respect to atypical observations in the data. Alternative techniques have thus been

introduced in the literature, e.g. the k-medoids method. The k-means and k-medoids

methodologies are particular cases of the generalized k-means procedure. In this pa-

per, focus is on the error rate these clustering procedures achieve when one expects

the data to be distributed according to a mixture distribution. Two different defini-

tions of the error rate are under consideration, depending on the data at hand. It is

shown that contamination may make one of these two error rates decrease even under

optimal models. The consequence of this will be emphasized with the comparison of

influence functions and breakdown points of these error rates.

Key words and phrases: Clustering analysis, Error rate, Generalized k-means, Influ-

ence Function, Principal points, Robustness.

1 Introduction

Cluster analysis is useful when one wants to group together similar objects. When using

nonhierarchical procedures, the number of groups is fixed and must be chosen beforehand.
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cruwet@ulg.ac.be - tel : 04/366.94.06 - fax : 04/366.95.47

1

Page 2 of 45

URL: http://mc.manuscriptcentral.com/lssp E−mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics − Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review O
nly

This number will be set to k throughout the text. Then, starting with an initial partition

of the objects into k groups, nonhierarchical cluster algorithms proceed iteratively in order

to assign each object to the closest cluster (the closeness being assessed by a given distance

between the object and the center of the cluster). The usual output of these algorithms

consists of k centers, each of which defines naturally a corresponding cluster as the region

enveloping the points closest to that particular center. More about the basic ideas of

nonhierarchical methods can be found in most textbooks on multivariate analysis (e.g.

Johnson and Wichern, 2007).

As mentioned above, the result of a nonhierarchical clustering method can be given via

a set of k points containing the k centers. The most common nonhierarchical clustering

technique is probably the k-means algorithm which aims to find k centers in order to mini-

mize the sum of the squared Euclidean distances between the observations assigned to a

cluster and the mean of this cluster. However, in this paper, following Garćıa-Escudero and

Gordaliza (1999), focus is on a generalization of this algorithm: the generalized k-means

algorithm. The main idea is to replace the quadratic penalty function by another penalty

function applied to the Euclidean distances. This penalty function, Ω : R
+ → R

+, is

assumed to be continuous, nondecreasing and such that Ω(0) = 0 and Ω(x) < limy→∞Ω(y)

for all x ∈ R
+.

As this paper focuses on the study of influence functions, it is necessary to derive the

functional forms of the estimators under consideration. As far as the k-means procedure is

concerned, the functional form of the centers simply correspond to the principal points in-

troduced by Flury in 1990. In the more general setting where the penalty function Ω is used,

the statistical functionals characterizing the centers are given by T1(F ), . . . , Tk(F ) ∈ R
p

which are solutions of the minimization problem

{T1(F ), . . . , Tk(F )} = argmin
{t1,...,tk}⊂Rp

∫

Ω

(

inf
1≤j≤k

‖x− tj‖

)

dF (x) (1)

for those distributions F for which this integral exists. These statistical functionals T1(F ),

. . ., Tk(F ) will be called generalized principal points. Taking Ω(x) = x2 yields the classical

principal points of the distribution F while Ω(x) = x gives so-called k-medoids principal

2
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points of F . Existence, consistency and asymptotic normality of these generalized principal

points were treated by Cuesta-Albertos and Matrán (1988) and Pollard (1981 and 1982).

Garćıa-Escudero and Gordaliza (1999) derived robustness properties of the generalized

principal points in the particular case of univariate data to be clustered into two groups.

For example, they showed that any Ω function with a bounded derivative yields a bounded

influence function for the estimators T1(F ) and T2(F ).

Assuming that T1(F ), . . . , Tk(F ) are the generalized principal points of the distribution

F, clusters, denoted as C1(F ), . . . , Ck(F ), can be constructed. The jth cluster consists of

the region of points closer to Tk(F ) than to any other center, the closeness being assessed

by the penalty function Ω. If ω(x) denotes the gradient of Ω(‖x‖) (when it exists), the

first-order conditions corresponding to the minimization problem (1) are given by

∫

Ci(F )

ω(x− Ti(F ))dF (x) = 0 i = 1, . . . , k (2)

showing that the generalized principal points are the ω-means, in the sense of Brøns et al.

(1969), of the corresponding clusters. This property will be referred to as property (P)

in the sequel. For example, if Ω(x) = x2, ω(x) = 2x and the first order conditions simply

imply that the principal points Ti(F ) are the means on the clusters Ci(F ) for i = 1, . . . , k.

When the gradient of Ω(‖x‖) does not exist for a finite number of points, the integral in

(2) has to be split into a sum of integrals but property (P) still holds.

When clusters are constructed, one is often interested in describing the characteristics

of the observations they contain. The clustering rule corresponding to the generalized k-

means problem (1), denoted by RGkM

F , associates any x ∈ R
p to a cluster Cj(F ) as follows:

RGkM

F (x) = j ⇔ j = argmin
1≤i≤k

Ω(‖x− Ti(F )‖). (3)

Clustering is often confused with classification. However, there is some difference be-

tween the two. In classification, the objects to classify are assigned to pre-defined classes,

whereas in clustering the classes are also to be defined. However, when a cluster analy-

sis is performed on a mixture distribution, it is usually referred to as a statistical cluster

analysis (e.g. Fraley and Raftery, 2002, Gallegos and Ritter, 2005, Qiu and Tamhane,

3
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2007 or Garćıa-Escudero et al., 2008). This is the context considered in this paper. The

underlying distribution F will therefore be assumed to be a mixture distribution of k dis-

tributions F1, . . . , Fk with prior probabilities π1(F ), . . . , πk(F ), i.e. F =
∑k

i=1 πi(F )Fi.

