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Abstract This paper describes a unified and fully automatit |ntroduction
algorithm for Reeb graph construction and simplification as

well as constriction approximation on triangulated suefac Polygonal mesh is a widely used representation of 3D
shapes, mainly for exchange and display purposes. However,

The key idea of the algorithm is thdiscrete contours- - . ; .
any applications in computer graphics need higher level

curves carried by the edges of the mesh and approxim 206 descrintions as an inout. Topological skeletons have
ing the continuous contours of a mapping function — eni 2P Ipt Input. Topologt v

code both topological and geometrical shape characterjstﬁhown tch_ bl?j inlt_iresgng shapte descrki]ptic_)nsz[g]. 'ghfey be?efit
Therefore, a new concise shape representatiadmanced to- iverse fields like shape metamorphosis [25], deformation

: : ; ) [8], retrieval [16], texture mapping [35], etc.
rgg%%:r glngléeelitrggfr}scslrgsgﬁﬁ%nencodlng contours’ topo Many topological approaches study the properties of real

valued functions computed over triangulated surfacestMos
Firstly, mesh feature points are computed. Then they arkthe time, those functions are provided by the application
used as geodesic origins for the computation of an invarigantext, such as scientific data analysis [7]. When dealing
mapping function that reveals the shape most significant fexith topological skeletons, it is necessary to define an in-
tures. Secondly, for each vertex in the meshgliserete con- variant and visually interesting mapping function, whieh r
touris computed. As the set dfscrete contoursecovers the mains an open issue [4].
whole surface, each of them can be analyzed, both to detectMoreover, traditional topological graph construction al-
topological changes and constrictions. Constriction appr gorithms assume that all the information brought by the map-
imations enable Reeb graphs refinement into more visualiyng function is pertinent, while in practice, this can lead
meaningful skeletons, that we referexshanced topological large graphs [24,9], encoding noisy details.
skeletons Finally, topological approaches cannot discriminate vi-
) ) . sually interesting sub-parts of identified connected compo
_ Extensive experiments showed that, without preprocesggsts, like the phalanxes of a finger. This is detrimental to
ing stage, proposed algorithms are fast in practice, affingstain applications, such as mesh deformation.
invariant and robust to avariety of surface degrad_atlams (S Inthis paper, an original and unified framework is pro-
face noise, mesh sampling and model pose variations). Thgg8ed to address the above issues. Given a closed connected
properties makenhanced topological skeletomgeresting triangulated surfacd”, feature points are firstly extracted
shape abstractions for many computer graphics appllcatlomg_ 1(a)) in order to compute an invariant mapping function
notedyf,, (fig. 1(b)), which reveals the shape most significant
Keywords Shape abstractioriTopological skeletonsFea- parts. Secondly, for each vertex in the mesh, we compute its

ture points Constrictions Topology driven segmentation discrete contoura connected curve traversing it and locally
minimizing f,, gradient. We show that a topological analy-

sis of thosaliscrete contourgnables a pertinent Reeb graph
construction and simplification (fig. 1(c)), without any uip
parameter. Finally, we show that a geometrical analysis of
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properties of the shape [4] (number of loops, number and re-
lations between components, etc.). However, with regard to
shape skeletons, we identify three main drawbacks in topo-
logical approaches, successively addressed in this paper.

Firstly, itis difficult to define an invariant and visually-in
teresting mapping function. Secondly, constructing aagf
forming a topological graph into a manageable skeleton is
not a trivial problem. Finally, topological approaches de-
(@) (b) (© (d) compose a surface into connected sub-components only. This
means that visually interesting sub-parts of identified-con
nected components will not be discriminated: for example,
a finger of a hand model will not be decomposed into pha-
lanxes.

am [22,28], present the advantage to preserve the topological

2.1 Mapping functions

Differential topology based approaches study the proper-
©) ® ) ties of real valued functions, that we referraapping func-
. . _ . tions, defined on input surfaces, either to construct Reeb
Fig. 1 Main steps of the framework. First, feature points are exée .
(a). Then a mapping functiofb) is contoured both to construct ,altopo-gr‘r"phs [30,10], contour trees [9], level set diagrams [20] o

logical skeletor{c) and to enhance i) with constrictiongd). Topol- Morse complexes [24,7]. Those functions are often brought
ogy driven segmentatiofyf) and skeleton driven deformatiqig) are by the application context: terrain modeling [30], MRI anal

two examples of application of the framework. ysis [9], molecular analysis [7], etc.
When dealing with topological skeletons, it is necessary
to define a scalar function which satisfies invariance and
ability constraints, and which also provides a topolaljic

tion f,,. Thirdly, we present our algorithm faliscrete con-
tour computation, which is used both for the Reeb gra

constrqction and simplification as well as the ConStriCtio@escription that highlights visually significant surfacgns
approximation. . L .___components.

In particular, a special emphasis is given on the discrete Lazarus and Verroust [20] introduced such a function
contour constriction detection algorithm, Whic_h providesre fined by thegeodesic distancéhe length of the shortest '
robust and more accurate resulf[s than previous work [3 th between vertices) from a source vertex to any other ver-
Moreover, an extensive discussion on experimental res % in the mesh. It leads to visually interesting resultsatr

and framework_ _evaluatlon is proposed. Finally, to d.em.o[]'ral objects because itis invariant to geometrical tramséo
strate the usability of the presented method, two appboati ns and it is robust against variations in model pose [17].

