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Let ϕ be Euler's function, γ be Euler's constant and N k be the product of the first k primes. In this article, we consider the function c(n) = (n/ϕ(n) -e γ log log n) √ log n. Under Riemann's hypothesis, it is proved that c(N k ) is bounded and explicit bounds are given while, if Riemann's hypothesis fails, c(N k ) is not bounded above or below.

Introduction

Let ϕ be the Euler function. In 1903, it was proved by E. Landau (cf. [5, §59] and [START_REF] Hardy | An introduction to the theory of numbers[END_REF]Theorem 328 3 and asked if there exists an infinite number of n such that n/ϕ(n) > e γ log log n. In [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF], (cf. also [START_REF] Nicolas | Petites valeurs de la fonction d'Euler et hypothèse de Riemann[END_REF]), I answer this question in the affirmative. Soon after, A. Schinzel told me that he had worked unsuccessfully on this question, which made me very proud to have solved it.

For k 1, p k denotes the k-th prime and N k = 2 • 3 • 5 . . . p k the primorial number of order k. In [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF], it is proved that the Riemann hypothesis (for short RH) is equivalent to

∀k 1, N k ϕ(N k ) > e γ log log N k .
The aim of the present paper is to make more precise the results of [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF] by estimating the quantity

(1.2) c(n) = n ϕ(n)
-e γ log log n log n.

Let us denote by ρ a generic root of the Riemann ζ function satisfying 0 < ℜρ < 1. Under RH, 1 -ρ = ρ. It is convenient to define (cf. [2, p. 159])

(1.3) β = ρ 1 ρ(1 -ρ)
= 2 + γ -log π -2 log 2 = 0.0461914179 . . .

We shall prove

Theorem 1.1 Under the Riemann hypothesis (RH) we have

(1.4) lim sup n→∞ c(n) = e γ (2 + β) = 3.6444150964 . . . (1.5) ∀n N 120569 = 2 • 3 • . . . • 1591883, c(n) < e γ (2 + β). (1.6) ∀n 2, c(n) c(N 66 ) = c(2 • 3 • . . . • 317) = 4.0628356921 . . . (1.7) ∀k 1, c(N k ) c(N 1 ) = c(2) = 2.2085892614 . . .
We keep the notation of [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. For a real x 2, the usual Chebichev's functions are denoted by

(1.8) θ(x) = p x log p and ψ(x) = p m x log p.
We set

(1.9) f (x) = e γ log θ(x) p x (1 -1/p).
Mertens's formula yields lim x→∞ f (x) = 1. In [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]Th. 3 (c)] it is shown that, if RH fails, there exists b, 0 < b < 1/2, such that

(1.10) log f (x) = Ω ± (x -b ). For p k x < p k+1 , we have f (x) = e γ log log(N k ) ϕ(N k ) N k • When k → ∞, by observing that the Taylor development in neighborhood of 1 yields log f (p k ) ∼ f (p k ) -1, we get log f (p k ) ∼ f (p k ) -1 = ϕ(N k ) N k c(N k ) √ log N k ∼ e -γ log log N k c(N k ) √ log N k ,
and it follows from (1.10) that, if RH does not hold, then

lim inf n→∞ c(n) = -∞ and lim sup n→∞ c(n) = +∞.
Therefore, from Theorem 1.1, we deduce :

Corollary 1.1 Each of the four assertions (1.4), (1.5), (1.6), (1.7) is equivalent to the Riemann hypothesis.

Notation and results used

If θ(x) and ψ(x) are the Chebichev functions defined by (1.8), we set

(1.11) R(x) = ψ(x) -x and S(x) = θ(x) -x.
Under RH, we shall use the upper bound (cf. [10, (6.3)])

(1.12) As in [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF], we define the following integrals

x
(1.15) K(x) = ∞ x S(t) t 2 1 log t + 1 log 2 t dt, (1.16) J(x) = ∞ x R(t) t 2 1 log t + 1 log 2 t dt,
and, for ℜ(z) < 1,

(1.17)

F z (x) = ∞ x t z-2 1 log t + 1 log 2 t dt.
We also set for x 1

(1.18) W (x) = ρ x i ℑ(ρ) ρ(1 -ρ)
so that, under RH, from (1.3) we have

(1.19) |W (x)| β = ρ 1 ρ(1 -ρ) •
We often implicitly use the following result : for a and b positive, the function 

(1.20) t → log a t

Organization of the article

In Section 2, the results of [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF] about f (x) are revised so as to get effective upper and lower bounds for both log f (x) and 1/f (x) -1 under RH (cf. Proposition 2.1).

In Section 3, we study c(N k ) and c(n) in terms of f (p k ). Section 4 is devoted to the proof of Theorem 1.1.

Estimate of log(f (x))

The following lemma is Proposition 1 of [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF].