Each mixture component represents a sub-population which is denoted by Gi, i = 1, . . . , k.

These sets Gi can be characterized by the values of a latent random variable, Y , yielding

the membership, i.e. Gi = {x : Y (x) = i}. In this setting, one hopes to end up with

clusters representing the different sub-groups. In this sense, an error rate might be defined

to measure, as in classification, the performance of the clustering. Often, in practice, error

rates are assessed on test data while the estimations are derived on training data, yielding

the so-called test set error rate. In some applications however (e.g. Dučinskas, 1995 or

Mansour and McAllester, 2002), training set error rates are computed, meaning that the

same data are used for deriving the estimations and for measuring the classification per-

formance. It is well known that in the latter case, the error rate is underestimated. The

aim of the paper is to analyze the impact of contamination on this training set error rate

by means of influence functions and compare the behavior of the training set error rate

with that of the test set error rate.

The paper is organized as follows. Section 2 derives the statistical functionals cor-

responding to the test and training error rates of the generalized k-means classification

procedure and investigates their behavior graphically. In Section 3, the first order influ-

ence function of the training error rate is derived and compared with the influence function

of the test error rate computed in Ruwet and Haesbroeck (2010). Finally, Section 4 defines

the breakdown point of these two error rates and uses simulations to illustrate to compare

them on finite samples.

4
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2 Training and test error rates

2.1 Statistical functionals

Any classification rule is bound to misclassify some objects. As mentioned in the Intro-

duction, a measure of classification performance is often defined in terms of the error rate

which corresponds to the probability of misclassifying observations distributed according

to a given probability measure. When both the rule and the performance are derived on

the same distribution, a training error rate is obtained while a test error rate is based on

two distributions, a training distribution and a test (or model) distribution.

Let us now define the statistical functionals associated to the two types of error rates.

First, note that all the distributions considered in this paper are mixtures, with the implicit

assumption that any observation x distributed according to the ith component of the

mixture, Fi, belongs to an underlying sub-group Gi.

The test error rate consists of setting up the clustering rule using a training distribution,

F =
∑k

i=1 πi(F )Fi, and testing the quality of this rule on a test (or model) distribution,

Fm =
∑k

i=1 πi(Fm)Fm,i. The corresponding statistical functional can therefore be written

as follows:

ER(F, Fm) =
k

∑

j=1

πj(Fm)IPFm,j
[RGkM

F (X) 6= j]. (4)

On the other hand, for the training error rate, the same distribution is used to compute

and evaluate the rule leading to the following statistical functional:

ER(F, F ) =
k

∑

j=1

πj(F )IPFj
[RGkM

F (X) 6= j]. (5)

In the sequel, the test error rate will be denoted by TER while ER will refer to the training

error rate. Moreover, as ER depends only on one distribution, it will be simply denoted

as ER(F ).

5
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2.2 Optimality

A classification rule is said to be optimal if its error rate reaches the same error rate as the

Bayes rule (BR) given by:

RBR

F (x) = j ⇔ πj(F )fj(x) > πi(F )fi(x) ∀i 6= j

where f1, . . . , fk are the densities (whose existence is assumed) corresponding to F1 . . . , Fk.

In the context of univariate data to be clustered into two groups, assuming that the

penalty function Ω is strictly increasing, the clustering rule (3) leads to the following

estimated clusters:

C1(F ) =
{

x ∈ R : |x− T1(F )| < |x− T2(F )|
}

=

]

−∞,
T1(F ) + T2(F )

2

[

(6)

C2(F ) =

]

T1(F ) + T2(F )

2
,∞

[

(7)

assuming, w.l.o.g., that T1(F ) < T2(F ). Classification based on the generalized principal

points is therefore quite straightforward. One simply needs to check where an observation

lies w.r.t. the threshold C(F ) = (T1(F ) + T2(F ))/2. Qiu and Tamhane (2007) have

proved that the generalized 2-means procedure with Ω(x) = x2 (classical 2-means method)

is optimal under a mixture of two homoscedastic normal distributions with equivalent

weights, i.e. under the model

(N)FN ≡ 0.5N(µ1, σ
2) + 0.5N(µ2, σ

2) with µ1 < µ2.

Model (N) will be refereed to as the optimal normal mixture. This optimality result can

be extended to all generalized 2-means method as Proposition 1 below shows.

Proposition 1. Under model (N), the cut-off point of any generalized 2-means procedure

is the midpoint of the true means, i.e. C(FN) =
µ1 + µ2

2
, where µ1 and µ2 are the means

of F1 and F2 respectively. This leads to the optimality of all generalized 2-means procedure

under (N).

The first claim is easily obtained from (2) using symmetry of (N) and the odd charac-

teristic of ω while the second is only due to the fact that µ1+µ2

2
is the cut-off point of the

Bayes rule under (N).

6
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It is worth mentioning that adaptations of the k-means procedure have been suggested

in the literature (see e.g. Symons, 1981) to reach optimality under unbalanced normal

mixtures. As we do not wish to restrict the computation of the influence function to the

normal setting, these adapted criteria are not used here.

