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Tarik Filali Ansary, Mohamed Daoudi, Member, IEEE, and Jean-Philipe Vandeborre

Abstract—In this paper, we propose a method for three-dimen-
sional (3-D)-model indexing based on two-dimensional (2-D) views,
which we call adaptive views clustering (AVC). The goal of this
method is to provide an ”optimal” selection of 2-D views from a
3-D model, and a probabilistic Bayesian method for 3-D-model re-
trieval from these views. The characteristic view selection algo-
rithm is based on an adaptive clustering algorithm and uses sta-
tistical model distribution scores to select the optimal number of
views. Starting from the fact that all views do not have equal impor-
tance, we also introduce a novel Bayesian approach to improve the
retrieval. Finally, we present our results and compare our method
to some state-of-the-art 3-D retrieval descriptors on the Princeton
3-D Shape Benchmark database and a 3-D-CAD-models database
supplied by the car manufacturer Renault.

Index Terms—Bayesian approach, clustering, 3-D indexing, 3-D
retrieval, views.

1. INTRODUCTION

HE use of three-dimensional (3-D) image and model
databases throughout the Internet is growing both in
number and size. The development of modeling tools, 3-D
scanners, 3-D graphic accelerated hardware, Web3D, and so
on, is enabling access to 3-D materials of high quality. In recent
years, many systems have been proposed for efficient infor-
mation retrieval from digital collections of images and videos.
However, the solutions proposed so far are not always effective
in application contexts where the information is intrinsically
3-D. A similarity metric has to be defined to compute a visual
similarity between two 3-D models, given their descriptions.
For example, Kazhdan et al. [1] describe a general approach
based on spherical harmonics. From the collection of spher-
ical functions calculated on the voxel grid of the 3-D object,
they compute a rotation invariant descriptor by decomposing
the function into its spherical harmonics and summing the har-
monics within each frequency. Then, they compute the Ls-norm
for each component. The result is a two-dimensional (2-D) his-
togram indexed by radius and frequency.

Manuscript received October 19, 2005; revised March 5, 2006. This work
was supported by the French Research Ministry and the RNRT (Réseau Na-
tional de Recherche en Télécommunications) within the framework of the SE-
MANTIC-3D National Project (http://liris.cnrs.fr/semantic-3d.net) and in part
by the NoE DELOS No. 507618 (http://www.delos.info). The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Anna Hac.

The authors are with the FOX-MIIRE Research Group (LIFL UMR
CNRS/USTL 8022) GET/INT/Télécom, Lille 1, France (e-mail: filali@enic.fr;
daoudi @enic.fr; vandeborre @enic.fr).

Color versions of Figs. 1-3, 6— 8, 10, and 14 are available online at http://
ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2006.886359

Vandeborre et al. [2] propose to use full 3-D information. The
3-D objects are represented as mesh surfaces and 3-D shape
descriptors are used. The results obtained show the limitation
of the approach when the mesh is not regular. This kind of ap-
proach is not robust in terms of shape representation.

Antini et al. [3] present an approach based on curvature cor-
relograms. The main advantage of correlograms relates to their
ability to encode not only the distribution of features but also
their arrangement on the object surface.

Assfalg et al. [4] present an approach to global and local con-
tent-based retrieval of 3-D models that is based on Spin images.
Spin images are used to derive a view-independent description
of both database and query objects. A set of Spin images is first
created for each object and the parts it is composed of. Then, a
descriptor is evaluated for each Spin image in the set. Clustering
is performed on the set of image-based descriptors of each ob-
ject to achieve a compact representation.

Sundar et al. [5] encode a 3-D object in the form of a skeletal
graph. They use graph matching techniques to match the skele-
tons and, consequently, to compare the 3-D objects. They also
suggest that this skeletal matching approach has the ability to
achieve part matching and helps in defining the queries natu-
rally.

In 3-D retrieval using 2-D views, the main idea is that two 3-D
models are similar, if they look similar from all viewing angles.
Funkhouser et al. [6] apply view-based similarity to implement
a 2-D sketch query interface. In the preprocessing stage, a de-
scriptor of a 3-D model is obtained by 13 thumbnail images of
boundary contours as seen from 13 view directions.

Filali et al. [7], [8] propose an adaptive nearest neighbor-like
framework to choose the characteristic views of a 3-D model.
The framework gives good results but was only applied on a
small database.

Using aspect graphs, Cyr and Kimia [9] specify a query by a
view of 3-D-objects. A descriptor of a 3-D model consists of a
set of views. The number of views is kept small by clustering
views and by representing each cluster by one view, which is
described by a shock graph. Schiffenbauer [10] presents a com-
plete survey of aspect graphs methods.

Using shock matching, Macrine et al. [11] apply indexing
using topological signature vectors to implement view-based
similarity matching more efficiently.

