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RESUME. La gestion de grandes bases de donnéesdtdem tridimensionnels (utilisés dans
des applications de CAO, de visualisation, des jetrx) est un domaine trés important. La
capacité de caractériser et rechercher facilemegs chodéles est une question clé pour les
concepteurs et les utilisateurs finaux. Deux appescprincipales existent : la recherche par
I'exemple d'un modele tridimensionnel, et la recherpar une vue 2D ou des photos. Dans
cet article, nous présentons un cadre pour la ca#msation d'un modele 3D par un
ensemble de vues (appelées vues caractéristiqetes)) processus d'indexation de ces mo-
deles avec une approche probabiliste bayésiennatibsant les vues caractéristiques. Le
systeme est indépendant du descripteur utilisé fioadexation. Nous illustrons nos résultats
en utilisant différents descripteurs sur une cdlat de modeles tridimensionnels fournis par
le constructeur automobile Renault. Nous présenémaement nos résultats sur l'indexa-
tion de modele 3D a partir de photos.

ABSTRACTThe management of big databases of three-dimerisinodels (used in CAD
applications, visualisation, games, etc.) is a vemportant domain. The ability to
characterise and easily retrieve models is a keyasor the designers and the final users. In
this frame, two main approaches exist: search byngra of a three-dimensional model, and
search by a 2D view or photos. In this paper, we gmesa novel framework for the
characterisation of a 3D model by a set of viewsll¢dacharacteristic views), and an
indexing process of these models with a Bayesiarbghmibistic approach using the
characteristic views. The framework is independesmfthe descriptor used for the indexing.
We illustrate our results using different descrigtmn a collection of three-dimensional
models supplied by the car manufacturer Renaultalse present our results on retrieval of
3D models from a single photo.

MOTS-CLES modeles 3D, vues caractéristiques, indexationtqh

KEY WORDS 3D models, characteristic views, retrieval, photos
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l. Introduction

The use of three-dimensional images and models asalithrough the Internet
is growing both in humber and in size. The develaunod modelling tools, 3D
scanners, 3D graphic accelerated hardware, Web8B3@won, is enabling access to
three-dimensional materials of high quality. In et years, many systems have
been proposed for efficient information retrievadrh digital collections of images
and videos.

The SEMANTIC-30 project aims the exploration of techniques andistoo
preliminary to the realisation of new services floe exploitation of 3D contents
through the Web. New techniques of compressiorgximg) and watermarking of
3D data will be developed and implemented in a $tilal prototype application: a
communication and information system (consultati@mote support) between the
authors (originators of machine elements), usenstéchnician) and a central server
of 3D data. The compressed 3D data exchanges adtqs tate of transmission and
the capacity of the terminals used.

These exchanges are ensured with a format of datadatised with
functionalities of visualisation and 3D animatiofhe exchanges are done on
existing networks (internal network for the authovéreless networks for the
technicians).

In SEMANTIC-3D project, our research group focusestlo@ indexing and
retrieval of 3D data. The solutions proposed sddasupport retrieval of such data
are not always effective in application contexteveithe information is intrinsically
three-dimensional. A similarity metric has to befimed to compute a visual
similarity between two 3D models, given their dgsoons. Two families of
methods for 3D models retrieval exist: 3D/3D (direwodel analysis) and 2D/3D
(3D model analysis from its 2D views or photosjiesfal.

For example, Vandeborre et al. [1] propose to fide three-dimensional
information. The 3D objects are represented as nmsfaces and 3D shape
descriptors are used. The results obtained shoWintitation of the approach when
the mesh is not regular. This kind of approach it nebust in terms of shape
representation.

Sundar et al. [2] intend to encode a 3D objecthim form of a skeletal graph.
They use graph matching techniques to match thetsked and, consequently, to
compare the 3D objects. They also suggest thatkieietal matching approach has
the ability to achieve part-matching and helpsefirdng the queries instinctively.

In 2D/3D retrieval approach, two serious problemsea how to characterise a
3D model with few 2D views, and how to use thesawsgi to retrieve the model
from a 3D models collection.