2.3 Error rate under contamination

In ideal circumstances, the training and test distributions are identical and thus the two

error rates (4) and (5) coincide. In practice however, data often contain outliers and these

will affect the training distribution, while the test distribution may be assumed to remain

unchanged. When contamination is present, the training distribution F would be better

represented as a contaminated distribution Fε = (1 − ε)F + εH, which corresponds to a

proportion 1−ε of data distributed according to the model while the remaining fraction, ε, is

contaminated (i.e. comes from another distribution). When computing influence functions,

the distribution H of interest consists of a Dirac distribution ∆x having all its mass at the

point x, yielding the so-called point-mass contamination. This is the particular case of Fε

which is considered from now on. In this case, the contaminated prior probabilities are

given by

πi(Fε) = (1− ε)πi(F ) + εδi(x) (8)

where δi(x) = I{x ∈ Gi}, which equals 1 if x ∈ Gi and 0 otherwise. Indeed, since clean

data arise with a probability 1 − ε, the probability of getting clean data from the ith

group is (1− ε)πi(F ). A mass ε is then added to the contaminated group from which the

outlier comes. Also, following Croux, Filzmoser and Joossens (2008), the contaminated

conditional distributions take the form

Fε,i = (1− λi,x(ε))Fi + λi,x(ε)∆x with λi,x(ε) =
εδi(x)

πi(Fε)
(9)

yielding the following natural decomposition of Fε: Fε = π1(Fε)Fε,1 + π2(Fε)Fε,2. Under

point-mass contamination, the contaminated model Fε remains a mixture distribution.

When working with the test error rate, even if the rule may be corrupted by being

estimated on a contaminated training distribution, the error rate is evaluated on the test

7
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distribution assumed to be clean and with prior probabilities unaffected by the contami-

nation (in practice, they are usually estimated assuming a prospective sampling scheme).

Therefore, under contamination, the statistical functional TER, as defined in (4), becomes

TER(Fε, Fm) =
k

∑

j=1

πj(Fm)IPFm,j[R
GkM

Fε
6= j], (10)

where only the rule shows a dependence on the contaminated distribution Fε. When

working with the training error rate, it is not only the rule which is corrupted but also

the whole definition of the error rate, including the prior probabilities, as the following

expression, corresponding to equation (5), shows :

ER(Fε) =
k

∑

j=1

πj(Fε)IPFε,j
[RGkM

Fε
6= j]. (11)

As in Garćıa-Escudero and Gordaliza (1999) and Qiu and Tahmane (2007), only uni-

variate data naturally clustered into two groups (k = 2) will be considered in detail. Then,

using (6) and (7), explicit expressions for (10) and (11) may be obtained:

TER(Fε, Fm) = π1(Fm) {1− Fm,1 (C(Fε))}+ π2(Fm)Fm,2 (C(Fε)) (12)

and

ER(Fε) = π1(Fε) {1− Fε,1 (C(Fε))}+ π2(Fε)Fε,2 (C(Fε)) (13)

where Fε,i and πi(Fε), i = 1, 2, are given in (8) and (9).

Figures 1 and 2 illustrate the behavior of these error rates w.r.t. the mass of contami-

nation or w.r.t the position of the contamination under model (N) with µ1 = −1, µ2 = 1

and σ = 1. More precisely, Figure 1 represents (12) and (13) for x ∈ G1 and fixed to −0.5

while Figure 2 represents these quantities for x ∈ G1 and ε fixed to 0.1. In both figures,

the plots on the first row correspond to the 2-means clustering method while the second

row is based on the 2-medoids procedure. Also, the first columns describe the behavior

of the test error rate while the second columns concern the training one. In all plots, the

solid line gives the optimal ER (equal to Φ(−∆/2) where Φ stands here for the standard

normal cdf and ∆ is the distance between the true means).

8
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Figure 1: Optimal error rate (solid line) and contaminated error rate (dashed line) of the

2-means method (first row) and 2-medoids method (second row) when using TER (left

panels) and ER (right panels) as a function of the mass of contamination ε under the

optimal model (N) with µ1 = −1, µ2 = 1 and σ = 1. The contaminating observation is

set at x = −0.5 and is assumed to come from G1.

One clearly sees that contamination can only increase the error rate as soon as the

test error rate is used. The behavior is quite different for the training error rate where

contamination makes the error rate decrease as soon as it is well classified (this is clearly

illustrated in Figure 2). Indeed, by Proposition 1, the cut-off between the two clusters is at

0. Thus, when x < 0, x is in C1(FN) and is well classified. In this case, the training error

rate is smaller than the optimal error rate. As soon as x becomes positive, i.e. turns out

to be badly classified, the error rate increases and gets above the optimal one. When there

is no contamination (ε = 0), the error rate of the k-medoids procedure attains the minimal

9
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Figure 2: Optimal error rate (solid line) and contaminated error rate (dashed line) of the

2-means method (first row) and 2-medoids method (second row) when using TER (left

panels) and ER (right panels) as a function of the position of the contaminating mass

under model (N) with µ1 = −1, µ2 = 1 and σ = 1. The percentage of contamination is

set at 10% and x ∈ G1.

error rate illustrating its optimality under FN . It is also interesting to note from Figure 2

that the contaminated test error rate is the closest to the optimal error rate (without

reaching it) when x is closest to the generalized principal points, T1(FN) and T2(FN) and

that the contaminated test error rate is symmetric with respect to the vertical axis x = 0.

This means that contamination that is well or badly classified has the same impact on

that error rate. For the training error rate, local minima are observed in the neighborhood

of T1(FN) and T2(FN), but symmetry does not hold anymore. In all cases, the impact of

contamination is more important on the training error rate than on the test one.
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As mentioned before, property (P) is dependent on the training distribution F . If

F = Fm, the property holds on the test data. However, under contamination, F = Fε, or

for finite samples, F = Fn, and property (P) does not hold for Fm. Intuitively, in cluster

analysis, one would use the training error rate since only in that case the generalized

principal points fully characterize the observations in the clusters. However, it has the

drawback that contamination may improve the classification performance w.r.t. the one

achieved under optimal models.

3 Influence function of ER

Roughly speaking, influence functions (Hampel et al, 1986) measure the influence that an

infinitesimal contamination placed on an arbitrary point has on an estimator of interest.