are discussed: t_opology driven mes_h segmentation (fig. 1 ue to a lack of stability, within the framework of shape re-
and skeleton driven mesh deformation (fig. 1(g)). trieval, Hilaga et al. [16] proposed to integrate this fuioet
all over the mesh. Unfortunately, from our experience, that
function generates an important amount of critical points,
2 Related work configurations where the gradient of the function vanishes,
which makes the construction of visually meaningful graphs
Several approaches have been explored for the decommpore complex.
sition of polygonal meshes into meaningful sub-components In our method, to reveal the shape most significant fea-
to extract skeletal representations of shapes. They cantln@s, we focus on feature points. Feature points are mesh
roughly classified into four categories: semantic-oridisteg- vertices located on extremities of prominent componentg [1
mentations, medial axis transforms, generalized potéiitia Mortara and Patane [23] proposed to select as featurespoint
elds and topological skeletons. Each one of them has tite vertices where Gaussian curvature exceeds a givehthres
own advantages and drawbacks. For example, medial aodd, but this cannot resolve extraction on constant curva-
transform based methods [6,26] are commonly attributégre areas. Katz et al. [17] developed an algorithm based on
the drawback of high sensitiveness to small surface pertorulti-dimensional scaling in quadratic execution complex
bations, which is detrimental to many applications. On thty. In this paper, we propose a robust and straightforward
contrary, generalized potential field based methods [33] prlgorithm for feature point extraction (fig. 1(a)). Moreove
vide more robust results at the cost of high computationak use them as geodesic origins for the definition of our
times. In comparison to mesh segmentation based methotspping function (fig. 1(b)). Such a function well reveals
[18,17,2] and traditional skeleton extraction [33], taggp! the most visually significant parts of the mesh, generating
ical approaches, based on Morse and Reeb graph theomesmageable critical point sets.
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s * 2.3 Constriction computation
[ ]

Psychological research works [5] claim that the human
visual system tend to segment complex objects along the
narrowest and the most concave regions. Basing on this hy-
pothesis, in order to improve topological skeletons’ dgscr
tion quality, we focus on constrictions on surfaces.

Heétroy and Attali [15] define constrictions as simple clo-
* sed curves, whose length is locally minimal. Recentlyrbiét
o [14] showed that constriction detection could be achiewed b

Fig. 2 Evolution of the level lines of the height function on a bitts, analyzing surface curvature.

its critical points and its Reeb graph. In this paper, we propose to analyze the geometrical char-
acteristics of discrete contours, and particularly thaiva-

compose previously identified components into more visu-

A Reeb graph [28] is a topological structure that encod@gy interesting parts (fig. 1(e)).
the connectivity relations of the critical points of a secala
function defined on an input surface. More formally, Reeb
graphs are defined as follows:

_— 3 Framework overview
Definition 1 (Reeb graph) Let f : M — R be a Morse

function defined on a compact manifdid. The Reeb graph
of f is the quotient space gfin M x R by the equivalence
relation (p1, f(p1)) ~ (p2, f(p2)), which holds iff:

Given a closed connected triangulated surfBpee pro-
pose in this paper a unified method to decompbseto vi-
sually meaningful sub-parts, considering the topologaceal
geometrical characteristics discrete contours

f(p1) = f(p2) The algorithm proceeds in three stages. Firstly, mesh fea-
p1 andp, belong to t_hle same connected ture points are extracted (fig. 1(a)) in order to compute an in
component of = (f(p1)) variant and visually interesting mapping function (fig. )(b

denotedyf,, in the rest of the paper. Secondly, for each ver-
Figure 2 gives an example of a Reeb graph computed @ in the mesh, we compute itiscrete contoura curve
a bi-torus with regard to the height function and well illustraversing it and approximating,, continuous contour. Fi-
trates the fact that Reeb graphs can be used as skeletonsaally, as the set dfiscrete contoursecovers the entire mesh,
Constructing a Reeb graph from a scalar funcfi@om- it is possible to analyze each contour characteristicseeit
puted on a triangulated surface first requires to identiéy thho detect topological changes (fig. 1(c)) or to detect curva-
set of vertices corresponding to critical points. With thii®, ture transitions (fig. 1(d)).
several formulations have been proposed [11,31] to identif  Our scientific contribution resides in three poir(ts We
local maxima, minima and saddles, observing for each veiopose a robust and straightforward algorithm for feature
tex the evolution off at its direct neighbors. Several algopoint extraction (i) We show that aliscrete contourfor-
rithms have been developed to construct Reeb graphs framlation enables, without re-meshing and without any in-
the connectivity relations of these critical points [108bst put parameter, a pertinent Reeb graph construction, provid
of theminO(n xlog(n)) steps, witm the number of vertices ing visually meaningful graphs, affine-invariant and rabus
in the mesh. However, they assume that all the informatiem surface degradation@ii) We show that the geometrical
brought by the scalar functioji is relevant [24,9]. Conse- information brought bydiscrete contoursnables the ap-
quently, they assume that all the identified critical poar&s proximation of constrictions on prominent components and
meaningful, while in practice, this hypothesis can leadto uconsequently Reeb graph refinement.
manageably large Reeb graphs. To overcome this issue, Ni
et al. [24] developed a user-controlled simplification algo
rithm. Bremer et al. [7] proposed an interesting criticahpo
cancellation technique based opersistencehreshold. At- 4 Feature point extraction
tene et al. [1] proposed a seducing approach, unifying the
graph.c.onstruction and simplification, but it is conditidne  To compute visually meaningful topological skeletons,
by aslicing parameter. we first have to define a mapping function that will highlight
In this paper, we propose a discrete formulation of cothe most significant parts of the mesh. To achieve this, we
tours, connected subsets of level lines, which enableb; wifirst focus on feature points, vertices located on the extrem
out any input parameter, the construction of visually meaties of prominent components, because they provide a good
ingful Reeb graphs (fig. 1(c)). overview of the shape structure [23,17].
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Fig. 3 Euclidean(a) and geodesi¢b, c¢) based mapping function crit-
ical points.

4.1 Algorithm overview

Fig. 4 Most geodesic distant vertices of the hand model.

To extract feature points, we propose a quite straightfor-
ward algorithm, using differential topology tools. It isdeal e
on the key idea that feature points can be extracted analyz-  (a) E1. (b) E-. (c) E1 N Es.
ing some mapping function local extrema. In figure 3(a), the _ _ _
height function has been computed on a hand model. g > Feature point extraction overview.
the fingers are directed upwards, local maxima (in green)
are identified at the extremities of related components a\l)éj[
can be consequently referred as feature points. However, i
is straightforward that the height function is not a reldvarf,, (v) = (v, vs, ) (1)
_ch0|ce_ in thg general case because it is dependent on thef;g)(v) = 6(v,vs,) )
ject orientation.

