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Abstract This paper describes a unified and fully automatic
algorithm for Reeb graph construction and simplification as
well as constriction approximation on triangulated surfaces.

The key idea of the algorithm is thatdiscrete contours–
curves carried by the edges of the mesh and approximat-
ing the continuous contours of a mapping function – en-
code both topological and geometrical shape characteristics.
Therefore, a new concise shape representation,enhanced to-
pological skeletons, is proposed, encoding contours’ topo-
logical and geometrical evolution.

Firstly, mesh feature points are computed. Then they are
used as geodesic origins for the computation of an invariant
mapping function that reveals the shape most significant fea-
tures. Secondly, for each vertex in the mesh, itsdiscrete con-
tour is computed. As the set ofdiscrete contoursrecovers the
whole surface, each of them can be analyzed, both to detect
topological changes and constrictions. Constriction approx-
imations enable Reeb graphs refinement into more visually
meaningful skeletons, that we refer asenhanced topological
skeletons.

Extensive experiments showed that, without preprocess-
ing stage, proposed algorithms are fast in practice, affine-
invariant and robust to a variety of surface degradations (sur-
face noise, mesh sampling and model pose variations). These
properties makeenhanced topological skeletonsinteresting
shape abstractions for many computer graphics applications.
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1 Introduction

Polygonal mesh is a widely used representation of 3D
shapes, mainly for exchange and display purposes. However,
many applications in computer graphics need higher level
shape descriptions as an input. Topological skeletons have
shown to be interesting shape descriptions [4]. They benefit
diverse fields like shape metamorphosis [25], deformation
[8], retrieval [16], texture mapping [35], etc.

Many topological approaches study the properties of real
valued functions computed over triangulated surfaces. Most
of the time, those functions are provided by the application
context, such as scientific data analysis [7]. When dealing
with topological skeletons, it is necessary to define an in-
variant and visually interesting mapping function, which re-
mains an open issue [4].

Moreover, traditional topological graph construction al-
gorithms assume that all the information brought by the map-
ping function is pertinent, while in practice, this can leadto
large graphs [24,9], encoding noisy details.

Finally, topological approaches cannot discriminate vi-
sually interesting sub-parts of identified connected compo-
nents, like the phalanxes of a finger. This is detrimental to
certain applications, such as mesh deformation.

In this paper, an original and unified framework is pro-
posed to address the above issues. Given a closed connected
triangulated surfaceT , feature points are firstly extracted
(fig. 1(a)) in order to compute an invariant mapping function,
notedfm (fig. 1(b)), which reveals the shape most significant
parts. Secondly, for each vertex in the mesh, we compute its
discrete contour, a connected curve traversing it and locally
minimizing fm gradient. We show that a topological analy-
sis of thosediscrete contoursenables a pertinent Reeb graph
construction and simplification (fig. 1(c)), without any input
parameter. Finally, we show that a geometrical analysis of
discrete contourscan approximate constrictions on promi-
nent components (fig. 1(d)), enabling the refinement of Reeb
graphs into enhanced topological skeletons (fig. 1(e)).

This paper, which extends authors’ previous work [32],
is structured as follows. Firstly, we introduce topological
skeleton related work. Secondly, we define our mapping func-
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1 Main steps of the framework. First, feature points are extracted
(a). Then a mapping function(b) is contoured both to construct a topo-
logical skeleton(c) and to enhance it(e) with constrictions(d). Topol-
ogy driven segmentation(f) and skeleton driven deformation(g) are
two examples of application of the framework.

tion fm. Thirdly, we present our algorithm fordiscrete con-
tour computation, which is used both for the Reeb graph
construction and simplification as well as the constriction
approximation.

In particular, a special emphasis is given on the discrete
contour constriction detection algorithm, which providesmore
robust and more accurate results than previous work [32].
Moreover, an extensive discussion on experimental results
and framework evaluation is proposed. Finally, to demon-
strate the usability of the presented method, two applications
are discussed: topology driven mesh segmentation (fig. 1(f))
and skeleton driven mesh deformation (fig. 1(g)).

2 Related work

Several approaches have been explored for the decompo-
sition of polygonal meshes into meaningful sub-components,
to extract skeletal representations of shapes. They can be
roughly classified into four categories: semantic-oriented seg-
mentations, medial axis transforms, generalized potential fi-
elds and topological skeletons. Each one of them has its
own advantages and drawbacks. For example, medial axis
transform based methods [6,26] are commonly attributed
the drawback of high sensitiveness to small surface pertur-
bations, which is detrimental to many applications. On the
contrary, generalized potential field based methods [33] pro-
vide more robust results at the cost of high computational
times. In comparison to mesh segmentation based methods
[18,17,2] and traditional skeleton extraction [33], topolog-
ical approaches, based on Morse and Reeb graph theories

[22,28], present the advantage to preserve the topological
properties of the shape [4] (number of loops, number and re-
lations between components, etc.). However, with regard to
shape skeletons, we identify three main drawbacks in topo-
logical approaches, successively addressed in this paper.