In Ruwet and Haesbroeck (2010), the influence function of TER is derived and is shown

to vanish under the optimal model FN . Under non optimal settings, it was observed that

the influence function of TER is bounded as soon as the function ω is bounded. Moreover,

as the cut-off point tends to move towards the center of the biggest group, outliers have

a bigger influence when they are located in the smallest group. Also the closer the two

groups are, the bigger the influence of contamination on TER is. Focus here is on the

derivation of the influence function of the training error rate which is more complicated

because of the presence of ε everywhere in the expression (13). The influence function of

the statistical functional ER at the model F is defined, for those distributions for which

the derivative makes sense, by

IF(x; ER, F ) = lim
ε→0

ER(Fε)− ER(F )

ε
=

∂

∂ε
ER(Fε)

∣

∣

∣

∣

ε=0

where Fε = (1 − ε)F + ε∆x and ∆x is the Dirac distribution having all its mass at the

point x.

As the statistical functional ER is a smooth function of the functionals T1 and T2, its

influence function exists (Garćıa-Escudero and Gordaliza, 1999) and can be derived in a

straightforward way. The result is given in the following proposition (the proof is given in

11
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the Appendix).

Proposition 2. For any mixture distribution F with prior probabilities π1 and π2 and

conditional densities f1 and f2, the influence function of the training error rate of the

generalized 2-means method with loss-function Ω is given by

IF(x; ER, F ) =
1

2
(IF(x;T1, F ) + IF(x;T2, F )){π2(F )f2(C(F ))− π1(F )f1(C(F ))}

+ I{x ≤ C(F )}(1− 2δ1(x)) + δ1(x)− ER(F ) (14)

for all x 6= C(F ) where C(F ) = (T1(F ) + T2(F ))/2 and δ1(x) = I{x ∈ G1}.

The influence function (14) depends on the influence functions of T1(F ) and T2(F ).

These were computed for strictly increasing Ω functions by Garćıa-Escudero and Gordaliza

(1999). It also depends on the belonging group and on the relative position of x w.r.t. the

cut-off point.

Figures 3 to 5 illustrate the behavior of the influence function (14) under some varia-

tions of the characteristics of the two sub-populations. A mixture of normal distributions

(equivalent to model (N) but with the relaxation of the constraint π1 = π2) is selected for

the representations. More specifically, F = π1 N(−µ, σ2) + π2 N(µ, σ
2), for given values of

π1, π2 (with π1 + π2 = 1), µ and σ. Of interest is the impact on the influence function of

the group of the mass x, of the prior probabilities, of the distance between the true centers

∆ = 2µ and of the (common) dispersion within the groups, σ.

As a first general comment, one can say that, as expected, ER based on the 2-means

procedure has an unbounded influence function while that of the 2-medoids is bounded.

The impact of infinitesimal contamination is thus less harmful on this last procedure.

However, as Garćıa-Escudero and Gordaliza (1999) show, the 2-medoids procedure can still

break down when faced with a single outlier, leading to a breakdown point asymptotically

equal to zero.

The influence functions show some discontinuities: one at the cut-off C(F ) for both

Ω functions and two additional ones at T1(F ) and T2(F ) for the 2-medoids procedure.
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Figure 3: Influence functions of the training error rate of the 2-means (left panel) and 2-

medoids (right panel) methods when the model distribution is the mixture 0.2N(−1.5, 1)+

(1 − 0.2)N(1.5, 1), with a contaminating mass x assumed to come from group G1 (solid

line) or group G2 (dashed line).

These jumps come from the discontinuities already observed in the influence functions of

the generalized principal points T1 and T2.

Now, more specifically, Figure 3 shows the effect of the group to which the contamina-

tion is assigned. One can see that a misclassified x, i.e. an x value on the right of C(F )

while belonging to G1 or an x value on the left of the cut-off but belonging to G2, results

in a bigger influence than a correctly classified x. Indeed, the indicator functions in (14)

add a value 1 to the influence function when the contamination is badly classified (the

belonging group has no impact on IF(x;T1, F ) and IF(x;T2, F )). The sign of the influence

is important to take into account here. Indeed, when the influence function gets negative

for a given x, the Taylor expansion

ER(Fε) ≈ ER(F ) + εIF(x; ER, F ), for all ε small enough

implies that ER is smaller when taking the contamination into account than under the

model. This really illustrates the sensitivity of classification based on the training set

because contamination may improve the error rate. Indeed, under an unbalanced setting,

well classified observations belonging to the smallest group (i.e. negative x values in G1)

have a decreasing effect on the error rate. However, badly classified observations from
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the smallest group (positive x values in G1) increase the error rate. This behavior is also

observable for the biggest group when the group masses are not too different (π1 ≥ 0.3).

One distinguishes therefore two types of outliers: the well classified ones and the others.

Well classified outliers have a positive effect on ER while badly classified ones have a

negative effect on it. This is a similar phenomenon as in regression analysis where good

leverage points are outliers that may improve some of the regression outputs. The positive

impact of some outliers on the error rate has already been detected by Croux and Dehon

(2001) in robust linear discriminant analysis.

Figure 4 illustrates how the influence function changes with respect to varying prior

probabilities while assuming that x belongs to the first group. First, one can see that the

position of the jump corresponding to the cut-off moves towards the center of the group

with the highest prior probability, as expected. Then, as far as the 2-means is concerned,

one can notice that the slope of the influence function is positive for small values of π1

and negative for bigger values. Another comment concerns the magnitude of the slope

which is bigger (in absolute value) in the smallest group. This implies that ER based on

the 2-means procedure is more sensitive to outliers in the smallest group. The 2-medoids

method, on the other hand, keeps a similar behavior in all cases even if the IF gets bigger

in the smallest group and smaller in the biggest group as π1 increases.