The function that maps a vertex to its geodesic distance Basing on the critical point classification proposed in
to a source vertex seems much more appropriated becdd§d a local minimumis defined as a vertex such that all
geodesic distances are affine-invariant and robust to-vaiif§ direct neighbors have an upper function value. Recipro-
tions in model pose. In figures 3(b) and 3(c), the geodegj@”y, we define docal maximumas a vertex such that all its
distance function has been computed on the hand model, @isect neighbors have a lower function value.
ing the extremity of the middle finger (in red) as source ver- Let £ be the set of local extrema (minima and maxima)
tex. The set of local extrema (minima and maxima, in re®f fg, (in yellow in fig. 5(a)) andE, be the set of local ex-
and green) actually contains the set of feature points (dxma off,, (in cyan in fig. 5(b)). Extremities of prominent
tremities of the fingers and the wrist). components are configurations whege and f,, tend to an

However, figure 3(c) shows some local maxima in coextremum (figs. 5(a) and 5(b)). Consequently, the set of fea-
figurations which do not correspond to feature points (gret#re points is both included if; and E». Therefore, we
points on the side of the little and the ring fingers). To diglefine the set of feature poinisof 7T (fig. 5(c)) as follows:
criminate local extrema that correspond to feature porotaf , E

. : =F1NEs 3
those which do not, we propose to realize a crossed analy-
sis, using two geodesic based mapping functions — whose In practice,f,, and f,, local extrema which correspond
origins are the mesh most distant vertices — and to intersaxfeature points do not appear exactly on the same vertices
the sets of their local extrema, as illustrated in figure 5.  but in the sameeodesic neighborhood herefore, the in-
tersection constraint is relaxed as follows, wita [0, 1] the
radius of thegeodesic neighborhoo@eodesic distances are

Let f,, and f,, be two scalar functions defined on each
texv of T', as follows:

4.2 Algorithm formulation normalized):
From an algorithmic point of view, geodesic distances
can be approximated by the Moore-Dijkstra algorithm (dis- Jve, € By | 6(v,ve,) < €
tance minimizing in weighted graphs). In the rest of this pa- Jve, € By | 6(v,0e,) < €
per, we will refer tod(v;, v;) as the normalized approxima-V € ' <= 5(U2Uf_) >e Yoy, € I (4)
tion of the geodesic distance from verigxo v;, normalized € 6’[0:1] .

with regard to mesh global extrema.

Letwvs, andvs, be the most geodesic distant vertices of a From our experience, using only two geodesic mapping
closed connected triangulated surfdtecomputed with the functions (f,, and f,,) and settinge = 0.05 give accurate
Tree Diameter algorithm [20]. In figure 4, is located at results. The choice of such settings as well as the efficiency
the extremity of the wrist (fig. 4(a)) while,, is located at and properties of the presented algorithm will be discussed
the extremity of the middle finger (fig. 4(b)). in the experiment dedicated section.
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a @

(@) I'(va). (b) I'(us).

s ; Fig. 7 Example of continuous (red) and discrete (blue) level lines
(@) |F| =6, (b) |F| =7,|C| = 92. (height function). The upper valued triangulatidi is colored in light
|C| = 100. blue.

Fig. 6 f,, mapping function computed on two standard models. The As shown in figure 6/,,, generates an important number

important number of identified critical points preventsnstard algo- Of Crit_ical pOinFS- Consequently, standard Reeb graph con-
rithms from producing concise shape representations. struction algorithms would create large graphs, countigg a

many nodes as critical points, which is a major issue for the
extraction of meaningful topological skeletons. In the tnex
5 Mapping function definition section, we present a formulation discrete contourswh-
ich enables a unified graph construction and simplification

Mapping function definition depends on what is expecteulocess.
to be revealed. For example, for terrain modeling [30], the
height functiorwill present critical points over hills and val-
leys, providing consequently an appropriate topologieal d
scription. When dealing with topological skeletons, itéxh
essary to define an invariant and visually interesting map- Defini t f | functi ted tri
ping function, which highlights the global structure of the efining contours of a real functighcomputed on a tri
object. Moreover, the mapping function should not genera‘?@gu'ated SL:rfacﬁ_ls rl?t a SImpIerE)robIerr}. In_the contlﬂu-
an unmanageable set of critical points, in order to make t Est case,il eve :aﬁ (f(p))t IS t e_stet 0 pg'nt$l; SIUC
graph simplification easier. From our experience, this s n{ i%[hf(pi) — f(fi)' .?rttre]ovekr), IWO ptom”?al andp, be ongt d
the case of the function presented in [16]. 0 the same:(f)rllourl €y belong fo the same connecte

Firstly, to guarantee invariance to geometrical transforomponent o (f(p1))- . .
mations and robustness against variations in model pose In the d|_screte case, for a given vertex T, depending
geodesic distances are used. Secondly, to define a visug sampling, the set of vertices suc_h thatf (v;) = f(l.’).
interesting mapping function, feature points are takerrias s often reduced to the vertexitself. With regard to defini-

gins for geodesic distance evaluations, because thequO\}l'r?n 1, a correct Regb graph could not be constructed.f_rom
a good overview of the object global structure [23]. this formulation of discrete contours, because the coorti

r?f the equivalence relation would rarely be satisfied.

Therefore, we propose the following mapping function, T tour tonoloaical Hies inthe di ¢
noted f,, in the rest of the paper, which computes in each '© Prés€rve contourtopological properties in the discrete

vertexv of T the geodesic distance to the closest featuf@Se: We define thdiscrete level linel’(v) associated to
point: the vertexv as a curve computed along the edge§ ofh-

. ich approximates by upper value the continuous level line
f®) = fe(v) — minyer fe(v) (5) f1(f(v)). More formally, it can be defined as follows:

mavach(v) - minvGch(v) . . . .
) ) ) ) ] Definition 2 (Discrete level line) LetT* be the subset of a
fm is @ normalized version of the functigi, defined as ¢josed connected triangulated surfagesuch thatvo+ e

6 Discrete contour computation

follows (f.(v) > 0,vv € T): T+, f(vt) > f(v). The discrete level line associated to the
fe(w) =1—=10"(v,ve) (6) vertexv and noted!'(v) is the set of edges (and related ver-
. . tices) belonging t@'* such that each edge &f(v) is adja-
with v, the closest feature point from cent to only one face @f+.
/ o
ve €F [ 0 (v,ve) =minuger 0(v,vy) (7) Thediscrete level lind"(v) is the boundary between the