Chen et al. [12] adhere to the intuitive idea that two 3-D
models are similar if they also look similar from different an-
gles. They use 100 orthogonal projections of an object and en-
code them by Zernike moments and Fourier descriptors. They
also point out that they obtain better results than other well-
known descriptors.
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Fig. 1. View selection process.
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Fig. 2. Local K-means on each part of the views clusters with ' = 2.

A complete survey on 3-D shape retrieval can be found in
Tangelder and Veltkamp [13].

In this paper, we propose a method for 3-D-model indexing
based on 2-D views, which we call Adaptive Views Clustering
(AVC). This method aims at providing an optimal selection
of 2-D views from a 3-D model, and a probabilistic Bayesian
method for 3-D-model indexing from these views. This paper
is organized as follows. In Section II, we present the main
principles of our method for characteristic view selection. In
Section III, our probabilistic 3-D-model indexing is presented.
Finally, the results obtained from two databases of 3-D models
are discussed demonstrating the performance of our method.
We compare our method to some state-of-the-art 3-D retrieval
descriptors on the Princeton 3-D Shape Benchmark (PSB)
database and the SEMANTIC-3D database.

II. SELECTION OF CHARACTERISTIC VIEWS

Let D, = {M;y,Ms,..., My} be a collection of N 3-D
models. We want to represent each 3-D-model M; by a set of
2-D views that best represent it. Fig. 1 shows an overview of
the selection of the characteristic view algorithm. To achieve
this goal, we first generate an initial set of views from the 3-D
model, then we reduce this set to only those that best charac-
terize this 3-D model. This idea comes from the fact that not
all the views of a 3-D model have equal importance: there are
views that contain more information than others. For example,
one view is sufficient to represent a sphere as it looks the same
from all angles. But, more than one view is needed to represent
a more complex 3-D model such as an airplane.

In this paragraph, we present our algorithm for characteristic
view selection from a 3-D model.
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A. Generating the Initial Set of Views

To generate the initial set of views for a model M; of the col-
lection, we create 2-D views (projections) from multiple view-
points. These viewpoints are equally spaced on the unit sphere.
In our current implementation, we use 320 initial views. In fact,
we scale each model such that it can fit into a unit sphere. Then
we translate it such that the origin coincides with the 3-D-model
barycenter.

To select positions for the views, which must be equally
spaced, we use a two-unit icosahedron centred on the origin.
We subdivide the icosahedron twice by using the Loop-subdi-
vision schema to obtain a 320 faceted polyhedron. Finally, to
generate the initial views, we place the camera on each of the
face-centers of the polyhedron looking at the coordinate origin.

The views are silhouettes only, which enhance the efficiency
and the robustness of the image metric. Orthogonal projection
is applied in order to speed up the retrieval process and re-
duce the size of the used features. To represent each of these
2-D views, we use 49 coefficients of Zernike moment descriptor
[14], [15]. Due to the use of Zernike moments, the approach is
robust against translation, rotation, and scaling.

B. Characteristic Views Selection

As every 2-D view is represented by 49 Zernike moment co-
efficients, choosing a set of characteristic views that best char-
acterize the 3-D models (320 views) is equivalent to choose a
subset of points that represent a set of 320 points in a 49-dimen-
sion space. Choosing X characteristic views which best rep-
resent a set of N = 320 views is well known as a clustering
problem.

One of the widely used algorithm in clustering is K -means
[16] algorithm. Its attractiveness lies in its simplicity and in
its local-minimum convergence properties. However, it has one
main shortcoming: the number of clusters K has to be supplied
by the user.

As we want from our method to adapt the number of charac-
teristic views to the geometrical complexity of the 3-D model,
using K -means is not suitable. To avoid this problem, we use a
method derived from K -means. Instead of using a fixed number
of clusters, we propose to use a range in which we will choose
the “optimal” number of clusters. In our case, the range will be
[1,...,40]. In this paper, we assume that the maximum number
of characteristic views is 40. This number of views is a good
compromise between speed, descriptor size and representation.

We proceed now to demonstrate how to select the character-
istic view set and also how to select the best K within the given
range. In essence, the algorithm starts with one characteristic
view (K equal to 1), we add characteristic views where they
are needed, and we do a global K-means on the data starting
with characteristic views as cluster centers. We continue alter-
nating between adding characteristic views and doing a global
K -means until the upper bound for characteristic view number
(40) is reached. During this process, for each K, we save the
characteristic view set.

To add new characteristic views, we use the idea presented in
the X -means clustering method by Dan Pelleg [17]. First, for
every cluster of views represented by a characteristic view, we
select two views that have the maximum distance in this cluster.
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Next, in each cluster of views, we run a local K -means (with
K = 2) for each pair of selected views. By local, we mean that
only the views that are in the cluster are used in this local clus-
tering (Fig. 2). Note that Figs. 2 and 3 are just a schematic ex-
ample, as we represent a view in a 2-D space. In our system, each
view is represented by a vector in a 49-dimensional space (cor-
responding to the 49 Zernike moment features extracted from
the view).