It is easy to show that, in one dimension (but not in higher dimensions), the generalized

principal points are affine equivariant if and only if ω(ax) = ρ(a)ω(x) for all x ∈ R, with

ρ(a) 6= 0 for all a 6= 0, and this holds for the 2-means and 2-medoids principal points. The

error rate is then affine invariant and it does not change when one translates both centers

of the two sub-populations. However, intuitively, the error rate should decrease when the

distance between the two centers gets bigger and increase otherwise. It is then interesting to

visualize the effect of the variation of the distance between the two centers, ∆ = µ2−µ1, on

the influence function. Assuming again that x belongs to the first group, Figure 5 considers

the impact of this distance. It shows that any well classified x yields a negative influence

(for both methods) while a badly classified x results in positive influence. Moreover, with

the 2-means approach, the effect gets bigger in absolute value as the distance gets smaller

14

Page 15 of 45

URL: http://mc.manuscriptcentral.com/lssp E−mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics − Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review O
nly

−4 −2 0 2 4

−
2

−
1

0
1

2
IF of the training error rate of the 2−means

x

IF
 E

R

π1=0.2
π1=0.4
π1=0.6
π1=0.8

−4 −2 0 2 4

−
2

−
1

0
1

2

IF of the training error rate of the 2−medoids

x

IF
 E

R

π1=0.2
π1=0.4
π1=0.6
π1=0.8

Figure 4: Influence functions of the training error rate of the 2-means (left panel) and 2-

medoids (right panel) methods when the model distribution is the mixture π1 N(−1.5, 1)+

(1− π1)N(1.5, 1) for different values of π1 when x belongs to G1.

while the 2-medoids procedure behaves differently when the observation is well or badly

classified.

Similar comments hold for describing the effect of the within-group dispersion on the

error rate. The corresponding figure is therefore omitted to save space.

To close the discussion on the influence function of the training error rate, it is interest-

ing to note that the first term of (14) corresponds to the influence function of the test error

rate which vanishes under optimality (Ruwet and Haesbroeck, 2010). As a consequence,

the influence function of the training error rate simplifies under model (N) as Proposition 3

shows.

Proposition 3. Under the optimal model (N), the influence function of the training error

rate of the generalized 2-means method reduces to

IF(x; ER, FN) =







Φ
(

µ2−µ1

2σ

)

− I
{

x < µ1+µ2

2

}

if x ∈ G1

I
{

x < µ1+µ2

2

}

− Φ
(

µ1−µ2

2σ

)

if x ∈ G2

where Φ denotes here again the standard normal cumulative distribution function.

Under optimality, the influence function of ER does not vanish. This is linked to the fact

that contamination can improve ER. Furthermore, it does not depend on the Ω function
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Figure 5: Influence functions of the training error rate of the 2-means (left panel)

and 2-medoids (right panel) methods when the model distribution is 0.4N(−∆/2, 1) +

0.6N(∆/2, 1) for different values of ∆ when x belongs to G1.

under consideration anymore. As C(FN) =
µ1+µ2

2
(see Proposition 1), the influence function

only depends on the distance between the two centers and on the fact that the point x is

well or badly classified. Indeed, one has

IF(x; ER, FN) =







−Φ(−∆
2σ

) if x is well classified

1− Φ(−∆
2σ

) if x is badly classified

One can see, as before, that the influence is bigger (in absolute value) when the observation

is badly classified (since ∆ > 0) while the influence is most extreme (0 and 1) when the

distance between the groups is big. In this optimal case, the influence function of ER is

bounded for all choices of Ω.

4 Comparison at finite samples

4.1 Breakdown behavior

Classical definitions of breakdown are based on the absolute maximal bias that an estimator

can achieve under extreme contamination (e.g. Hampel, 1971 or Donoho and Huber, 1983).

Intuitively, if the bias goes to infinity, the estimator is said to have broken down. However,
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when the estimator lies in a bounded space, this definition is not appropriate and an

alternative one needs to be used. Several proposals exist. For example, He and Simpson

(1992) say that breakdown occurs when the estimator reaches one of the bounds of its

support while Genton and Lucas (2003) have argued that, in some cases, breakdown does

not occur at the bounds but somewhere in the center of the parameter space. Moreover,

according to them, breakdown is obtained when the set of possible values of the estimator

gets restricted to a finite set while, without contamination, it could lie in an infinite set.

Breakdown in the center of the parameter space is also observed for error rates. Indeed,

as soon as one observation of the training sample is sent to infinity, one of the generalized

principal points goes to infinity as well, yielding a cut-off at infinity too (Garćıa-Escudero

and Gordaliza, 1999). Therefore, one can surely agree that the whole procedure has broken

down but the achieved error rate is not equal to 1 nor to 0. When using TER, one entire

group is badly classified while the other is well classified, leading to an error rate of either

π1 or π2. When using ER, the corrupted observation is taken into account in measuring

the classification performance. Depending on its membership, the error rate will be either

π1 − 1/n, π1 + 1/n, π2 − 1/n or π2 + 1/n. This holds for any sample of size n under

consideration as soon as one observation is contaminated. This means that, while error

rates can theoretically take any value in [0, 1], under contamination, its values are restricted

to a finite set of possible values. As mentioned above, this particular behavior is considered

as breakdown in Genton and Lucas (2003). We may then conclude that both estimators

ER and TER have a breakdown point of 1/n in the sense of Genton and Lucas (2003).

This behavior is illustrated with some simulations in the next Section.