Notice thatf,, is invariant to uniform scaling (thanksupper valued triangulatio*+ and the rest ofl". Figure 7
to the normalization), rotation and translation (thankth® showsdiscrete level linegraversing an arbitrary triangula-
use of geodesic distances). Figure 6 presents some contjfmn, with regard to the height function. Moreover, each-con
tations off,, over arbitrary shapes, the number of extractetbcted subset of discrete level linés referred as discrete
feature points|F’|) and the number of critical point$({|, contour.
identified according to the classification proposed in [10]) In particular, we define thdiscrete contoury(v) asso-
fm has been defined so as it tends to maxima (in green)céted to the vertex as the connected subset Bfv) con-
feature points and it tends to minima (in red) at the centertafining v. Notice that the mor&” will be dense, the more
the object. discrete contoursvill tend to continuous contours.
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» .
%0 0.0

@ (b) (©) (d) (e) ®
Fig. 9 Bifurcation and junction contexts on a torus shape (heigh¢f
tion).

(@) ()

Fig. 8 Examples of discrete level lines (in red) on a 26 000 verte)
mesh Qcm function).F(v2 000)(0,), F(’Um 000)(b) andF(’Uzo 000)(0)
are respectively composed ®f3 and6 discrete contours

Algorithm 1 Discrete contour computation. @) (b) ©

Vt=10

Cd « {argmin,erf(v')} Fig. 10 Dual Reeb graphs of primitive and complex shap®s func-

while Cd # () do tion).
v — argming ccaf (')
I'(v) < Cd o v; and vy belong to the same connected component if
’FYz(“) - C‘;””e%ej subset @fd, containingv they satisfy the above conditions. Therefore, at each-itera
szﬁvgvd [?Tv neighbors, which are not it ¢} tion of the contour computation algorithm, each individual
Addvto Vit connected component @f, traversed by (v), can be iden-

end while tified.

Thus, topological changes can be detected observing the
number N, of connected subset df(v), as f evolves.
Discrete contourgan be computed for the whole mesive define three types of topological changes:

using a step by step gradient ascent process, describedlirbifurcations when N increases from iteration to
algorithm 1. This algorithm describes a propagation frbm iterationt + 1 (I'(v) ;p;ﬁ%s in two contours from 9(a) to
global minimum tof local maxima. It handles two heaps, re- 9(c)

spectively the set of visited verticég and the set of candi- 2 junct'ions whenN,, decreases fromto -+ 1 and when

date vertices for visiCd. At each stepc'd surroundsi’t by several discrete contours merge (two contours merge in
upper value and corresponds to the discrete levellliqg, one from 9(c) to 9(e))

with v = argminyecaf(v'). . 3. terminationswhenN ., decreases fromto ¢+ 1, with-

In figure 8, examples of discrete level liné§v;) are out discrete contour merge.
shown, at different iterationsof the algorithm.V¢ vertex
set is displayed in white anf(v) is displayed in red. Vis- Figure 10 shows several dual Reeb graphs obtained with
iting in a recursive fashion each vertex Bfv) enables the this strategy, with regard té,, (graph embedding in space
identification of each of its connected subsets, and partigil be detailed section 9).
ularly v(v). In the next sections, discrete contours will be The main contribution of our algorithm is that graph con-
analyzed, both to detect topological changes and constgtruction and simplification are performed at the same time,
tions. without input parameter or preprocessing.

If we compare figures 10 and 6, we notice that the dual
Reeb graphs do not reflect the presence of noisy criticatpoin
(points in red in figure 6), because discrete level lines do no
disconnect in those configurations.

. . . Standard Reeb graph algorithms would have generated

. _Sta_nda_rd Reeb graph construction al_gorlthm_s, need_ S;??éphs counting as ?naﬁy no%es as critical poimé:ngodes
plification in order to remove noisy details. In this Sectioffy, the hand model ang nodes for the horse model. In our
we propose a unified algorithm for graph construction a%proaoh, as contours do not disconnec,innon-smooth

simplification, based on the topological analysis of difreé, 55 only meaningful topological variations are encdded
contours. Following the definition 1 of a Reeb graph in thgo graph.

continuous case, we can state an analog equivalence relatio
in the discrete case between two verticesvs € T, based
on our notion of discrete contour:

7 Topological analysis of discrete contours

8 Geometrical analysis of discrete contours

v1,v2 € I'(v)
(v1, f(v)) ~ (v, f(v)) {vl,vg € v(v) (8) Constriction approximations enable the subdivision of
the branches of topological skeletons into more visualy in
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. ZVUiE’Y(U) Ic(vi) X (‘Cel (Ul) + Le, (vl))
- 2 x P(y(v))

whereP(y(v)) stands for the perimeter of the contour
~(v) and whereL,, (v;) and L., (v;) stand for the lengths
of the edges adjacent tg on the contour. Vertex curvatures
are weighted so as not to give too much importance to the
() (b) (c) densely sampled parts of the contour.

C(v(v)) (10)

Fig. 11 Several curvature estimations on the hand model: mean cur-

vature(a), Gaussian curvaturé) and curvature indexc) [19]. The

curvature index generates a more important contrast beteeevex 8-3 Component curvature curves
and concave areas.