At this point, a question arises: “Are the two new charac-
teristic views giving more information on the region than the
original characteristic view?” To answer this question, we use
Bayesian information criteria (BIC), which scores how likely
the representation model (using one or two characteristic views)
fits the data. Other criteria, like Akaike information criteria
(AIC) [18], could also be used. Estimating the BIC score will
be discussed in Section II-C.

According to the outcome of the test, the model with the
higher score is selected (Fig. 3). These clusters of the views
which are not represented well by the current centroids will re-
ceive more attention by increasing the number of centroids in
them.

We continue alternating between global K-means and local
K -means on clusters belonged to the characteristic views until
the upper bound for the characteristic view number is reached.
Then, we compare the BIC score of each characteristic view set.
Finally, the best characteristic view set will be the one that gets
the highest BIC score on all the views. Algorithm 1 gives an
overview of the characteristic view selection algorithm.

Algorithm 1 characteristic view selection algorithm.

Number of characteristic views, K = 1

while Number of characteristic views < Maximum number
characteristic views do)

Apply global K-means on all the views (The start centers are
the characteristic views).

Save the characteristic view set and its BIC Score.
for all cluster of views do
Apply K-means (with K = 2) on the cluster.

Choose the representation with the highest BIC score between
the original characteristic view or the two new characteristic
views.

Update the number of characteristic views.
end for
end while

Select K and the characteristic view set with the higher BIC
score.

C. Bayesian Information Criteria

“Representation model selection” refers to the problem of
using the data to select one model from a list of candidates

BIC(k=2)=2569

i/

BIC(k=2)=4321

BIC(K=1)=3819

BIC(k=1)=2137

@ (b)

Fig. 3. Selecting the representations (with one or two characteristic views) that
have the higher BIC score.

Mody, ..., Mody that best represent the data. In our case, a rep-
resentation model will be a set of characteristic views.

Model selection is a well known mathematical problem.
This problem can be solved using many criteria like AIC [18],
BIC [19], Bayes Factors [20] and so on. The Bayesian solu-
tion to these problems is to compute the posterior probability
P(Mod;|D) for each model. Under weak conditions, BIC and
Bayes methods are asymptotically equivalent. On the other
hand, it appears to be some debate on the relative merits of AIC
versus BIC, but it is beyond the scope of this paper [21], [22].
In practice, it has been observed that BIC selects models with
a dimension smaller than AIC, because BIC “penalizes” more
than AIC when dimension is higher than seven [23]. In this
paper, we use the BIC for model selection.

To calculate the BIC score for a representation model Mod ;
having the cluster of views V', we use the formula introduced by
Schwarz [19]

. P;
BIC(MOd]) = lj(V) — 7] IOgN (1)

where P; is the number of parameters in Mod; also known as
the Schwarz criterion [19], [; (V') is the log-likehood of the data
according to the jth model taken at the maximum likelihood
point, and N (N = |V|) is the number of views in the cluster.

In our case the models are all spherical Gaussians which is the
type assumed by K-means. The maximum likehood estimate
(MLE) for variance is

A~

6% = ﬁ > (Dist(Vi, Vei)?) 2)

where Dist(V;, Ve;) the Euclidean distance between the
Zernike moments of the respective views V; and V¢;. Here,
V¢; is the characteristic view associated with the view V;. The
log-likehood of the data is
. 1 1
(V)= —_— = —
=% (5w

. 2
s || Dist(Ve. Ve

N

+log ) . 3
Figs. 4 and 5 show the evolution of the BIC score with the

number of views. These curves show that an “optimal” number

of views exists where the BIC score is maximized. For the air-

plane model in Fig. 4(a), the number of optimal views is 29.
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Fig. 4. (a) Airplane model from the PSB database and (b) its corresponding
BIC score curve.
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Fig. 5. (a) Car model from the PSB and (b) its corresponding BIC Score curve.

For the car model in Fig. 5(a), only 17 views are needed as this
3-D model is less complex than the first one. This results from
the fact that as the geometrical complexity of the 3-D model in-
creases, the number of distinct 2-D-views also increases. This
leads to a higher number of views to best represent it.

III. PROBABILISTIC APPROACH FOR 3-D INDEXING

As mentioned before, not all views of a 3-D model have
the same importance. There are views which represent the 3-D
model better than others. On the other hand, simple objects (e.g.,
cube, sphere) can be at the root of more complex objects. In
this section, we present a probabilistic approach that takes into
account that views do not have the same importance, and that
simple objects have higher probability to appear than more com-
plex one.

Each model of the collection D, = {M;y, Ms,..., My}
is represented by a set of characteristic views V., =
{Vi,Va,...,V3}, with © being the number of character-
istic views. To each characteristic view corresponds a set of
represented views called V..