Lemma 2.1 For x 121, we have

(2.1) K(x) - S 2 (x) x 2 log x log f (x) K(x) + 1 2(x -1)
.

The next lemma is a slight improvement of Lemma 1 of [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF].

Lemma 2.2 Let x be a real number, x > 1. For ℜz < 1, we have

(2.2) F z (x) = x z-1 (1 -z) log x + r z (x) with r z (x) = ∞ x - zt z-2 (1 -z) log 2 t dt and, if ℜz = 1/2, (2.3) |r z (x)| 1 |1 -z| √ x log 2 x 1 + 4 log x .
Moreover, for z = 1/2, we have

(2.4) 2 √ x log x - 2 √ x log 2 x F 1/2 (x) 2 √ x log x - 2 √ x log 2 x + 8 √ x log 3 x and, for z = 1/3, (2.5) 0 F 1/3 (x) 3 2x 2/3 log x • Proof : The proof of (2.
2) is easy by taking the derivative. By partial summation, we get

(2.6) r z (x) = - z 1 -z x z-1 (1 -z) log 2 x + ∞ x 2 t z-2 (z -1) log 3 t dt .
If we assume ℜz = 1/2, we have 1 -z = z and

|r z (x)| 1 |1 -z| √ x log 2 x + 2 |1 -z| log 3 x ∞ x t -3/2 dt
which yields (2.3). The proof of (2.4) follows from (2.2) and (2.6) by choosing z = 1/2. The proof of (2.5) follows from (2.2) since r 1/3 is negative.

To estimate the difference J(x)-K(x), we need Lemma 2.4 which, under RH, is an improvement of Propositions 3.1 and 3.2 of [START_REF] Dusart | Estimates of some functions over primes without R. H[END_REF] (obtained without assuming RH). The following lemma will be useful for proving Lemma 2.4.

Lemma 2.3 Let κ = κ(x) = ⌊ log x log 2
⌋ the largest integer such that x 1/κ 2. For x 16, we set

H(x) = 1 + κ k=4 x 1/k-1/3
and for x 4

L(x) = κ k=2 ℓ k (x) with ℓ k (x) = T (x 1/k ) x 1/3 = log 2 x 8π k 2 x 1/3-1/(2k) • (i) For j 9 and x 2 j , H(x) H(2 j ) holds.
(ii) For j 35 and x 2 j , L(x) L(2 j ) holds.

Proof : The function H is continuous and decreasing on [2 j , 2 j+1 ) ; so, to show (i), it suffices to prove for j 9

(2.7) H(2 j ) H(2 j+1 ).
If 9 j 19, we check (2.7) by computation. If j 20, we have

H(2 j ) -H(2 j+1 ) = j k=4 2 j( 1 k -1 3 ) 1 -2 ( 1 k -1 3 ) -2 (j+1)( 1 j+1 -1 3 ) 2 j( 1 4 -1 3 ) 1 -2 ( 1 4 -1 3 ) -2 (j+1)( 1 j+1 -1 3 ) = 2 -j 3 (1 -2 -1 12 )2 j 4 -2 2 3
which proves (2.7) since the above bracket is Let us assume that j 35 so that 2 j e 24 holds. From (1.20), for each k 2, x → ℓ k (x) is decreasing for x 2 j so that L is decreasing on [2 j , 2 j+1 ) and, to show (ii), it suffices to prove

(1-2 -1 12 )2
(2.8) L(2 j ) L(2 j+1 ).
We have

L(2 j ) -L(2 j+1 ) = j k=2 ℓ k (2 j ) -ℓ k (2 j+1 ) -ℓ j+1 (2 j+1 ) ℓ 2 (2 j ) -ℓ 2 (2 j+1 ) -ℓ j+1 (2 j+1 ) = log 2 2 32π 2 -j 3 2 j 4 j 2 -2 -1 12 (j + 1) 2 -4 • 2 1 6 
.

For j 1 2 1/12 -1 = 16.81 . . ., the above square bracket is increasing on j and it is positive for j = 35. Therefore, the curly bracket is increasing for j 35 and, since its value for j = 35 is equal to 744.17 . . ., (2.8) is proved for j 35.