] . ] ] ) During the topological analysis of discrete contours, each
teresting parts, detecting potential articulations farele. contour is sequentially linked to its related node in thel dua
For eacldiscrete cor}tourde_zntlfled in the previous stage, itSReeb graph. Thus, each node of the graph is equipped with
weighted curvature index is computed and local minima agesorted collection of discrete contours, sorted with régar
identified as constrictions. to f,,. Computing((v(v)) for each element of this sorted

collection gives aurvature curvean overview ofy(v) cur-
vature evolution ag,, evolves.
8.1 Topological constraint Curves shown in figure 12 (left column) give examples
of such evolutions on some connected components of the
Since constrictions are defined as closed curves, the af@nd model f,, is reported on thex-axis while((v(v)) is
ysis has to be restricted arloseddiscrete contours only. reported on thé’-Axis. Left values correspond to contour
Considering each contoyr(v) as a connected and non dircurvature at the basis of components while right values cor-
ected planar graphy, v(v) is a cycle, and consequently aespond to contour curvature at the extremity of components
closed curve, if the degree of all its vertices equals two. Curvature is a well-known noise sensitive entity. Conse-
Therefore for each discrete contour Bfreduced to a pla- quently, to compute nice-looking discrete contour coastri
nar graphG, the degree of each of its vertex is computetiions, we have to reduce high frequency noise in curvature
and we only consider in the rest of our algorithms contougsirves. Reducing noise on a one-dimensional data set is a
that satisfy the above property. trivial signal-processing problem. This can be achieved by
applying an ideal low-pass filter of cutoff frequengy, de-
fined by the following transfer function:

8.2 Contour curvature estimation
Lif v < fr

Many curvature computations have been proposed in tHé () = { 0 if }CZEU; > ;T (11)
past [19,21]. In this paper, contour curvature is evaluaged
ing the curvature index [19]. Firstly it is invariant to uoim A filtered version of{(y(v)) is given by the following
scaling, which contributes to the stability of the algamith expression, wher&T stands for the Fourier Transform:
Secondly, experiments showed it provided more relevant re-
sults than Gaussian [32] or mean curvatures. The curvature

index is computed for each vertexe T as follows: C(Y(v) = FT7HH (fy()) X FT(C(v(v)))) 12)
2 gretan Btk gy o£ Ky As shown in figure 12, low-pass filtering smooths curva-
I.(v) = {6 TR Tk (9)  ture curves and enables a clear discrimination of local min-

ima and maxima. Thé¢, parameter has been set experimen-
with k; and k, the principal curvatures in, computed tally to 8, as discussed in the experiment dedicated section.
with the algorithm described in [21]. Figure 11 shows sev-
eral curvature estimations on the hand model (the mean and
the Gaussian curvatures have been displayed with logari®¥ Constriction selection
mic scales). Notice that the curvature index generates a mor R
important contrast between convex (in light red) and con- By definition, if {(v(v)) is positive,y(v) neighborhood
cave (in dark red) areas, which benefits concave contour @e-globally convex, otherwise it is concave. Constrictions
tection. appear on the narrowest, or the most concave, parts of a
In order to estimate the curvatu¢éy(v)) associated to surface. Consequently, local negative minima are idedtifie
the discrete contouy(v), a weighted average of curvatureas contour constrictions. In figure 12(b), one negative min-
indexes is computed as follows: imum is identified and is marked as a constriction in figure
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p— detection has been provided by a geometrical analysis of dis

; crete contours. Consequently, for each node of the dual Reeb
, / graph, its contour and vertex collections can be sub-divide

i using contour constriction as boundaries. Thus, each iden-
tified connected component of the mesh can be sub-divided
into more visually meaningful sub-parts.

Basing on these decomposition processes, several em-
beddings of enhanced topological skeletons can be provided
For display purpose, a graph embedding (figure 13(a)) can
be computed by placing a node at the euclidean barycenter
of the related mesh patch.
= : For some applications, it is important to constraint the

@ © ® skeleton position strictly inside the object. Moreovern-pa
) =1 T 7 i ticularly for mesh deformation, a link between vertices and
i - skeleton branches will be additionally needed. Most of the
. time, this association is performed computing for each ver-
“ : tex its closest point on the skeleton. Thanks to their theo-
S A retical foundations, enhanced topological skeletons pre a
(9) (h) [0) propriate candidates. Firstly, a medial axis embedding (fig
ure 13(b)) can be computed, placing a node at the euclidean
Fig. 12 Unfiltered (left column) and filtered (center columfs, = 8)  barycenter of each discrete contour. Secondly, constricti
curvature curves and their related components. Local vegaiinima - 555roximation can be reported with a special node (in red in
have been marked with gradations of red on the hand modekview figure 13(b)), denoting a potential articulation in the ahbje
As discrete contours have been defined relatively to a ver-
! tex, our algorithm provides a natural equivalence between
e L0 the vertices of the mesh and the points of the skeleton.

5 NLA B (b) —_—

B
oy

\ 10 Experiments and results
In this section, we present and comment on experimen-
tal results obtained with our method. The discussion will be

@ (b) laid out as follows. Firstly, experiments for parametetiagt

Fig. 13 Enhanced topological skeleton embeddings: graph embgdd re detailed. Secondly’ we focus on framev.vork evaluation.
(a) and medial axis embeddir(@). 0 our knowledge, no ground-truth evaluation process has

been proposed in the past for evaluating skeleton extractio

12(c). Similarly, two negative minima are identified in figur accuracy. Nevertheless, we retained four evaluationriite
12(e) and are displayed in red in figure 12(f). time execution complexity, intrinsic properties (enunteda

Constriction detection is motivated by a need to segmesyt Wu et al. [33]), robustness to surface degradation and ap-
skeleton components into more meaningful subparts. Nevglicative usability (section 11). Thirdly, framework litak
theless, to keep the high-level interest of such a refinemetidns will be detailed.
oversegmentation must be avgided. Roughly, if two con- Models presented in this discussion are closed connected
tours that are negative minima ¢fy(v)) are too close from triangulated surfaces extracted from Brénceton Shape Bench-
each other (if the difference between their average valuerofirk [29] and the I.N.R.I.A. Gamma Research Group [13]
fm is lower than a given threshold = 0.1), only the most repositories.
concave one is identified asw@eaningful constriction

10.1 Parameter setting

9 Topological skeleton enhancement
Feature point extraction is the first stage of the pipeline
In previous stages of the framework, a dual Reeb grapiat requires a threshold value setting. This paramejer (
has been provided by a topological analysis of discrete catands for the radius of geodesic neighborhoods during the
tours. This graph is composed of nodes and edges whgdodesic based mapping function extrema intersection pro-
respectively represent identified connected componerts aess (extrema representing a same feature point might not
adjacency relations between them. Each node of the graggpear on the same vertex but in the same neighborhood).
references a collection of vertices as well as the collactitf ¢ is too small, extrema will have to be very close to be
of corresponding discrete contours. Moreover, constricti merged; consequently, some feature points might be missed.
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Model €=0.01 €=0.02 e¢=0.05 €=01 €=0.2 Model A=0 A=005 A=01 A=02
Sphere 2 2 2 2 2 Sphere 0 0 0 0
Bottle 2 2 2 2 2 Bottle 1 1 1 1
Bird 9 9 7 7 6 Bird 8 8 8 8
Dinosaur 6 8 7 7 7 Dinosaur 17 17 13 10
Horse 6 6 7 7 7 Horse 18 18 16 10
Hand 2 5 6 6 8 Hand 11 11 11 6

Table 1 Number of feature points with differeatparameter values. Table 4 Number of discrete contour constrictions with differehpa-
rameter values. Settingd = 0.1 avoids over segmentation on con-
cerned objects (dinosaur and horse models) without afifgcnstric-

tion selection on others.