Considering a 3-D-request-model @, we want to find the
model M; € D, which is the closest to the request model Q).
This model is the one that has the highest probability P(M;|Q).

Knowing that each model is represented by its characteristic
views, P(M;|Q) can be written

K

=>"P(M;V5) P

k=1

P(M;|Q) (V51Q) €))

where K is the number of characteristic views of the model ().

Let H* be the set of all the possible hypotheses of correspon-
dence between the request view VQ’; and a model M;, H* =
bk N hE v ... v Bk A hypothesis h’; is a Boolean variable
which denotes that the view p of the model corresponds or not
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to the view request Vcij . The sign V represents the logical or
operator. Let us note that if an hypothesis h’pC is true, then all
the other hypotheses are false. P (Mz |V5) can be expressed by

P (M| H).
We have
P (M;|HY) = ip (Mi,VAjMHk) (5)
j—1
P(M;|H") = ZZP (MZ,VAJJ |hk) (6)
j=1p=1

Since we cannot observe in the same scene two characteristic
views of the same 3-D model, we have

P (Mi,VZ\Q1 |h’;) =0 for every j £ p

then
o

-yr (M Vi, |h§) . @)

J=1

P (M;|H")

The sum ijl p (MZ-, VX;IZ |hf) can be reduced to the only

true hypothesis P (Mi, VJ{L- |h
from the request model () can match only one characteristic
view from the model M;. We choose the characteristic view with
the maximum probability

. In fact, a characteristic view

P (M| H*) = Max; P (Mi, Vi, |h§) . (8)

By (4) and (8), we have

P(M;|Q) = ZMaX] (M, Vi I P (VEIQ) . ()

The closest model is the one that contains the view having the
highest probability.
Using the Bayes theorem, we obtain

P () = - L Vfi(lfi\f;) PO
J

(10)

On the other hand, we have
P (W5, Vi M) = P (W51 ) P (Vi IM:) - a)

and

bl

P (hk) = i > P (REIVE M) P (Vi M) P(M).
i=1 j=1

(12)
By using this remark, we obtain
P (M, Vi, n%)
P (1413, M) P (Vi IM:) P(M)
= 13)

Syp (RE1Vi, M:) P (Vi IM:) P(M:)

1=17=1
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Finally, we have (14), as shown at the bottom of the page.

As mentioned in the begining of this section, the main idea
of our probabilistic approach is that not all 3-D models in the
collection have the same probability to occur. Simple objects
(e.g., cube, sphere) could be at the root of more complex objects.
Our algorithm assumes that the simpler is the 3-D model, the
smaller is the number of the characteristic views. To model the
fact that the larger the relative number of views of a model M,
the smaller the probability of the model, we estimate P(M;),
the probability to observe a 3-D model M; by

e(=aN (Vi )/N(V))

SN (=N Var, /N (V)

=

P(M;) = (15)

where N (Vjy,) is the number of characteristic views of the
model M;, N (V') is the total number of characteristic views for
the set of the models of the collection Dy. « is a coefficient that
reduces the effect of small values of the exponentiel in P(M;).

On the other hand, there are views that contain more infor-
mation than other ones. We assume that the greater the number
of represented views N(Vr7, ) for a characteristic view Vy, ,
the more this characteristic view is important and the more in-
formation it contains about the 3-D model. So, we modeled
P(Vj; |M;) the probability to observe the characteristic view
7 of the model M; by

1-— ﬂe(_ﬂN(VT'j\ffi)/N(VT‘MT))

b —BN(Vr? )/N(Vra,
S (RS
(16)
where NV (Vrguq_) is the number of views represented by the

P (VJ{ZL_ |Mi) -

characteristic view j of the model M and N (V'ryy,) is the total
number of views represented by the model M;. The 3 coeffi-
cient is introduced to reduce the effect of small values of the
view probability. We used different values for « and /3 in our
experiments to study the evolution of our algorithm.

The value P (h§|V]{L , M) is the probability that, knowing
that we observe the characteristic view j of the model M, this
view corresponds to the view k of the request model )

oD (V,g,VZ{'L )

Z§=16

P (hﬂVﬁ,M) - (17)

o(vEvi)

where D (Vé , V]f[> is the Euclidean distance between the 2-D

Zernike descriptors of the view & of the request model () and
V]]VL is the characteristic view j of the 3-D model M.

To summarize, in this section we presented our Bayesian re-
trieval framework which takes into account the number of char-
acteristic views of the model and the importance (amount of in-
formation) of its views.

IV. EXPERIMENTAL SETUP

In this section, we present the experimental results, the
databases and the evaluation criteria. The algorithms we de-
scribed in the previous sections have been implemented using
C++ and the TGS Openlnventor libraries. The system consists
of an off-line characteristic view extraction algorithm and an
online retrieval process.