Abbasi and Mokhtarian [3] propose a method thamielites the similar views in
the sense of a distance among C88r{ature Scale Spardrom the outlines of
these views. At last, the minimal number of viewselected with an optimisation
algorithm.

! htttp://www.semantic-3d.net
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Dorai and Jain [4] use, for each of the model i ¢bllection, an algorithm to
generate 320 views. Then, a hierarchical classificabased on a distance measure
between curvatures histogram from the views, fodlow

Mahmoudi and Daoudi [5] also suggest to use the f£Z&8 the outlines of the
3D model extracted views. The CSS is then organisedtree structure called-
tree

Chen and Stockman [6] as well as Yi and al. [7]pps®e a method based on a
bayesian probabilistic approach. It means compudimg posteriori probability to
recognise the model when a certain feature is gbdefThis probabilistic method
gives good results, but the method was testedsonadl collection of 20 models.

Chen et al. [8][9] defend the intuitive idea thabt3D models are similar if they
also look similar from different angles. Thereforthey use 100 orthogonal
projections of an object and encode them by Zernik@ments and Fourier
descriptors. They also point out that they obtaitelb@esults than other well-known
descriptors as the MPEG-7 3D Shape Descriptor.

Ohbuchi and Nakazawa [10] propose a brute forceapmce based method.
The approach is based on the comparison of 42 demtbes created from each
model.

Costa and Shapiro [11] propose a Relational Indexii Objects (RIO)
recognition system. The performance on CAD datales® very good with the
exception of a few misdetection cases. Howeveretlesults are given for a very
small database (five 3D objects).

For a more complete state of the art, Tangelder \Agitkamp [12] gives a
survey of recent methods for content based 3D shiegteeval.

3D Model  [Selectior Chiasemterslis: s

of wH index 7

Characteristic

Iiews
—» index »

Offtine Process

P!

Databage

Request Photo

Bavesian Indexing
— Preprocessing —— indexr

Onlfine Process

Figure 1. System overview. Vue d'ensemble du systeme
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In this paper, we propose a framework for 3D modedexing based on 2D
views. The goal of this framework is to provide attmoel for optimal selection of
2D views from a 3D model, and a probabilistic Bagesmethod for 3D models
indexing from these views. The framework is totafigependent from the 2D view
descriptor used, but the 2D view descriptors shquttlide some properties. The
entire framework has been tested with three diffe2® descriptors.

Figure 1 shows an overview of the system. The @fffinocess of characteristic
view selection and the online process of retriexsiihg bayesian approach.

This paper is organised in the following way. Inteet2 and 3, we present the
main principles of our framework for characteristiews selection and probabilistic
3D models indexing. In section 4, three differebt\dew descriptors are explained
in details. Finally, the results obtained from #lexion of 3D models are presented
for each 2D view descriptor showing the performanafeour framework.

II. Characteristic views algorithm

In this paragraph, we present our algorithm foirogt characteristic views
selection from a three-dimensional model.

Let D, = {M1, My, ..., Mi} be a collection oN three-dimensional models. We
wish to represent each 3D modiél by a set of 2D views that represent it the best.
To achieve this goal, we first generate an initetl af views from the 3D model,
then we reduce it to the only views that charastehiest the 3D model. This idea
come from the fact that not all the views of 3D mlogot equal importance, there
are views that contain more information than others

Figure 2 shows an overview of the characteristevegi selection process
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Figure 2. Characteristic views selection process. Ptessus de choix des vues
caractéristiques.
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[1.1. Generating the initial set of views

To generate the initial set of views for a molkglof the collection, we create
2D views (projections) from multiple viewpoints. HEee viewpoints are equally
spaced on the unit sphere. In our current impleatiemt, there are 80 views. In fact,
we scale each of our model that it can fit in & sphere and we translate it, that the
origin coincide with the 3D model barycenter.