Model Ng=2 Ng=3 Ng=4 Ng=5 Ng=10

Sphere 2 2 2 2 2

Bottle 2 2 2 2 2 :

Bird 7 6 5 5 4

Dinosaur 7 5 5 4 2 @ (0 © (d) (e) ®
Horse 7 6 2 2 2

Hand 6 1 0 0 0

Table 2 Number of feature points when the numb€é¢; of geodesic
mapping functions for intersection increases. Interagctnore and
more sets reduces the number of common elements.

@ 0 @ 0 (k) o

~
Model fr=1 f.=5 f.=8 f,=10 f,=20 : - / ,b/ tﬂ%
| ~= /| —" A
] =N @ R0
Sph e ¥ AR B
phere 0 0 0 0 0 j 4
Bottle 0 1 1 2 2 (m) (n) (0) (9] (a) (9]
Bird 0 8 8 8 8
Dinosaur 0 12 13 15 13 y
Horse 0 12 16 14 13 \ / \ W)
Hand 0 10 11 13 13 | D ™ G L
i 3 9 & \
Table 3 Number of discrete contour constrictions with differefyt { | 'y tq ) \ ‘
parameter values. Most visually conforming results haemlwdbtained ©) ® ) W) W) )

with f, = 8.
Fig. 14 Feature points, dual Reeb graph, constriction approxanati

On the contrary, if it is too high, distant extrema will ten@nd enhanced topological skeleton of simple and complesctj
be merged into the same feature point; thus some feature N o ] o
points might represent several protrusions. Table 1 shotk§hows itis not a critical parameter though it helps avagdin
that the number of extracted feature points is quite stalfléer-segmentation on two models.
when e varies. The most visual perception conforming re- AS a conclusion, tables show that most of those parame-
sults have been obtained setting: 0.05 (bold column, see tersare not critical for the stablmy of the overall met_hmﬂ_
figure 14 for graphical results). that proposed valugs (used for figures 14 and 15) give visual

The number of geodesic based mapping functions ude@fception conforming results.
for intersection (notedVy) can also be discussed as a pa-
rameter of the approach. Table 2 shows experiments with a
variant of proposed algorithm, using a varying number d0.2 Time complexity
mapping functions. It shows that the more mapping func-
tions are intersected, the less feature points are idehtdie Given an input closed connected triangulated surface
a consequence of the intersection process of multiple setset n be the number of vertices ifi. Feature point extrac-

Discrete contour constriction detection is conditioned bion is performed inO(n x log(n)) steps.f,, is computed
the cutoff frequency, of the low-pass filter applied on cur-in O(|F| x n x log(n)) steps with F'| the number of identi-
vature curves. This filter's objective is to decrease cumeat fied feature points. Notice thdf, has a lower computational
high frequency noise influence. Settifig= 8 has shown to cost than the function proposed in [16F( rarely exceeds
result in nice-looking constrictions (see figure 14 andeab?0). Each discrete contour computation také&g(n)+n).
3). Moreover, constriction selection is also conditiongdib Therefore, as contours are computed for each verték, in
threshold parameter)) which denotes the minimal acceptthe overall discrete contour computation taks?) steps.
able distance between two consecutive constrictions eTabbpological and geometrical analyses are more straightfor
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Model Faces Featurepts Constrictions Time (s.) S
// i \\
Sphere 8 000 2 0 6.342
Bottle 520 2 1 0.045 '
Bird 2000 7 8 0.425 1 4 3
Dinosaur 10 000 7 13 3.490 | '
Horse 40 000 7 16 33.793 @) b
Hand 52 000 6 11 109.194 ®) ©
Table 5 Computation times. Fig. 16 Zooming in the alien model, we can see that feature points

have been extracted on each finger and toe, thus creatiregpornding
branches in the skeleton.

S / B both shape topology (Reeb graph, in blue) and geometry
N ; /2 ’e f (constrictions, in red). On the one hand, the topological-an
' / \ ! ysis results in the identification of the most significantdep
logical components only, preserving the topological prop-
(@) (b) ©) (d) () erties of the shape: model in figure 15(e) is a 1-genus sur-
face and its skeleton consequently contains a cycle. On the
other hand, the geometrical analysis enables the sulativisi

i of these topological components into more visually mean-
< & ingful subparts, increasing the description quality oflira
~A\ ” \ ) tional topological skeletons (subdividing humanoid metel

B y { o g""\ - - . . H
-~ T e \ Z 0, 1 limbs along potential articulations).
! \\ ? i\h ( ( According to Wu et al. [33], a shape skeleton is expected
| { /| % to respect certain intrinsic properties: simplicity, skiah
\ meaningfulness, neutrality and hierarchy. Firstly, agsil
® ) (h) trated in figure 13(a), enhanced topological skeletons ean b
collapsed into very concise representations. Seconddy, th
Fig. 15 Enhanced topological skeleton of various objects. stability of the presented method can be observed in fig-

ures 15(f) and 15(g), where two different horse models have
nearly identical skeletons. More generally, the overall ro

watrd. Topological analy3|ts :js perforped@%ﬁ)_steps. (t:hqr_ bustness of the framework will be addressed later on this dis
vature curves are computedd(n) steps. Their smoothing cussion. Thirdly, reader can notice that no noisy deta#s ar
is realized inO(n x log(n)), using the Fast Fourier Trans-

. encoded in the skeletons, which shows the meaningfulness
form algorithm. Consequently, we can state that the overgﬁ g

complexity of our method is bounded by the discrete conto rrthe framework. Fourthly, the neutrality of the skeleten i
computation, which takeS(n2) steps in the worst case. H ovided by the medial axis embedding we proposed in sec-

Presented algorithms have been implemented in C Itlon 9. Fifthly, a natural skeleton hierarchy is providedthg

guage under GNU/Linux and experimented on a desktop pping functionf,,: skeleton subparts at the center of the

with a 3 GHz PA-CPU and 2 gigabytes of RAM. Table g ject, at the root of the hierarchy, have a low function galu

h h tation {i ding to th d (iiﬁenoted in dark blue in figures 14 and 15) whereas extrem-
shows the computation imes corresponding to the mo parts have a high function value (denoted in light blue
presented in fig. 14.