4.2 Training set versus test set error rates

Following Qiu and Tamhane (2007), the behavior of these error rates on finite samples will

now be investigated by means of simulations. The aim is to compare the so-called test set

and training set error rates with and without contamination.

In the finite sample setting, the error rates are estimated by the proportion of mis-
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classified observations (using the underlying data for the training set error rate or a test

data of size 105 for the test set error rate). Both the 2-means and 2-medoids procedures

are considered, both being optimal under a balanced mixture of normal distributions. The

data are generated according to the contaminated mixture

Fε = (1− ε)
{

π1N(−1, 1) + (1− π1)N(1, 1)
}

+ ε∆x

with, w.l.o.g., x ∈ G1. Samples of size 500 are considered with balanced (π1 = 0.5) and

unbalanced data (π1 = 0.3 and π1 = 0.7). The percentage of contamination is set at 0,

0.01 and 0.05 while the position of the contamination is ±4 or ±40. When |x| = 4 (resp.

|x| = 40), one can say that there is moderate contamination (resp. extreme contamination).

Moreover when x is negative, it is bound to be well classified by the classification rules

while x positive leads to a badly classified contamination. To simplify the report of the

results, the different settings under study can be summarized as follows:

• Case 0: ε = 0 (no contamination);

• Case 1: ε = 0.01 and |x| = 4 (1% of moderate contamination);

• Case 2: ε = 0.05 and |x| = 4 (5% of moderate contamination);

• Case 3: ε = 0.01 and |x| = 40 (1% of extreme contamination);

• Case 4: ε = 0.05 and |x| = 40 (5% of extreme contamination).

Averages over 1000 simulations of the estimated training set and test set error rates are

reported in Tables 1 and 2. For all error rates given in these tables, the maximal standard

error is 0.045. In Table 1, the contamination is well classified while the reverse holds in

Table 2. The optimal Bayes misclassification probability (denoted as Bayes in the tables)

is also given for comparison.

Without contamination (Case 0), the 2-means procedure seems to be the best. On the

other hand, the resistance to contamination of the 2-medoids method is slightly better.

Indeed, this method resists to small amounts of extreme contamination (Case 3) which is
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Table 1: Simulated ER and TER of the 2-means and 2-medoids methods for balanced and

unbalanced normal models with different kinds of badly classified contamination (case 0

to case 4 with negative values of x).

π1 Bayes Settings ER TER

2-means 2-medoids 2-means 2-medoids

0.3 0.1387 Case 0 0.1872 0.1983 0.1869 0.1985

Case 1 0.1738 0.1938 0.1746 0.1948

Case 2 0.1310 0.1718 0.1411 0.1780

Case 3 0.2900 0.1946 0.3000 0.1958

Case 4 0.2500 0.2500 0.3000 0.3000

0.5 0.1587 Case 0 0.1595 0.1600 0.1612 0.1616

Case 1 0.1580 0.1583 0.1616 0.1617

Case 2 0.1595 0.1522 0.1739 0.1634

Case 3 0.4900 0.1583 0.5000 0.1617

Case 4 0.4500 0.4500 0.5000 0.5000

0.7 0.1387 Case 0 0.1872 0.1983 0.1869 0.1985

Case 1 0.1935 0.1988 0.1957 0.2017

Case 2 0.2242 0.2023 0.2409 0.2164

Case 3 0.6900 0.1992 0.7000 0.2022

Case 4 0.6500 0.6500 0.7000 0.7000
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not the case for the 2-means method. Unfortunately, the 2-medoids procedure also breaks

down for bigger amounts of extreme contamination. This is not surprising since Section 4.1

shows that the breakdown point is null for ER and TER. The results of the simulations

show that, in practice, these estimators can resist to moderate contamination. This is not

a contradiction since the breakdown point, considering the worst possible contaminated

set-up, is a very pessimistic measure.

As soon as any of the two clustering procedures has broken down, the cut-off coincides

with x. If the contamination mass is well classified (Table 1), x = −4 or x = −40 and

all observations from G1 bigger than x are badly classified while observations from G2

are well classified. If the error rate is computed on the training sample itself (ER), the

contaminated points (x) are the only observations from G1 which are well classified. Thus

the error rate corresponds to π1 − ε. If a non-contaminated test sample is used (TER), no

observation to classify reaches x (with a probability close to 1) and all observations coming

from G1 are badly classified, leading to an error rate of π1. If the contamination mass is

badly classified (Table 2), x = 4 or x = 40 and all observations from G2 smaller than x

are badly classified while observations from G1 are well classified. As the contamination is

also badly classified, ER equals π2 + ε.

Under optimal model (π1 = 0.5), Figure 1 and Figure 2 showed that the impact of the

contamination relies on the fact that it is well or badly classified. These simulations clearly

show that this happens also at finite samples. When the procedure is not too affected by

the contamination, one observes a smaller training set error rate under contamination than

under the clean model. As expected, this is not the case for the test set error rate.

Under non-optimal models, the behavior is different if the contamination is allocated to

the smallest or the biggest group. In the first case (π1 = 0.3), the impact of contamination is

as expected: well classified outliers make the error rate decrease while badly classified ones

make it increase. When π1 = 0.7, this is not always as such. This can be explained by the

fact that the cut-off is always closer to the center of the biggest group (this was illustrated on

Figure 4). For example, let us consider the case of well classified contamination (Table 1).

Without contamination, the cut-off would be closer to the observations from G1 than to
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those of G2. Adding negative observations in G1 draws even more that cut-off towards

this group. Therefore, some well classified observations from G1 located too close to the

uncontaminated cut-off may now be above the new cut-off. Finally, the non-optimality of

the generalized 2-means procedure is clearly illustrated by the difference of its error rates

w.r.t. the error rate of the Bayes rule.