To select positions for the views, that must be bgjgpaced, we use a two units
icosahedron centred on the origin. We subdividei¢bsahedron once by using the
Loop's subdivision scheme to obtain an 80 facetdghpdron. Finally to generate
the initial views we place the camera on each effétte-center of the polyhedron
looking at the coordinate origin.

I1.2. Discrimination of characteristic views

Let V,, ={Vii,VZ,...Vy} be the set of 2D views from the three-dimensional

modelM, wherev is the total number of views.
Among this set of views, we have to select thost ¢tharacterise effectively the
three-dimensional model according to a featurdne$é views.

I1.3. Selection of characteristic views

The next step is to reduce the set of views of aaddto a set that represents
only the most important views. This set is callegl skt of characteristic view&,.

A view V,\'; is a characteristic view of a model for a distance, if the

distance between this view and all the other chiaristic views ofM is greater than
€. That is to say:

vV'Ove, - OVce, OVe,,D > &

Vi Vel

With DV i Vel the distance between the descriptor of the v}é,w and the

descriptor ofVc, .

However, the choice of the distance threshoislimportant and depends on the
complexity of the three-dimensional model. This mifiation is nog priori known.

To solve the problem of determining the distancedholde, we adapted the
previous algorithm by taking into account an ingref these distances from 0 to 1
with a step of 0.001. The final set of characterigtews is then the union of all the
sets of characteristic views for everin ]0..1].

It means that, we consider a view to be importhiitbelongs frequently to the
sets of characteristic views for differentSo the final set of characteristic views for
a 3D model is then the set of views that are fratijyeonsidered as characteristic.
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10 ]
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Figure 3. An example of characteristic views for aube. Un exemple de vues
caractéristiques pour un cube.

I1.4 Properties of the views selection algorithm

To reduce the number of characteristic views, werfthis set of views in a way
that for each model it verifies two criterions:

- Each view of the modeM must be represented by at least one
characteristic view for every threshaold. This mean that, if we assume that our

algorithm is a functionl] between the initial set and the characteristic thes$

function[] must be arapplication associating to each element \¢j at least one
elements oVay :

av,) Ov,,, 0V such asd(V,)) =Vc

- Now that we are sure that every initial view gotharacteristic view
representing it, we want our set to be composeld thiz minimum of characteristic
views that respect the first property. This meamas We do not want any redundant
characteristic view.

Let V) be the set of views represented by the charatiteview VC), . A
characteristic viewWC), is redundant if there is a set of characteristaws for

which the union of represented views includés .
vrl gyvrk

The following algorithm (see next page) summarizes tharacteristic view
selection process:
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Characteristic views selection algorithm

For o from 0 to 1do

Select characteristic views for the thresheld
Reduce the views to the minimum necessary withedp the property of
representation ;
Save the characteristic view set ;
Done;
For all viewsdo
Compute how many times the view is selected aseacteristic view ;
Done;
Select the most frequently chosen views as chaistiteviews.

lll. Probabilistic approach for 3D indexing

Each model of the collectioD, is represented by a set of characteristic views
V. ={Vc,,Vc,,...Vc,}, with V the number of characteristic views. To each

characteristic view corresponds a set of reprederigavs calledv,.
Considering a 2D request vie@, we wish to find the modeM, 00 D, which

one of its characteristic views is the closesh®request view). This model is the
one that has the highest probabil( ; ,chw /1Q).
I

Let H be the set of all the possible hypotheses of spmedence between the
request viewQ and a modeM, H ={h,Ch,C...Ch; }. A hypothesis

hk means that the viewof the model is the view requegt The signl_ represents
logic or operator Let us note that if an hypothesli§ is true, all the other hypo-
theses are false.
P(Mi,VCf\A, /Q) can be expressed (M ,Vc{w /H).
I I

The closest model is the one that contains a vievinly the highest probability.
Using the Bayes theorem, we have:

P(M,,H,vc) )=P(H,vc,, /IM)P(M;) (@
P(M;,H,Vc, )=P(M,,Vc) /H)P(H) (2)
From (1) and (2), we have:
P(H.,vc, IM)P(M )

P(M,,Vc), /H)= 5 )

3
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We also have:
P(H,vc,, /M )=> P(h.,Vvc, IM;) 4
k=1
This probability will be equal to zero for evekydifferent fromj, because we
assume that a view cannot look like to characterisews at the same time (our
algorithm for view selection would have detectaitd deleted one of the views).