F . latest triction detecii lqorith in figures 14 and 15). Consequently, we can state that en-
[14] ?Jnc?nn;%aégggﬁ di ?gr ciaoonf) ()r(l)cf;)cne derr(?c(): dlgln gg&ginnh%nced topological skeletons respect the intrinsic ptogser
connected graph [33] are computed in more than0 sec- of shape skeletons [33], and consequently provides a good

onds for such models. 3D mesh segmentation based on %%s_crlptlon of 3D meshes.

ture points and core extraction [17] take$ seconds for Feature points have been extracted in the past. Contrary

4 000 faced models. Notice that our overall method hasta the algorithm presented by Mortara et al. [23], the pre-

significantly lower running time than these state-of-thie-ssented method resolves extraction on constant curvature ar

methods for equivalently sampled meshes. eas, such as a sphere where two poles are extracted (figure
14(a)). Moreover, the algorithm presented by Katz et al} [17
runs in quadratic execution complexity while our algorithm

10.3 Discussion need(n x log(n)) steps, withn the number of vertices in
the mesh. At last, we can state that our feature point extrac-

Intermediary results and topological skeletons are showan algorithm leads to visual perception conforming résul
in figures 14 and 15. On these illustrations, the reader cas shown in figures 16(b) and 16(c), where feature points
notice that enhanced topological skeletons conciselydmcdave been extracted on the extremity of each finger and toe.
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.
1 @) ®)

il
A
(@) (b) (© (d) Fig. 18 False positive constriction on the head of a coarsely design

humanoid model. As the eye areas are deeply concave, dssbdia-

Fig. 17 Algorithm robustness against surface degradations: raigi crete contour is incorrectly identified as a constriction.

(a), surface noiséb), under samplingc) and user deformation(sl). ) ) )
The third experiment purpose is to evaluate enhanced to-

pological skeletons robustness against variations in mode
As for the topological skeleton construction algorithnpose. This property benefits applications such as surfane co
reader can notice that no noisy details have been encogetson. Geodesic metrics are commonly attributed the-prop
in the skeletons, because discrete contours do not discerty to be invariant to variations in model pose though it
nect inf,, non-smooth configurations (denoted with red anid rarely experimented. In figure 17(d), the hand model has
black critical points in figure 6). Contrary to traditionaé&b been deformed using rigid rotations (as detailed in section
graph simplification algorithms, no noise-corrective gire 11). Then, the enhanced topological skeleton of the defdrme
old is required. surface has been computed. Notice not only the topological
Discrete contour constriction detection also leads to Wut also the geometrical analyses behaved nearly idelytical
sual perception conforming results, identifying the magt s only one constriction is missing in the little finger and the
nificant surface bottlenecks (such as humanoid models’ ether ones kept precisely their original position. Thus, we
bows and knees for example). As shown in figures 14(p&n conclude from this experiment that the presented method
and 14(o) proposed algorithms leads to acceptable resigtslso robust against variations in model pose.
even with coarsely designed objects, even on strongly tubu-
lar components. Notice that it also behaves correctly with
primitive shapes, such as the sphere (fig. 14(m)), where no
constriction is identified. Moreover, contrary to previous

rks [15, 14], onlymeaningfulconstrictions are extracted. 10.5 Framework limitations

10.4 Robustness against surface degradation In figure 15(d), the bear model seems symmetrical while
itis not rigorously. This results in a skeleton whose stitet

As f,, is based on normalized geodesic distance evi-not symmetrical. Generally speaking, topological skele
uation, the algorithm is invariant to geometrical transfofons (because of their theoretical foundations) tend to am-
mations (translation, rotation and uniform scaling). Tole f Plify models” asymmetry. We believe that for future work,
lowing experiments try to estimate our framework’s stapili Capturing the notion operceived symmetrgould increase
against more complex transformations. the descriptive quality of the framework, inserting in an ar

The first experiment deals with surface noise (fig. 17(bjjficial way some symmetry in the skeleton if needed. In this
denoting scanning acquisition noise for example. Each veRNSE, recent results in geometry processing for symmetry
tex of the input triangulation has been moved randomly indgtection [27] worth being investigated. This propertyldou
box whose volume corresponds 1 of the bounding box Penefit applications such as skeleton-based surface simila
of the overall object. Reader can notice that the topoldgidly €stimation, which often uses asymmetry sensitive graph
description (in blue) remains unchanged while the geom&tatching algorithms.
rical description (in red) slightly varies. Notice that bug Moreover, proposed method assumes that constrictions
noise dramatically affects the surface and is known to bg@pear along extracted discrete contours. Even if it is veri
critical for Medial Axis Transform or segmentation basefled in practice for most of tested objects (see figures 14 and
methods. 15), this is a strong hypothesis. An undesired consequence

In comparison to [1], no re-meshing pre-process is ref this hypothesis is presented in figure 18, where a contour
quired in our framework. To evaluate our method depepassing through a deeply concave area is incorrectly iden-
dence on the triangulation of the surface, we propose in ttified as a constriction. Reciprocally, expected congirits
second experiment to divide Bythe number of vertices in that are not located along discrete contours will not be-iden
the mesh, as shown in figure 17(c). In a similar way to preuified. Graph-cut based optimization algorithms could tprin
ous experiment, surface under-sampling slightly affeoés ta solution to this issue, moving constriction approximasio
constriction detection process only. to their exact location, helping the constriction selettio
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11 Examples of application 2B\ a @ o

In previous section, our framework has been evaluate - : .
according to its time execution complexity, its descriptiv - S
properties and its robustness against surface degradhtion 1% !
this section, we focus on its applicative usability as it la ;
evaluation criteria and propose two applications: topplog
driven mesh segmentation and skeleton driven mesh defi : :
mation.