In our AVC method, every model was normalized for size by
isotropically rescalling it so that the average Euclidean distance
from points on its surface to the center of mass is 0.5. Then, all
models were normalized for translation by moving their center
of mass to the origin.

In the off-line process, the characteristic view selection takes
about 18 s per model on a PC with a Pentium IV 2.4-GHz CPU.
In the online process, the comparison takes less than 1 s for
1814 3-D models. To evaluate our method, we used two different
3-D-model databases. The PSB is a standard shape benchmark
widely used in shape retrieval community. We also present our
results on a more specific database, 5000 3-D CAD models pro-
vided by the car manufacturer Renault within the framework of
SEMANTIC project [24].

During our experiments, to show the contribution of the
probabilistic approach to retrieval performance, we compare
the probabilistic correspondence between two 3-D models to
the use of a simple distance between the 3-D models. We define
a dissimilarity between a 3-D-model M; and a query @) as

Dist(M;, Q) = Y _ Miny, D(Vi; , V)

=1

where D ( VZ\J/[ ) Vé“, is the Euclidean distance between the 2-D

Zernike descriptors of the view & of the request model () and
Vy,. the characteristic view j of the 3-D model M;.

A. Data Set

Sections IV-A.1 and II present the 3-D-models databases we
used in our experiments.

1) Princeton Shape Benchmark: PSB appeared in 2004 and
is one of the most exhaustive benchmarks for 3-D shape re-
trieval. It contains a database of 1814 classified 3-D models col-
lected from 293 different Web domains. There are many classi-
fications given to the objects in the database. During our experi-
ments we used the finest granularity classification, composed of

K P (h§|V]{L 7 M,L-) P (VX}, |Mi) P(M;)

gj S p (h§|VJ{,i7Mi) P (V]{Ii|Mi) P(M;)

P (V51Q) - (14)



161 classes. Most classes contain objects with a particular func-
tion (e.g., cars). Yet, there are also cases where objects with the
same function are partitioned in different classes based on their
shapes (e.g., round tables versus rectangular tables) [25]. We
compare our method to some state-of-the-art shape-matching al-
gorithms.

* D2 Shape Distribution: a histogram of distances between
pairs of points on the surface [26].

* Extended Gaussian Image (EGI): a spherical function
giving the distribution of surface normals [27].

e Complex Extended Gaussian Image (CEGI): a com-
plex-valued spherical function giving the distribution of
normals and associated normal distances of points on the
surface [28].

¢ Q-Gram Statistics Descriptor (2-GR): a vector in 256-
dimensional space, whose i-th co-ordinate is the number of
2-grams (); in the voxel representation of 3-D shape [29].

¢ Shape Histogram (SHELLS): a histogram of distances
from the center of mass to points on the surface [30].

¢ Shape Histogram (SECTORS): a spherical function
giving the distribution of model area as a function of
spherical angles [30].

¢ Shape Histogram (SECSHELL): a collection of spher-
ical functions that give the distribution of model area as a
function of radius and spherical angles [30].

* Voxel: a binary rasterization of the model boundary into
a voxel grid which is represented by the 32 spherical de-
scriptors giving the intersection of the voxel grid with the
concentric spherical shells.

* Spherical Extent Function (EXT): a spherical function
giving the maximal distance from center of mass as a func-
tion of the angle [31].

¢ Radialized Spherical Extent Function (REXT): a col-
lection of spherical functions giving the maximal distance
from the center of mass as a function of spherical angle and
radius [32].

¢ Gaussian Euclidean Distance Transform (GEDT): a
3-D function whose value at each point is given by the
composition of a Gaussian with the Euclidean Distance
Transform of the surface [1].

* Spherical Harmonic Descriptor (SHD): a rotation in-
variant representation of the GEDT obtained by computing
the restriction of the function to cocentric spheres and
storing the norm of each (harmonic) frequency [1].

e Light Field Descriptor (LFD): a representation of a
model as a collection of images rendered from uniformly
sampled positions on a view sphere. The distance between
two descriptors is defined as the minimum L1 distance,
taken over all rotations and all pairings of vertices on two
dodecahedra [12].

Every model was normalized for size by isotropically
rescaling it so that the average distance from points on its
surface to the center of mass is 0.5. Then, for all descriptors
except D2 and EGI, the model was normalized for translation
by moving its center of mass to the origin. Next, for all de-
scriptors except D2, SHELLS, SHD and LFD, the model was
normalized for rotation by aligning its principal axes to the -,
y-, and z-axes. The ambiguity between positive and negative
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Fig. 6. 3-D models from PSB database [25].

axes was resolved by choosing the direction of the axes so
that the area of model on the positive side of the x-, y-, and
z-axes was greater than the area on the negative side. Every
spherical descriptor(EGI, CEGI, Sectors, etc.) was computed
on a 64 X 64 spherical grid and represented by its harmonic
coefficients up to order 16th order. Histograms of distances
(D2 and Shells) were stored with 64 bins representing distances
in the range [0,2]. All descriptors, except LFD, were scaled
to have Lo-norm equal to 1. The LFD comprises 100 images
encoded with 35 8-bit coefficients to describe Zernike moments
and ten 8-bit coefficients to represent Fourier descriptors. For
more details about the PSB database, refer to [25].