Firstly, it is difficult to define an invariant and visually in-
teresting mapping function. Secondly, constructing and trans-
forming a topological graph into a manageable skeleton is
not a trivial problem. Finally, topological approaches de-
compose a surface into connected sub-components only. This
means that visually interesting sub-parts of identified con-
nected components will not be discriminated: for example,
a finger of a hand model will not be decomposed into pha-
lanxes.

2.1 Mapping functions

Differential topology based approaches study the proper-
ties of real valued functions, that we refer asmapping func-
tions, defined on input surfaces, either to construct Reeb
graphs [30,10], contour trees [9], level set diagrams [20] or
Morse complexes [24,7]. Those functions are often brought
by the application context: terrain modeling [30], MRI anal-
ysis [9], molecular analysis [7], etc.

When dealing with topological skeletons, it is necessary
to define a scalar function which satisfies invariance and
stability constraints, and which also provides a topological
description that highlights visually significant surface sub-
components.

Lazarus and Verroust [20] introduced such a function,
defined by thegeodesic distance(the length of the shortest
path between vertices) from a source vertex to any other ver-
tex in the mesh. It leads to visually interesting results fornat-
ural objects because it is invariant to geometrical transforma-
tions and it is robust against variations in model pose [17].
Due to a lack of stability, within the framework of shape re-
trieval, Hilaga et al. [16] proposed to integrate this function
all over the mesh. Unfortunately, from our experience, that
function generates an important amount of critical points,
configurations where the gradient of the function vanishes,
which makes the construction of visually meaningful graphs
more complex.

In our method, to reveal the shape most significant fea-
tures, we focus on feature points. Feature points are mesh
vertices located on extremities of prominent components [17].
Mortara and Patanè [23] proposed to select as feature points
the vertices where Gaussian curvature exceeds a given thresh-
old, but this cannot resolve extraction on constant curva-
ture areas. Katz et al. [17] developed an algorithm based on
multi-dimensional scaling in quadratic execution complex-
ity. In this paper, we propose a robust and straightforward
algorithm for feature point extraction (fig. 1(a)). Moreover,
we use them as geodesic origins for the definition of our
mapping function (fig. 1(b)). Such a function well reveals
the most visually significant parts of the mesh, generating
manageable critical point sets.



Enhancing 3D Mesh Topological Skeletons with Discrete Contour Constrictions 3

Fig. 2 Evolution of the level lines of the height function on a bi-torus,
its critical points and its Reeb graph.

2.2 Graph construction and simplification

A Reeb graph [28] is a topological structure that encodes
the connectivity relations of the critical points of a scalar
function defined on an input surface. More formally, Reeb
graphs are defined as follows:

Definition 1 (Reeb graph) Let f : M → R be a Morse
function defined on a compact manifoldM . The Reeb graph
of f is the quotient space off in M × R by the equivalence
relation (p1, f(p1)) ∼ (p2, f(p2)), which holds iff:






f(p1) = f(p2)
p1 andp2 belong to the same connected

component off−1(f(p1))

Figure 2 gives an example of a Reeb graph computed on
a bi-torus with regard to the height function and well illus-
trates the fact that Reeb graphs can be used as skeletons.

Constructing a Reeb graph from a scalar functionf com-
puted on a triangulated surface first requires to identify the
set of vertices corresponding to critical points. With thisaim,
several formulations have been proposed [11,31] to identify
local maxima, minima and saddles, observing for each ver-
tex the evolution off at its direct neighbors. Several algo-
rithms have been developed to construct Reeb graphs from
the connectivity relations of these critical points [10,9], most
of them inO(n×log(n)) steps, withn the number of vertices
in the mesh. However, they assume that all the information
brought by the scalar functionf is relevant [24,9]. Conse-
quently, they assume that all the identified critical pointsare
meaningful, while in practice, this hypothesis can lead to un-
manageably large Reeb graphs. To overcome this issue, Ni
et al. [24] developed a user-controlled simplification algo-
rithm. Bremer et al. [7] proposed an interesting critical point
cancellation technique based on apersistencethreshold. At-
tene et al. [1] proposed a seducing approach, unifying the
graph construction and simplification, but it is conditioned
by aslicingparameter.