Table 2: Simulated ER and TER of the 2-means and 2-medoids methods for balanced and

unbalanced normal models with different kinds of badly classified contamination (case 0

to case 4 with positive values of x).

π1 Bayes Settings ER TER

2-means 2-medoids 2-means 2-medoids

0.3 0.1387 Case 0 0.1872 0.1983 0.1869 0.1985

Case 1 0.2073 0.2137 0.1981 0.2051

Case 2 0.3052 0.2854 0.2596 0.2397

Case 3 0.7100 0.2156 0.7000 0.2071

Case 4 0.7500 0.7500 0.7000 0.7000

0.5 0.1587 Case 0 0.1595 0.1600 0.1612 0.1616

Case 1 0.1686 0.1684 0.1617 0.1617

Case 2 0.2201 0.2069 0.1757 0.1649

Case 3 0.5100 0.1684 0.5000 0.1617

Case 4 0.5500 0.5500 0.5000 0.5000

0.7 0.1387 Case 0 0.1872 0.1983 0.1869 0.1985

Case 1 0.1814 0.1989 0.1729 0.1914

Case 2 0.1873 0.2089 0.1407 0.1670

Case 3 0.3100 0.1992 0.3000 0.1918

Case 4 0.3500 0.3500 0.3000 0.3000
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4.3 Error rate in clustering and in discrimination

Throughout this paper, it was assumed that the group membership was known. In practice

though, other classification techniques would be more appropriate in that case, cluster

analysis being mostly applied when there is no available information on the underlying

groups. Nevertheless, assuming that a classification is derived from a clustering technique,

it would be of interest to compare its error rate with the one achieved by a classical discrimi-

nant analysis. In this section, simulations will be carried out to compare the classification

performance of the generalized k-means procedure and that of Fisher discriminant analysis

and a robust version of it (obtained by using the robust Minimum Covariance Determinant

location and scatter estimators as advocated by Croux, Filzmozer and Joossens, 2008).

The chosen models for the simulations are balanced mixtures of normal distributions with

standard deviation 1 (denoted as N), Student with 3 degrees of freedom (S) or log-normal

with scale parameter 0.5 (LN) distributions (all these models translated in order to get a

center of -1 for the first group and 1 for the second one). As before, contamination (both

moderate and extreme and well and badly placed) is also considered. However, Table 3

only lists the results for extreme and well classified contamination.

Let us first consider the clean setting (case 0). Under normality, the clustering proce-

dures and Fisher analysis are equivalent. The symmetric S model leads to similar error

rates of the 2-medoids procedure and the classical Fisher discriminant rule, while the 2-

means method results in slightly bigger error rates due to the presence of some observations

in the tails. The reverse holds under the log-normal model. Under contaminated models,

one can see that the classical Fisher rule, as the 2-medoids one, resists to 1% of contami-

nation (case 3) which is not the case of the 2-means procedure. However, only the robust

version of the Fisher rule gets reasonable error rates under 5% of extreme contamination

(case 4).
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Table 3: Simulated ER and TER of the 2-means and 2-medoids methods as well as the

classical and robust Fisher discriminant rules for balanced models (normal, student and

log-normal) with different kinds of well classified contamination (negative values of x).

Models ER of Settings ER TER Fisher

Bayes 2-means 2-med 2-means 2-med classical robust

N 0.1587 Case 0 0.1595 0.1600 0.1612 0.1616 0.1607 0.1612

Case 3 0.4900 0.1583 0.5000 0.1617 0.1781 0.1612

Case 4 0.4500 0.4500 0.5000 0.5000 0.4149 0.1612

S 0.1955 Case 0 0.2082 0.1963 0.2095 0.1981 0.1977 0.1976

Case 3 0.4900 0.1945 0.5000 0.1982 0.1977 0.1976

Case 4 0.4500 0.4500 0.5000 0.5000 0.4140 0.1976

LN 0.0254 Case 0 0.0377 0.0453 0.0385 0.0459 0.0334 0.0526

Case 3 0.4900 0.0450 0.5000 0.0464 0.0688 0.0540

Case 4 0.4500 0.4500 0.5000 0.5000 0.5000 0.0570
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5 Conclusion

This paper studied the error rate as a measure of performance of a classification rule

resulting from the generalized k-means algorithm, which is a generalization of the classical

k-means procedure. Two definitions of the error rate were considered, depending on the

knowledge or not of a reference distribution, the training and test error rates.

Their influence functions have been computed under general mixture distributions in

order to measure their robustness w.r.t. small amounts of contamination. It was shown

that contamination may make the training error rate decrease even under optimal models

(balanced mixtures of normal distributions). This implies that the influence function of the

training error rate does not vanish under optimality while that is the case for the test error

rate (as expected under optimal models). The study of the influence function of the training

error rate showed that observations that are badly classified have a bigger influence than

well classified ones. Moreover, this influence is more important in the smallest group and/or

when the groups are not too far away from each other. However, the main conclusion is

that any penalty function with a bounded derivative leads to a bounded influence function

of the training error rate.

Boundedness of the influence function is one robustness characteristic but a more global

measure of robustness is given by the breakdown point. Following the definition of Genton

and Lucas (2003), ER and TER have been shown to have a breakdown point asymptotically

equal to zero. Simulations were used to illustrate the robustness of ER and TER on finite

samples and to compare the generalized k-means clustering method with Fisher’s linear

discriminant analysis. The latter was found to yield error rates which are quite comparable

to the ones attained with the 2-medoids method. Only the robust version of the Fisher’s

linear discriminant rule resists to 5% percent of extreme oultiers. To improve the resistance

of the generalized k-means procedure to contamination, Cuesta-Albertos, Gordaliza and

Matrán (1997) introduced the trimmed k-means procedure.
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Appendix

Proof of Proposition 2

By definition, IF(x; ER, F ) =
∂

∂ε
ER(Fε)

∣

∣

∣

∣

ε=0

. The following derivatives are straightfor-

ward:
∂

∂ε
πi(Fε)

∣

∣

∣

∣

ε=0

= δi(x)− πi(F ) and
∂

∂ε
λi,x(ε)

∣

∣

∣

∣

ε=0

=
δi(x)

πi(F )
.