2) SEMANTIC-3D Database: The SEMANTIC project [24],
supported by the French Research Ministry and the RNRT aims
to explore the techniques and tools preliminary to the realiza-
tion of new services for the exploitation of 3-D contents through
the Web. New techniques of compression, indexing and water-
marking of 3-D data are developed and implemented in a indus-
trial prototype application. These exchanges are ensured with
a format of data standardized with functionalities of visualiza-
tion and 3-D animation. The exchanges are achieved on existing
networks (internal network of the authors, wireless networks for
the technicians, etc.).

In SEMANTIC project, our research group focuses on the
indexing and retrieval of 3-D-data.

Within this framework, a database of 3-D CAD models
was provided by the car manufacturer Renault which database
contains 5000 of quite irregular polygonal meshes representing
CAD parts. To measure the performance, we classified 758
models of this collection into 75 classes based on the judgment
of two adult persons (Fig. 7), the 4242 other models were put
in a class called “others”. The smallest class contains four 3-D
models. The largest class contains sixty-four 3-D models. Fig. 7
shows some 3-D models from the SEMANTIC Database.

B. Evaluation Criterion

To objectively evaluate our method we use a statistical tool
provided by PSB to compare 3-D retrieval methods. Given a
classification and a distance matrix computed with any shape
matching algorithm, a suite of PSB tools produces statistics and
visualizations that facilitate the evaluation of the match results
[25].

The statistics that can be calculated using the PSB tools are:

* Nearest neighbor: the percentage of the closest matches

that belong to the same class as the query. This statistic pro-
vides an indication of how well a nearest neighbor classifier
would perform. Obviously, an ideal score is 100%, Higher
scores represent better results.
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Fig. 7. 3-D models from SEMANTIC database.

¢ First-tier and Second-tier: the percentage of models in
the query’s class that appear within the top K matches,
where K depends on the size of the query’s class. Specif-
ically, for a class with |C'| members, K = |C| — 1 for the
first tier, and K = 2 x (|C| — 1) for the second tier. The
first tier statistic indicates the recall for the smallest K that
could possibly include 100% of the models in the query
class, while the second tier is a little less stringent (i.e., K
is twice as big). These statistics are similar to the Bull Eye
Percentage Score K = 2 x |C/|, which has been adopted
by the MPEG-7 visual SDs. In all cases, an ideal matching
result gives a score of 100%, again higher values indicate
better matches.

* E-Measure: a composite measure of the precision and re-
call for a fixed number of retrieved results. The intuition
is that a user of a search engine is more interested in the
first page of query results than in later pages. So, this mea-
sure considers only the first 32 retrieved models for every
query and calculates the precision and recall over those re-
sults. The E-Measure is defined as:

E-r1.

PR
The E-measure is equivalent to subtracting van Rijs-
bergen’s definition of the E-measure from 1. The max-
imum score is 1.0, and higher values indicate better results

¢ Discounted Cumulative Gain (DCG): a statistic that
weights correct results near the front of the list more than
correct results later in the ranked list under the assumption
that a user is less likely to consider elements near the end
of the list. Specifically, the ranked list R is converted to a
list G, where element G; has a value 1 if element R; is in
the correct class and 0 otherwise. DCG is then defined as
follows:

G, ...
DCGy = G1:DCG; = DCGy_q + —— it i > 1.
1g2(7)

The result is then divided by the maximum possible DCG
(i.e., that would be achieved if the first C' elements were in

the correct class, where C' is the size of the class) to give
the final score
DCGy,
IC] L
1+ Z 5:G)
=2

DCG =

where k is the number of models in the database. The entire
query result list is incorporated in an intuitive manner by
the DCG [33].

¢ Recall versus Precision Curves: Recall versus Precision
Curves are well known in the literature of content-based
search and retrieval. The recall and precision are defined
as follow:

Recall = E, Precision = —

Q A
where N is the number of relevant models retrieved in the
top A retrievals, @ is the number of relevant models in
the collection, which is the number of models to which the
query belongs to.

V. EXPERIMENTS AND RESULTS

A. Princeton Shape Benchmark

In our experiments, we computed the distances between all
pairs of models in the PSB database and analyze them with the
PSB evaluation tools to quantify the matching performance with
respect to the base classification.

Fig. 8 shows a request using our 3-D retrieval system. On
the left side, the request 3-D model is presented. The right side
shows the 3-D models which have the highest probabilities of
matching the 3-D request model.

As mentioned before, we use several performance measures
to objectively evaluate our method: FT, ST, NN, DCG, and
N-DCG match percentages, as well as the recall-precision plot
[34].