The sum ZV:F)(hk,V(;Ij/I /M) can be reduced to the only true hypothesis

k=1
P(h;,Vc), IM)).
By integrating this remark to (4) , we obtain:

P(H,vc) /M) =P(h;,Vc) IM))
and
P(h,,vc,, /M) =P(h, /Vc) ,M)P(Vc, /M) @)
From (3) and (4’), we obtain:

P(h; IV, ,M,)P(VG, /M;)P(M,)

P(M.,Vc. /H)=
(M; Ve, /H) P(H) (5)
We also have:
N © N ¥
P(H):ZZP(H’Mi’VI\/in):ZZP(hj /Vcljlli’Mi)P(\/Cl{/Ii/Mi)P(Mi)
i=1 j=1 i=1 j=1

(6)
Finally from (5) et (6), we get:
_ P(h, /Vc), ,M,)P(Vc), IM,)P(M,
P(M, V), [H) = O(, Cu, . Mi)P(Vey, /M;)P(M; )

Y. > P(h; /Vc, ,M)P(VE, /M;)P(M,)

i=1 j=1
With P(M,) the probability to observe the modiél

—a N(Vey,,)/N(Ve)

P(M,) = ZN o N(Vay )N (VO

i=1
Where N(VG, )is the number of characteristic views of the moklel and

N(Vc) is the total number of characteristic views for get of the models of the
collection Dy. « is a parameter to hold the effect of the probgbiR(M). The
algorithm conception makes that, the greater thabmu of characteristic views of
an object, the more it is complex. Indeed, simgigect (e.g. a cube) can be at the
root of more complex objects.
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On the other hand:
1_ﬂe(—ﬁm(VrM". )N (V)

> .- Bel PN /N )

P(Vc), /M) =

j
WhereN (VfMi ) is the number of views represented by the chaiatiteview

Vc,f,Ii of the modeM;, and N(Vr,;) is the total number of views represented by the

model M;. Coefficientf is introduced to reduce the effect of the viewhataility.
We use the values =£= 1/100 which give the best results during our eixpents.

The greater is the number of represented viewsgvr,, ), the more the

characteristic vie\/\wch"ﬂi is important and the best it represents the tHieensional
model.
The value P(h; /VCh',Ii ,M,) is the probability that, knowing that we observe

the characteristic vieyvof the modelM , this view is the request vie@:

=D (Q.Vey,)

P(h,/Vc) M )= —°

i N -D Ve b
z . e (Q.ve yg.)
i=1

j
with D(Q,Vecy, ) the distance between the 2D descriptorsQofind of the

VC,f,Ii characteristic view of the three-dimensional mddel

I\VV. Shape descriptors used for a view

As mentioned before, the framework we describehia paper is independent
from the 2D descriptor used, but, to use a desmripithin our framework some
properties are required. The descriptor used neist b

1) Invariance: the shape descriptors must be intdgp# of the group of

similarity transformation (the composition of artséation, a rotation and a
scale factor).

2) Stability gives robustness under a small digingt caused by a noise and

non-linear deformation of the object.

3) Simplicity and real time computation.

To test our framework with different types of dégtors, we implemented our
system with three different descriptors that ard Wweown as efficient methods for
a global a shape representation:

1) the curvatures histogram [13];

2) the Zernike moments [17];

3) the Curvature Scale Space (CSS) descriptor [19].
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[V.1. Curvatures histogram

The curvatures histogram is based on shape desgrigtmed curvature index,
introduced by Koenderink and Van Doorn [13]. Théscriptor aims at providing an
intrinsic shape descriptor of three-dimensional m@®dels. It exploits some local
attributes of a three-dimensional surface. The aume index is defined as a
function of the two principal curvatures of thefage. This three-dimensional shape
index was particularly used for the indexing praces$ fixed images [14], depth
images [4], and three-dimensional models [1][15].