Lemma 2.4 Under RH, we have

(2.9) ψ(x) -θ(x) √ x, for x 121
and, for x 1,

(2.10) ψ(x) -θ(x) - √ x x 1/3 1.332768 . . . 4 3 • 
Proof : For x < 599 3 , we check (2.9) by computation. Note that 599 is prime. Let q 0 = 1, and let q 1 = 4, q 2 = 8, q 3 = 9, . . . , q 1922 = 599 3 be the sequence of powers (with exponent 2) of primes not exceeding 599 3 . On the intervals [q i , q i+1 ), the function ψ -θ is constant and x → (ψ(x)θ(x))/ √ x is decreasing. For 11 i 1921 (i.e. 121 q i < q i+1 599 3 ), we calculate δ i = (ψ(q i ) -θ(q i ))/ √ q i+1 and find that min 11 i 1921 δ i = δ 1886 = 1.0379 . . . (q 1886 = 206468161 = 14369 2 ) while δ 10 = 0.9379 . . . < 1 (q 10 = 81). Now, we assume x 599 3 , so that, by (1.12), we have (2.11) ψ(x) -θ(x) θ(x 1/2 ) + θ(x 1/3 ) x 1/2 + x 1/3 -T (x 1/2 ) -T (x 1/3 ).

By using (1.21), we get

T (x 1/2 ) x 1/3 + T (x 1/3 ) x 1/3 = 1 8π log 2 x 4x 1/12 + log 2 x 9x 1/6
20 πe 2 = 0.86157 . . . which, with (2.11), implies (2.12)

ψ(x) -θ(x) √ x + 1 - 20 πe 2 x 1/3 √ x.
The inequality (2.10) is Lemma 3 of [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]. We give below another proof by considering three cases according to the values of x.

Case 1, 1 x < 2 32 . The largest q i smaller than 2 32 is q 6947 = 4293001441 = 65521 2 . On the intervals [q i , q i+1 ), the function

G(x) def == ψ(x) -θ(x) - √ x x 1/3
is decreasing. By computing G(q 0 ), G(q 1 ), . . . , G(q 6947 ) we get

G(x) G(q 103 ) = 1.332768 . . . [q 103 = 80089 = 283 2 ].
Case 2, 2 32 x < 64 • 10 22 . By using (1.13), we get

ψ(x) -θ(x) = κ k=2 θ(x 1/k ) κ k=2
x 1/k so that Lemma 2.3 implies G(x) H(x) H(2 32 ) = 1.31731 . . . Case 3, x 64 • 10 22 2 79 . By (1.12) and (1.13), we get

ψ(x) -θ(x) = κ k=2 θ(x 1/k ) κ k=2 x 1/k + T (x 1/k ) , whence, from Lemma 2.3, G(x) H(x) + L(x) H(2 79 ) + L(2 79 ) = 1.32386 . . . Corollary 2.1 For x 121, we have (2.13) F 1/2 (x) J(x) -K(x) F 1/2 (x) + 4 3 F 1/3 (x).
The following lemma is an improvement of [6, Proposition 2].

Lemma 2.5 Let us assume that RH holds. For x > 1, we may write

(2.14) J(x) = - W (x) √ x log x -J 1 (x) -J 2 (x) with (2.15) 0 < J 1 (x) log(2π) x log x and |J 2 (x)| β √ x log 2 x 1 + 4 log x .
Proof : In [6, ( 17)-( 19)], for x > 1, it is proved that

J(x) = - ρ 1 ρ F ρ (x) -J 1 (x)
with J 1 satisfying 0 < J 1 (x) log(2π)

x log x • Now, by Lemma 2.2, we have

F ρ (x) = x ρ-1
(1-ρ) log x + r ρ (x) which yields (2.14) by setting J 2 (x) = ρ 1 ρ r ρ (x). Further, from (2.3) and (1.3), we get the upper bound for |J 2 (x)| given in (2.15). Proposition 2.1 Under RH, for x x 0 = 10 9 , we have

(2.16) - 2 + W (x) √ x log x + 0.055 √ x log 2 x log f (x) - 2 + W (x) √ x log x + 2.062 √ x log 2 x

and

(2.17)

2 + W (x) √ x log x - 2.062 √ x log 2 x 1 f (x) -1 2 + W (x) √ x log x - 0.054 √ x log 2 x •
Proof : By collecting the information from (2.1), (1.12), (2.13), (2.14), (2.15), (2.4) and (2.5), for x 599, we get

log f (x) - W (x) + 2 √ x log x + 2 -β √ x log 2 x - 8 + 4β √ x log 3 x - log(2π) x log x - 2 x 2/3 log x - log 3 x 64π 2 x (2.18) and (2.19) log f (x) - W (x) + 2 √ x log x + 2 + β √ x log 2 x + 4β √ x log 3 x + 1 2(x -1)
• Since x x 0 = 10 9 holds, (2.18) and (2.19) imply respectively

log f (x) - W (x) + 2 √ x log x + 1 √ x log 2 x 2 -β - 8 + 4β log x 0 - log(2π) log x 0 √ x 0 - 2 log x 0 x 1/6 0 - log 5 x 0 64π 2 √ x 0 (2.20) and (2.21) log f (x) - W (x) + 2 √ x log x + 1 √ x log 2 x 2 + β + 4β log x 0 + √ x 0 log 2 x 0 2(x 0 -1)
which prove (2.16). Setting v = -log f (x), it follows from (2.16), (1.19) and (1.3) that

v W (x) + 2 √ x log x 2 + β √ x log x v 0 def == 2 + β √ x 0 log x 0 = 0.00000312 . . .
By Taylor's formula, we have e v -1 v (which, with (2.16), provides the lower bound of (2.17)) and

e v -1 -v e v 0 2 v 2 e v 0 (2 + β) 2 2x log 2 x e v 0 (2 + β) 2 2 √ x 0 √ x log 2 x = 0.0000662 . . . √ x log 2 x
(which implies the upper bound in (2.17)).