Table I shows micro-average storage requirements (for our
method, we used 23 views which is the average number of char-
acteristic views for all the database models) and retrieval sta-
tistics for each algorithm. Storage size is given in bytes. We
found that micro and macro-average results gave consistent re-
sults, and we decided to present micro-averaged statistics.

Fig. 9 shows the Recall versus Precision plots for our AVC
method and some other shape descriptors. For visual clarity, we
presented the curves of the most relevant algorithm only.

We find that the shape descriptors based on 2-D views (LFD
and AVC) provide the best retrieval precision in this experiment.
We might expect shape descriptors that capture 3-D geometric
relationships would be more discriminating than the ones based
solely on 2-D projections; however, the opposite is true.

Our method provides more accurate results with the use of
Bayesian probabilistic indexing. The experiment shows that
AVC gives better performance than 3-D harmonics, Radialized
Spherical Extent Function, and Gaussian Euclidean Distance
Transform on the PSB database. Light Field Descriptor gives
better results than our method but uses 100 views, does not
adapt the number of views to the geometrical complexity, and
uses two descriptors for each view (Zernike moments and
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Fig. 8. Screenshot of the 3-D-model retrieval system.

TABLE I
RETRIEVAL PERFORMANCES FOR PSB
Methods Discrimination

Storage size NN FT ST E-Measure | DCG | N-DCG

LFD 4,700 65.7% | 38.0% | 48.7% 28.0% 64.3% | 21.3%
AVC(probability) 1,113 60.6% | 33.2% | 44.3% 25.5% 60.2% | 13.48%
REXT 17,416 60.2% | 32.7% | 43.2% 25.4% 60.1% | 13.3%
GEDT 32,776 60.3% | 31.3% | 40.7% 23.7% 58.4% | 10.2%
AVC(simple distance) 1,113 58.2% | 31.1% | 42.7% 25.1% 59.9% | 11,8%
SHD 2,184 55.6% | 30.9% | 41.1% 24.1% 58.4% | 10.2%

2-GR 512 55.5% | 28.7% | 39.1% 23.0% 56.3% | —%

EXT 552 54.9% | 28.6% | 37.9% 21.9% 56.2% | 6.0%

SECSHEL 32,776 54.6% | 26.7% | 35.0% 20.9% 54.5% | 2.8%

VOXEL 32,776 54.0% | 26.7% | 35.3% 20.7% 543% | 2.4%
SECTORS 552 50.4% | 24.9% | 33.4% 19.8% 52.9% | -0.3%
CEGI 2,056 42.0% | 21.1% | 28.7% 17.0% 47.9% | -9.6%
EGI 1,032 37.7% | 19.7% | 27.7% 16.5% 47.2% | -10.9%
D2 136 31.1% | 15.8% | 23.5% 13.9% 43.4% | -18.2%
SHELLS 136 22.7% | 11.1% | 17.3% 10.2% 38.6% | -27.3%

Fourier descriptor), which makes it a slower and more memory

consuming compared to the method we have presented. 1
Overall, we conclude that AVC gives a good compromise be- oo

tween quality (relevance) and cost (memory and online compar- 08 -

ison time) for the 3-D models of the PSB. o7 b

B. SEMANTIC-3D Database

The experiments are made on a database that contains 5000
3-D models. To objectively evaluate the performance of our
method on this database, a classification was made (ground
truth). 758 models are classified on 75 classes. A “’special”
class called others contains all the 3-D models that were not
Classlﬁed, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10(a) shows a 3-D model from SEMANTIC database that e
is used as a query to our system. Fig. 10(b) shows the ranked
results to the query in Fig. 10(a).

Precision
o
o
T

Fig. 9. Recall precision on PSB database.
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Fig. 10. (a) Query 3-D model and the (b) results on SEMANTIC database.
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In Section III, we presented our probabilistic approach that
uses two different parameters a and 5. We conducted experi-
ments on the SEMANTIC database using different values of o
and (. Different Recall versus Precision plots have been com-
puted (Fig. 11) for different « and (3 coefficients values.

Fig. 11 shows the Recall versus Precision plots for our AVC
method on the SEMANTIC database. Some remarks can be
achieved on these plots. First of all, when « = [ = 0, the
Recall versus Precision plot is the same as the one for our AVC
simple distance. This behavior could be explained easily by re-
placing in the (15) and (16) the values of « and 3 by 0. When «
and [ coefficients become greater than 1 the Recall versus Pre-
cision plots looks like a random retrieval. The variation of o and
0 coefficients between 0 and 1 gives better Recall versus Pre-
cision plots and scores. Experimentally, as Recall versus Pre-
cision plots in Fig. 11 show, the best results are obtained for
a = 8 = 1/100. That is why this value has been choosen for
all experiments.