This leads to the derivative of Fε,i(C(Fε)):

δi(x)

πi(F )
{∆x(C(F ))− Fi(C(F ))}+ fi(C(F ))

1

2
{IF(x;T1, F ) + IF(x;T2, F )}.

As

∂

∂ε
ER(Fε)

∣

∣

∣

∣

ε=0

=
∂

∂ε
π1(Fε)

∣

∣

∣

∣

ε=0

{1− F1(C(F ))} − π1(F )
∂

∂ε
Fε,1(C(Fε))

∣

∣

∣

∣

ε=0

+
∂

∂ε
π2(Fε)

∣

∣

∣

∣

ε=0

F2(C(F )) + π2(F )
∂

∂ε
Fε,2(C(Fε))

∣

∣

∣

∣

ε=0

,

one gets the influence function by plugging the derivatives of each component in this

expression. 2
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Reply to reviewer 1

First of all, we wish to thank you for your comments and helpful suggestions. See below
the responses to your specific comments.

Comment 1: You are right. We have rephrased this (page 1, two last lines).

Comment 2: This sentence has been modified as you suggested (page 2, line 15).

Comment 3: You are right again. Model-based clustering is indeed a way to perform clustering
based on a fitted mixture while we really wanted to refer to the general framework
of cluster analysis based on mixtures. The reference to “model-based clustering” has
been suppressed.

Comment 4: Your suggestion has been taken into account and a definition of the sets Gi is now
incorporated in the definition of the mixture distribution under consideration (page
4, line 4).

Comment 5: Section 2.3 was originally written for a general contaminated distribution Fε. How-
ever, for the computation of influence functions, only the particular case of point
mass contamination needs to be considered. As we found it quite difficult to ex-
plicitly define Fε,j and πi(Fε) in the general contamination context, we decided to
focus directly on the point mass contaminated distribution. Therefore, Section 2.3
has been reorganized and the detailed treatment of Fε,j and πi(Fε) in case of point-
wise contamination appears now in the beginning of the Section. We hope that this
will help the reader to better comprehend the type of contamination we are dealing
with. Now, concerning the choice of ε-contamination we made, it corresponds to the
ε-contamination advocated by Croux, Filzmozer and Joossens (2008) who also dealt
with contamination in mixture distributions. Therefore, we thought that it was quite
adequate in our setting.

Comment 6: Under contamination, the test set error rate does not attain the optimal error rate.
We mention this explicitly now in the revised paper (page 10, line -7).

Comment 7: The word “procedure” referred to the classification based on the training set. This
is more explicitly mentioned in the text (page 13, last lines).

Comment 8: True. We have added a comment to specify this restriction (page 14, line -11).
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Comment 9: Of course, we may provide the “deleted” figures (they are displayed below for your
information) but we are not sure whether it is worth preparing a technical report for
that. Maybe these additional figures could be simply inserted in the main text if you
think that this is relevant?

Comment 10: The breakdown point defined by Genton and Lucas (2003) seems to be the appropri-
ate tool for computing the breakdown point of a classification error rate. Indeed, one
cannot observe an asymptotic bias going to infinity in this setting but breakdown
can still be characterized by the fact that the error rate reaches some specific values.
We added a sub-section to introduce the idea of breakdown as defined by Genton
and Lucas (2003). The breakdown results of Garćıa-Escudero and Gordaliza (1999)
may then be quoted to argue that a single outlier is sufficient to totally perturb the
generalized principal points, and, as a direct consequence, the error rates based on
them. We conclude that sub-section by mentioning that ER and TER have a break-
down point of 1/n, since, as soon as one worst-case outlier is introduced in the data,
their possible values lie into a finite set.
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Figure 1: Influence functions of the training error rate of the 2-means (left panel)
and 2-medoids (right panel) methods when the model distribution is 0.4N(−1.5, σ2) +
0.6N(1.5, σ2) for different values of σ when x belongs to G1.
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error rates in statistical clustering

Reply to reviewer 2

First of all, we wish to thank you for your comments and helpful suggestions. See below
the responses to your specific comments.

Comment 1: Your suggestion has been taken into account and the reference has been added (page
4, line 1).

Comment 2: That is indeed true. Until now, we had been focusing simply on the 2-means and 2-
medoids procedures but your question made us consider the optimality issue in more
general terms. Due to the odd property of ω, one can show that T1(FN) + T2(FN) =
µ1 + µ2 for all generalized 2-means procedure applied to the optimal normal model.
Moreover, in parallel, we could adapt Proposition 1 which now proves that optimality
results directly from such an equality. To better organize the results related to the
optimality issue, Proposition 1 has been transferred to Section 2.2 (while it was in
Section 2.3 in the previous version). Sections 2.2 and 2.3 have been modified to take
this particular re-organization into account (see in particular page 6).

Comment 3: A comment concerning the null asymptotic breakdown point of 2-medoids procedure
has been added in Section 3 (page 12, lines -5).

Comment 5: We have specified the values of the parameters (page 22, line 11).

Typos that you detected have been corrected. Moreover, another thorough spell check
and a careful reading of the revised paper have allowed to find other typos and to improve,
we hope, the text.
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