Computation of the curvatures histogram for a 2D view

To use this descriptor with our 2D views, a 2D viegeds to be transformed in
the following manner. First of all, the 2D viewdenverted into a gray-level image.
The Z coordinate of the points is then equal to the gn#égnsity of the considered
pixel (x,y,l(x,y))to obtain a three-dimensional surface in whichrgyéxel is a point
of the surface. Hence, the 2D view is equivalen tihree-dimensional terrain on
which a 3D descriptor can be computed.

Let p be a point on the three-dimensional terrain. Letleisote byk; andk; the
principal curvatures associated with the pgniThe curvature index value at this
point is defined as:

Ip =%arctan% with k1 = k2

The curvature index value belongs to the intervhl +1] and is not defined for
planar surfaces. The curvature histogram of a 2w\ then the histogram of the
curvature values calculated over the entire thigedsional terrain.

Figure 4 shows the curvatures histogram for a wwéwane of our 3D models.

Figure 4. Curvatures histogram of a 2D view. Histoggmme de courbures d'une
vue 2D .

Comparison of views described by the curvature histogram

Each view is then described with its curvaturegogiam. To compare two
views, it is enough to compare their respectivéolimms. There are several ways
to compare distribution histograms: the Minkowskn Inorms, Kolmogorov-
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Smirnov distance, Match distances, and many othNgeschoose to use thg horm
because of its simplicity and its accurate results.

DLl(fl1 f,) = (J‘|f1 - 1:2|)

The calculation of the distance between the histogrof two views can be then
considered as the distance between these views.

IV.2. Zernike moments

Zernike moments are complex orthogonal moments whosgnitude has
rotational invariant property. Zernike moments @geéined inside the unit circle, and

the orthogonal radial polynomial ... (P) is defined as:

_(n—\m\)/Z _1\s (n—S)! n-2s
|:lnm(p)_ SZ:(; (1) [n+m J(n_me
G -s| I
2 2

where n is a non-negative integer, and m is a non-zeregin subject to the
following constraints:n —|n‘1 is even andrds N. The f,m) of the Zernike basis

function, V,,.,(0, 8) , defined over the unit disk is:
Vom(0,6) =0, (P)exp(jmb), p <1

The Zernike moment of an image is then defined as:

n+1 .
Zom = T ”unit disk Vom (0.8) T (p.0)

where V,:m is a complex conjugate o7, .. Zernike moments have the following

properties: the magnitude of Zernike moment istiotal invariant; they are robust
to noise and minor variations in shape; there isnfarmation redundancy because
the bases are orthogonal.

An image can be better described by a small s @ernike moments than any
other type of moments such as geometric momentgendre moments, rotational
moments, and complex moments in terms of mean-sger@or; a relatively small
set of Zernike moments can characterise the glshape of a pattern effectively,
lower order moments represent the global shape pétgern and higher order
moments represent the detail.

The defined features on the Zernike moments arg mothtion invariant. To
obtain scale and translation invariance, the imad@st subject to a normalisation
process. The rotation invariant Zernike features then extracted from the scale
and translation normalised image. Scale invarias@Ecomplished by enlarging or
reducing each shape such that its zeroth order miomg, is set equal to a
predetermined valug. Translation invariance is achieved by moving dhigin to
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the centroid before moment calculation. In summarnyimage functiofi(x,y) can be
normalised with respect to scale and translatiotrdrysforming it intagy(x,y) where:
g(x,y)=f(x/la+x,yla+y)

with (;(,9) being the centroid dfix,y) and a= ,/3/m,, . Note that in the case of

binary imagemyis the total number of shape pixels in the image.

To obtain translation invariance, it is necessarkriow the centroid of the object in
the image. In our system it is easy to achievestadion invariance, because we use
binary images, the object in each image is assumée composed by black pixels
and the background pixels are white.