We can explain the good results of our method by the fact that
the intra-class variance are very small. As the database contains
real professional 3-D-CAD models, the 3-D models from the
same class represent real mechanical automobile parts. The 3-D
models from the same class represent different versions of the
same models with small changes.

On the other hand, 3-D-CAD models in the database contain
holes so that they can be attached to other mechanical parts.

»

P e .

Fig. 12. Robustness evaluation of noise and decimation from a 3-D model. (a)
Orginal 3-D model. (b) Model with decimation. (c) Model with 5% noise. (d)
Model with 10% noise. (e) Model with 15% noise.

The positions and the dimension of the holes can differentiate
between two different models from the same class. As we repre-
sent each view of the 3-D model by Zernike moments, the holes
and the global shape are well taken into account. We can also
notice the result enhancement when we use the probabilistic ap-
proach for retrieval.

C. Robustness Evaluation of the Method

In order to assess the robustness of our method, we apply the
following transformations for all classified 3-D models. Each
transformed 3-D model is then used to query the test database.

The average recall and precision of all the 1814 classified
models from the PSB database are used for the evaluation
(Fig. 13). The robustness is evaluated by the following trans-
formation.

1) Noise: to 15% of the 3-D model vertices we applied three
random translations in the directions of z-, y-, and z-axis
(£5%, 10% and 15% the length of the model’s bounding
box). Fig. 12(c)—(e) show typical examples of the noise
effect.

2) Decimation: for each 3-D model, randomly select 20%
polygons to be deleted. Fig. 12(b) shows a typical example
of the decimation effect.

In Fig. 13, the first plot represents the original Recall versus
Precision without any decimation nor noise addition. Decima-
tion [Fig. 12(b)] gives very close results to the ones with the
original models.

The Fig. 12 shows the effects of noise addition for different
values 5%, 10%, and 15% on a 3-D-model; 5% noise addition
could easily be obtained in real situations such as the use of a
3-D scanner to get a 3-D-model from a real object.

Precision versus Recall plots were computed for each value
of noise and for decimation (Fig. 13). From these results, it can
be observed that the performance of our approach is robust to
5% noise addition and to decimation. Even if 10% and 15%
are high noise addition, Precision versus Recall plots (Fig. 13)
shows that our approach remains quite robust. The 10% and
15% noise curve shows the ”limits” of our method in terms of
noise robustness.
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Fig. 14. (a) PC and (b) PDA browser interface of our online search engine.

D. On-Line Search Engine

The SEMANTIC project focuses on the development of tools
and methods required to implement new operational services
for retrieving 3-D content through the Web and communicating
objects. Information and communication system must be avail-
able for remote access and assistance, interconnecting origina-
tors (mechanical part designers), nomadic users (automotive in-
dustry technicians) and a central 3-D data server.

To test our algorithms and to assess the results presented in the
previous sections, we developed an online 3-D search engine.
Our search engine can be reached from any device having a
compatible web browser (PC, PDA, SmartPhone, etc.) [35].

Fig. 14(a) shows the interface of our system using a PC web
browser. Fig. 14(b) shows the interface of our system on PDA
(Pocket PC under Windows Pocket 2003).

Depending on the web access device he/she is using, the user
faces two different kinds of web interfaces: a rich web inter-
face for full-featured web browsers [Fig. 14(a)], and a simpler
interface for PDA web browsers [Fig. 14(b)]. In both cases, the
results returned by the 3-D search engine are the same. The only
difference lies in the design of the presentation of results.

Finally, the users should notice that, due to some copyright
protection, the 3-D-CAD models from the SEMANTIC project
are not available for public online use. The 3-D-database avail-
able for tests of our 3-D search engine is the PSB database [25].

IEEE TRANSACTIONS ON MULTIMEDIA

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a 3-D-model retrieval system based
on characteristic view similarity which we called AVC. Starting
from the fact that the more the 3-D model is geometrically com-
plex, the more its 2-D views are different, we propose a char-
acteristic view selection algorithm that relates the number of
views to its geometrical complexity. Starting from 320 initial
views, our algorithm selects the “optimal” characteristic view
set that best represents the 3-D model. The number of charac-
teristic views varies from 1 to 40. We also propose a new proba-
bilistic retrieval approach that takes into account that not all the
views of 3-D models have the same importance, and also the
fact that geometrically simple models have more probability to
be relevant than more complex ones. Based on some standard
measures, we compared our method to thirteen state-of-the-art
methods on PSB database. Our method gives the second-best re-
sults. The AVC method we proposed gives a good quality/cost
compromise compared to other well-known methods. The re-
sults of our method on a large 3-D-CAD-model database (5000
models) supplied by Renault, show that our method can also
be suitable for 3-D-CAD-model retrieval. Our method is robust
against noise and model degeneracy. It is usable in the case of
topologically ill-defined 3-D model. A practical 3-D-model re-
trieval system based on our approach is available on the web for
online tests [35].
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