@ (b) (© (d)

Fig. 19 Topology driven segmentation overview: a raw segmentation
11.1 Topology driven mesh segmentation (b) is obtained from the enhanced topological skel€ton then a node

merging algorithm(c) completes the procegs).
Mesh segmentation roughly consists in cutting up a sur-
face into meaningful sub-parts [2]. Similarly to skeleton e

traction, it benefits a large spectrum of applications. Rége

the need forrompatible segmentation which means seg-

menting identically two meshes representing the same cle

of object — has been expressed [17]. Contrary to geom«vf

rical low-level based approaches [34], a solution to this i< ® © )
C

sue could reside in driving the segmentation using higktlev (@)

shape information, such as symmetry or topology. In th . 20 Topology driven segmentation results for some test ohjects

Sense, Berret'. et al.‘ [3] proposed to use the topOIOg!Cal oposed algorithm identifies core and limbs, subdividindps along
scription provided in [16] to compute simple, but similageeply concave areas.

segmentations. In this paragraph, we propose to explait thi
idea and to take advantage of the higher descriptive qual-

ity of our skeletons (in comparison to traditional topolcayi
skeletons) to improve topology driven mesh segmentation |
Proposed algorithm is summed up in figure 19. Firs /} * & o
for each node of the graph, its related surface patch is d 8
(

h
i 2
played with a distinctive color. This results in a raw over ‘;
segmentation (fig. 19(b)). Then, the graph is simplified (fic
19(c)) and the final segmentation (fig. 19(d)) is compute x
using the following two node-merging heuristics:
b) (c) (d)

1. Delete thin patches:if the degree of processed node is  (a)
greater than 2, then merge it with its adjacent node of o ) _
biggest area, except if a constriction separates them; t':)'g- Zﬁ ApF}"gf‘“‘)rll 0 g(;?h dgfo"t“?t'o't]h The user d'reci'y gratﬁ (t.h

P rancnes o € sKele ana rotates them using constrictions (in

2. Select the most concave boundar'e_sf the de_gree of recd) as articulationgc). Thanks to the equivalence relation between

processed node is equal to 2 and it is the first node & vertices of the mesh and the points of the skeleton, tisftons

a branch and its last contour hag (@(v)) value lower are directly reflected on the objet).

than a given thresholg,,, (fixed to—0.1), then merge it
with its parent node (its adjacent node of lowest average
fm value). 18, 33]. Basically, the user grabs the branches of the skele-
ton and move them to produce the desired deformation. Con-
. . . _ ' frary to conventional topological skeletons, our skelstare
tions, objects are segmented into core and limbs and li anced with constrictions which mostly corresponds-to ar
are segmented along constrictions. Notice that this dori c|ations. Consequently, the user can employ theseaipeci
benefits our skeleton extraction framework properties, apfints of the skeleton (in red in figure 21) as natural rotatio
particularly its robustness against surface degradation.  reference points. Once a branch of the skeleton has been ro-
tated, the corresponding rotation matrix is constructéenl
for each vertex of the related surface patch, its new pasitio
11.2 Skeleton driven mesh deformation is computed multiplying its original position vector by the
rotation matrix. Figure 21 shows that nice-looking defor-
User defined 3D model deformations often need trickypations can be obtained with only a few user interactions,
mesh editing operations. Shape skeletons have shown tdhmnks to the high-level description provided by enhanced
user-friendly shape abstraction for surface deformat&n fopological skeletons.

More results are shown in figure 20. On these illustr
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12 Conclusion and future work 2.

Attene, M., Katz, S., Mortara, M., Patané, G., Spagnudlo Tal,
A.: Mesh segmentation: A comparative study. In: Shape Model
International, pp. 14—25 (2006)

In this paper, we presented a new concise shape abstrac-Berreti, S., Del Bimbo, A., Pala, P.: Partitioning of 3D shes

tion, enhanced topological skeletahat encodes both topo-
logical and geometrical evolutions of some mapping func#:
tion contours. We also proposed a unified and fully auto-
matic algorithm for its extraction. First, it computes a Bee 5,
graph. Then it refines it using discrete contour constnictio
as boundaries. To the authors’ knowledge, this is the first aﬁ-
proach that unifies Reeb graph construction and constmictic,
computations.

Three scientific contributions are given. Firstly, we pro-
posed a robust and straightforward algorithm for featumetpo
extraction. It enables the computation of an invariant map-
ping function which reveals well the shape most significant
features. Secondly, we presented an algorithmdfecrete 9
contourscomputation. We showed that a topological analy-
sis of thesediscrete contourgnables a unified Reeb graphg.
construction and simplification process. Finally, we shidwe
that a geometrical analysis of thescrete contourprovides
visual perception conforming constriction approximasion
enabling the refinement of the traditional Reeb graphs into
more visually meaningful skeletons. 12.

Moreover, we presented an extensive evaluation discus-
sion of experimental results, according to four criteriestfy, |,
we have shown thanhanced topological skeletorespect
shape skeleton intrinsic descriptive properties [33],rionp 14.
ing traditional topological skeletons description qua8ec-
ondly, we have shown that the presented algorithm runs sig-
nificantly faster than state-of-the-art methods. Thiraisg
have shown thagénhanced topological skeletoage affine- 16.
invariant and robust to a variety of surface degradations,

such as surface noise, mesh sampling variation and surfage

deformation. At last, to evaluate the usability of the pre-
sented framework, we developed two applications related
to topology driven mesh segmentation and skeleton drivé$
mesh deformation.

Some limitations have been enumerated along the dis-
cussion. In future work, we would like to capture the no-
tion of perceived symmetiy order to extract symmetrical 0.
skeletons if the objects seem roughly symmetrical. We be-
lieve this could benefit many applications, like surfaceisine1.
larity estimation. As a long term perspective, we would like
to useenhanced topological skeletoas a shape abstractiorb2
for mesh editing operations within the frameworkobdel-
ing by exampleystems [12].

23.
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