In our current system, we extracted Zernike featstarting from the second order
moments. We extract up to twelfth order Zernike reata corresponding to 47
features. The detailed description of Zernike mammean be found in [16][19].

I'V.3. Curvature Scale Space

Assuming that each image is described by its contihwe representation of
image curvey, which correspond to the contours of objects,dmgcribed as they
appear in the image [17][18]. The curyds parameterised by the arc-length
parameter. It is well known that there are différemrve parameterisation to
represent a given curve. The normalised arc-lepgifameterisation is generally
used when the invariance under similarities of dhkscriptors is required. Lgfu)
be a parameterised curve by arc-length, which imee by y= {(x(u), y(u)] ull
[0,1]}. An evolvedy, version ofy {y,| o = 0} can be computed. This is defined by:

yo:{x(u,o),y(u,0)|uD[0,1]} where,
x(u,0)=x(u)* g(u,0)
y(u,0)=y(u)*g(u,0)
with [0 being the convolution operator and g(ua Gaussian widtlo. It can be
shown that curvatureonys is given by:
Xu (UO ) Yuw (U )-Xuw (UO ) Yu(UO)

kup)= Xu(uo)2 +yu(UO)2 )ar

Thecurvature scale space (CSS) of the cyrigedefined as a solution to:
k(u,o) =0

The curvature extrema and zeros are often usedea&pmints for segmenting
the curve into sections corresponding to shapeifivas. The zeros of curvature are
points of inflection between positive and negativevatures. Simply the breaking
of every zero of curvature provides the simplesinpiives, namely convex and
concave sections. The curvature extrema charaetidwésshape of these sections.

Figure 6 shows the CSS image corresponding to tmtoar of an image
corresponding to a view of a 3D model (figure 5).
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The X and Y axis respectively represent the nosedliarc length (u) and the
standard deviationof). Since now, we will use this representation. Sh®ll peaks
on CSS represent noise in the contour. For eagte represented the values of the
various arc length corresponding to the various neossing. On the Figure 4, we
notice that foro=12 the curve has 2 zero-crossing. So we can hatetie number
of inflection point decrease when non convex cuwwaverges towards a convex
curve.

The CSS representation has some properties as:

- The CSS representation is invariant under theilaity group (the
composition of a translation, a rotation, and destactor).

- Completeness: This property ensures that twoocwsatwill have the same
shape if and only if all their CSS are equal.

- Stability gives robustness under small distoioaused by quantisation.

- Simplicity and real time computation. This prayeis very important in
database applications.

Figure 5. Contour corresponding to a view of a 3D natel from the collection.
Contour correspondant a une vue d'un modeéle 3D dealcollection.

L

1] 0 04 0f oE 1 s

Figure 6. Curvature Scale Space corresponding to fige 5. Curvature Scale
Space correspondant a la figure 5.
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In order to compare the index based on CSS, we tie=deodesic distance
defined in [20]. Given two points (&) and (s,0,), with g,<a,, their distance D

can be defined in the following way:

a2 (1+ 1_(¢01)2 )
@ (1ol -
¢ = 2L

oz -02) +Lefie v 2ot +02))
andL = ||Sl - SZ|| is the Euclidean distance.

D((st,01),(s2,02)) =log

where :

V. Experiences and results

We implemented the algorithms, described in theipts sections, using C++
and the TGS Openlinventor.

To measure the performance, we classified the 7@feta of our collection into
76 classes based on the judgement of the SEMANTd@@ members (figure 7).

We used several different performance measuresbfectively evaluate our
method: the First Tier (FT), the Second Tier (S3nd Nearest Neighbor (NN)
match percentages, as well as the recall-precdun

Recall and precision are well known in the literataf content-based search and
retrieval. The recall and precision are definetbdews:

Recall = N/Q, Precision = N/A

With N the number of relevant models retrievedha topA retrievals. Q is the
number of relevant models in the collection, that ¢he class number of models to
which the query belongs to.

yat X
D ™
M §

Figure 7. 3D Objects from the collection. Objets 3@le la collection.
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FT, ST, and NN percentages are defined as follokssume that the query
belongs to the class C containing Q models. Th@&f€entage is the percentage of
the models from the class C that appeared in {h€Qel) matches.