3 Bounding c(n) Lemma 3.1 Let n and k be two integers satisfying n 2 and k 1. Let us assume that either the number j = ω(n) of distinct prime factors of n is equal to k or that N k n < N k+1 holds. We have

(3.1) c(n) c(N k ).
Proof : It follows from our hypothesis that n N k and j k hold. Let us write n = q α 1 1 q α 2 2 . . . q α j j (with q 1 < q 2 < . . . < q j as defined in the proof of Lemma 2.4). We have

n ϕ(n) = j i=1 1 1 -1/q i j i=1 1 1 -1/p i k i=1 1 1 -1/p i = N k ϕ(N k ) which yields (3.2) c(n) N k ϕ(N k ) -e γ log log n log n def == h(n)
and h(n) can be extended to a real number n. Further,

d dn h(n) = 1 2n √ log n N k ϕ(N k ) -e γ log log n -2e γ 1 2n √ log n N k ϕ(N k ) -e γ log log N k -2e γ .
If k = 1 or 2, it is easy to see that the above parenthesis is negative, while, if k 3, by (1.1), it is smaller than 2.51 log log N k -2e γ which is also negative because log log N k log log 30 = 1.22 . . . Therefore, we get h(n) h(N k ) = c(N k ), which, with (3.2), completes the proof of Lemma 3.1. Proof : From (1.2) and (1.9), we get

(3.5) c(N k ) = e γ θ(x) log θ(x) 1 f (x) -1 •
By the fundamental theorem of calculus, (1.14) and (1.12), we have To show the other points of Theorem 1.1, we first consider k 0 = 50847534, the number of primes up to x 0 = 10 9 . For all k k 0 , we have calculated c(N k ) in Maple with 30 decimal digits, so that we may think that the first ten are correct. We have found that for k 1 = 120568 < k k 0 , c(N k ) < e γ (2 + β) holds (while c(N k 1 ) = 3.6444180 . . . > e γ (2 + β)) and for 1 k k 0 , we have c(N 1 ) = c(2) c(N k ) c(N 66 ).

| θ(x) log θ(x) - √ x log x| = θ(x) x log t + 2 2 √ t dt |θ(x) -x| log(4x/5) + 2 2 4x/5 √ 5 4 T (x) log x + 2 √ x = √ 5 32π log 2 x(log x + 2) whence θ(x) log θ(x) √ x log x -1 √ 5 log 2 x(log x + 2) 32π √ x x √ 5 
Further, for k > k 0 , (3.3) implies c(N k ) < e γ (2 + β) < c(N 66 ) which, together with Lemma 3.1, proves (1.5) and (1.6).

As a challenge, for k 1 = 120568, I ask to find the largest number M such that M < N k 1 +1 and c(M) e γ (2 + β). Note that M > N k 1 holds since, for n = N k 1 -1 p k 1 +1 , we have c(n) = 3.6444178 . . . > e γ (2+β). Another challenge is to determine all the n's satisfying n < N k 1 +1 and c(n) > e γ (2 + β).

Finally, for k > k 0 , (3. which completes the proof of (1.7) and of Theorem 1.1.

It is not known if lim inf x→∞ W (x) = -β. Let ρ 1 = 1/2 + i t 1 with t 1 = 14.13472 . . . the first zero of ζ. By using a theorem of Landau (cf. [3, Th. 6.1 and §2.4]), it is possible to prove that lim inf x→∞ W (x) -1/(ρ 1 (1 -ρ 1 )) = -0.00499 . . . A smaller upper bound is wanted.

An interesting question is the following : assume that RH fails. Is it possible to get an upper bound for k such that k > k 0 and either c(N k ) > e γ (2 + β) or c(N k ) < c(2) ?

20 4 - 2 23

 42 = 0.208 . . . and therefore positive.

Proposition 3 . 1

 31 Let us assume that x 0 = 10 9 p kx < p k+1 holds. Under RH, we have(3.3) c(N k ) e γ (2 + W (x))k ) e γ (2 + W (x)) -

  4) implies c(N k ) e γ (2 -β) -3.7 log(10 9 ) = 3.30 . . . > c(2)
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