The ST percentage is similar to FT, except thisttihe percentage of the models
from the class C the top 2(Q-1) matches. The NNgrgrnge is the percentage of the
cases in which the top matches are drawn fromltss €.

We test the performance of our method with and auiththe use of the
probabilistic approach. To produce results, we igdea random model from each
class. Five random views were taken form everycsetemodel. Results are the
average of 70 queries.

As mentioned before, we used three different detis in our probabilistic
framework.

V.1. Curvatures histogram

The main problem with the curvature histogramtssdiependency on the light
position. A small change in the lightening makerdes in the curvature, that leads
to a difference in the curvature histogram. In tasts, we are controlling the light
position, but in real use conditions, this consitraan be very hard to obtain for the
user. Table 1 shows performance in terms of theHT,and NN. Figure 8 shows
the recall precision plot, we can notice the ctwittion of the probabilistic approach
to the improvement of the result. The results shbat the curvatures histogram
give accurate results in a controlled environment.

—&— With Proba
—&— Simple Distance

Figure 8. Curvatures histogram overall recall precigon. Courbe de rappel
précision de I'histogramme de courbures.
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Performanc
Methods ET ST NN
With Proba 24.79 39.02 50.37
Simple Distance 24.98 35.2 49.11

Table I. Curvatures histogram retrieval performances. Performances de
I'indexation avec I'histogramme de courbures.

Figure 9 and 10 show an example of querying usingatures histogram with
the probabilistic approach.

Figure 9. Request input is a random view of a model.a requéte est une vue
aléatoire d'un modéle.

Figure 10. Top 4 retrieved models from the collectio with curvatures
histogram. Les 4 premiers résultats retournés avdthistogramme de
courbures.

V.2. Zernike moments

The mechanical parts in the collection contain fiske they can be fixed to other
mechanical parts. Sometimes the positions and imerdions of the holes can
differentiate between two models from the samescldsrnike moments give global
information about the edge image of the 2D viewbl&a& shows performance in
terms of the FT, ST, and NN. Figure 11 shows tlealteprecision plot, we can
notice again the contribution of the probabilistproach to the improvement of the
results. The results show that the Zernike Momeie the best results on our
models collection.
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Figure 12 and 13 show an example of querying uZiemike moments with the
probabilistic approach..

1 4

—&— W ith Proba
—=—Simple Distance

Figure 11. Zernike moments overall recall precisionCourbe de rappel
précision des moments de Zernike.

Performanc
Methods FT ST NN
With Proba 55.77 82.33 72.88
Simple Distance 51,68 70.13 65.27

Table Il. Zernike moments retrieval performances. Peormances de
I'indexation avec les moments de Zernike.

Figure 12. Request input is a random view of a modella requéte est une vue

aléatoire d'un modele.

Figure 13. Top 4 retrieved models from the collectio with Zernike moments.
Les 4 premiers résultats retournés avec les momente Zernike.
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V.3. Curvature Scale Space (CSS)

As mentioned before, the collection used in trestés provided by the car
manufacturer Renault and is composed of mechapar#és. Most of the mechanical
parts and due to industrial reasons do not haveuraed shape. The main
information in the CSS is the salient curves, whitkhe occurrence are rare in the
shapes of the models. This particularity of ourrent collection explains the
problem with the curvature scale space. In the ccagieere the model shape is
curved, the recognition rate is very high, but iosn3D model from our collection,
the shape is not much curved. Table 3 shows pediocmin terms of the FT, ST,
and NN. Figure 14 shows the recall precision plee can notice again the
contribution of the probabilistic approach to tmeprovement of the results. The
results show that the Curvature Scale Space daiwet accurate results on our
models collection.

0,9

0,8

—&— With Proba
—— Simple Distance

0,2 1

0,1

Figure 14. Curvature Scale Space overall recall prégion. Courbe de rappel
précision des Curvature Scale Space (CSS).

Performanc
Methods FT ST NN
With Proba 25.13 39.13 51.37
Simple Distance 24.98 35.1 49.278

Table Ill. Curvature Scale Space retrieval performances. Performances de
l'indexation avec les Curvature Scale Space (CSS).
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Figure 15 and 16 show an example of querying u§logvature Scale Space
with the probabilistic approach. The request imiage model that gives good results
with CSS due to the curves it contains.

Figure 15. Request input is a random view of a modella requéte est une vue
aléatoire d'un modeéle.

L T —
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Figure 16. Top 4 retrieved models from the collectio with Curvature Scale
Space. Les 4 premiers résultats retournés avec I€sirvature Scale Space.

V.4. Real photos tests

One of the main goals of the SEMANTIC-3D project ts provide car
technicians a tool to retrieve mechanical parterefces. The solution proposed is
to retrieve objects that correspond the most tbagof the mechanical part.

As mentioned before, our framework can accept nu@sgriptors, but not all of
them are suitable for the retrieval of 3D CAD madebm a photo.

Curvatures Histogram?

The main problem with the curvature histogram ssdépendency on the light
position. A small change in the lightening makeradyes in the curvature, that leads
to a difference in the curvature histograviot suitable!

Curvature Scale Space?

Most of the mechanical parts and due to industeakons do not have a curved
shape. The main information in the CSS is the saligurves, which in the
occurrence are rare in the shapes of the modeis. prticularity of our current
collection explains the problem with the CurvatBmale SpaceNot suitable!
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Zernike Moments?

The mechanical parts in the collection contain fiske they can be fixed to other
mechanical parts. Sometimes the positions and itmergions of the holes can
differentiate between two models from the samescldsrnike moments give global
information about the edge image of the 2D vieweSehproperties of the Zernike
moments make it the most suitable for 3D modeleedit from photos.

During the rest of the paper and for our tests weduthe Zernike moments
descriptors for the reasons mentioned in the pusvéections.

To use our algorithms presented in the previoutigecon real photos, a pre-
processing stage is needed. As the photos willdmpared to views of the 3D
models, we make a simple segmentation using ahbie:sA more sophisticated
segmentation can be used, but it is behind theesobphis paper. Then Zernike
moments are calculated on the edge image madeslyahny filter.

Figure 17 shows a wheel from a Renault car. Fig8rshows the 3D models results
to this request using our retrieval system withrthespective ranks.

Figure 17. A request photo representing a car whedlne photo requéte
représentant un volant de voiture.

5 6

Figure 18. Results for the car wheel photo (figure). Résultats pour le volant
de voiture (figure 17).
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Figures 19 shows a low resolution photo (200x20¢elg) of wheel from a
Renault car. The figure 20 show the 3D models tedwl this request using our
retrieval system with their respective rank.

Figure 19. A low resolution request photo representig a car wheel. Une photo
basse résolution représentant un volant de voiture.
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Figure 20. Results for the car wheel photo (figured). Résultats pour le volant
de voiture (figure 19).

VI. Conclusion and future work

We have presented a new framework to extract cteistic views from a 3D
model. The framework is independent from the deswrs used to describe the
views. We have also proposed a bayesian probabilisethod for 3D models
retrieval from a single random view.

Our algorithm for characteristic views extracti@h lis characterise a 3D model
by a small number of views.
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Our method is robust in terms of shape representiit accepts. The method
can be used against topologically ill defined mbaked models, e.g., polygon soup
models. This is because the method is appeararseslbpractically any 3D model
can be stored in the collection.

The evaluation experiments showed that our framkwores very satisfactory
results with different descriptors. In the retrievexperiments, it performs
significantly better when we use the probabilisfiproach for retrieval.

Our preliminary results on real photos are sattsfg¢c but more sophisticated
methods for segmentation and extraction from bamkgi must be used.

In the future, we plan to focus on real imagesl also to adapt our framework
to 3D/3D retrieval and test it on larger collection
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