In this paper, we propose a discrete formulation of con-
tours, connected subsets of level lines, which enables, with-
out any input parameter, the construction of visually mean-
ingful Reeb graphs (fig. 1(c)).

2.3 Constriction computation

Psychological research works [5] claim that the human
visual system tend to segment complex objects along the
narrowest and the most concave regions. Basing on this hy-
pothesis, in order to improve topological skeletons’ descrip-
tion quality, we focus on constrictions on surfaces.

Hétroy and Attali [15] define constrictions as simple clo-
sed curves, whose length is locally minimal. Recently, Hétroy
[14] showed that constriction detection could be achieved by
analyzing surface curvature.

In this paper, we propose to analyze the geometrical char-
acteristics of discrete contours, and particularly their curva-
ture, to approximate constrictions (fig. 1(d)), in order to de-
compose previously identified components into more visu-
ally interesting parts (fig. 1(e)).

3 Framework overview

Given a closed connected triangulated surfaceT , we pro-
pose in this paper a unified method to decomposeT into vi-
sually meaningful sub-parts, considering the topologicaland
geometrical characteristics ofdiscrete contours.

The algorithm proceeds in three stages. Firstly, mesh fea-
ture points are extracted (fig. 1(a)) in order to compute an in-
variant and visually interesting mapping function (fig. 1(b)),
denotedfm in the rest of the paper. Secondly, for each ver-
tex in the mesh, we compute itsdiscrete contour, a curve
traversing it and approximatingfm continuous contour. Fi-
nally, as the set ofdiscrete contoursrecovers the entire mesh,
it is possible to analyze each contour characteristics, either
to detect topological changes (fig. 1(c)) or to detect curva-
ture transitions (fig. 1(d)).

Our scientific contribution resides in three points.(i) We
propose a robust and straightforward algorithm for feature
point extraction.(ii) We show that adiscrete contourfor-
mulation enables, without re-meshing and without any in-
put parameter, a pertinent Reeb graph construction, provid-
ing visually meaningful graphs, affine-invariant and robust
to surface degradations.(iii) We show that the geometrical
information brought bydiscrete contoursenables the ap-
proximation of constrictions on prominent components and
consequently Reeb graph refinement.

4 Feature point extraction

To compute visually meaningful topological skeletons,
we first have to define a mapping function that will highlight
the most significant parts of the mesh. To achieve this, we
first focus on feature points, vertices located on the extremi-
ties of prominent components, because they provide a good
overview of the shape structure [23,17].
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(a) (b) (c)

Fig. 3 Euclidean(a) and geodesic(b, c) based mapping function crit-
ical points.

4.1 Algorithm overview

To extract feature points, we propose a quite straightfor-
ward algorithm, using differential topology tools. It is based
on the key idea that feature points can be extracted analyz-
ing some mapping function local extrema. In figure 3(a), the
height function has been computed on a hand model. As
the fingers are directed upwards, local maxima (in green)
are identified at the extremities of related components and
can be consequently referred as feature points. However, it
is straightforward that the height function is not a relevant
choice in the general case because it is dependent on the ob-
ject orientation.

The function that maps a vertex to its geodesic distance
to a source vertex seems much more appropriated because
geodesic distances are affine-invariant and robust to varia-
tions in model pose. In figures 3(b) and 3(c), the geodesic
distance function has been computed on the hand model, us-
ing the extremity of the middle finger (in red) as source ver-
tex. The set of local extrema (minima and maxima, in red
and green) actually contains the set of feature points (ex-
tremities of the fingers and the wrist).

However, figure 3(c) shows some local maxima in con-
figurations which do not correspond to feature points (green
points on the side of the little and the ring fingers). To dis-
criminate local extrema that correspond to feature points from
those which do not, we propose to realize a crossed analy-
sis, using two geodesic based mapping functions – whose
origins are the mesh most distant vertices – and to intersect
the sets of their local extrema, as illustrated in figure 5.

4.2 Algorithm formulation

From an algorithmic point of view, geodesic distances
can be approximated by the Moore-Dijkstra algorithm (dis-
tance minimizing in weighted graphs). In the rest of this pa-
per, we will refer toδ(vi, vj) as the normalized approxima-
tion of the geodesic distance from vertexvi tovj , normalized
with regard to mesh global extrema.

Let vs1
andvs2

be the most geodesic distant vertices of a
closed connected triangulated surfaceT , computed with the
Tree Diameter algorithm [20]. In figure 4,vs1

is located at
the extremity of the wrist (fig. 4(a)) whilevs2

is located at
the extremity of the middle finger (fig. 4(b)).

(a) vs1
. (b) vs2

.

Fig. 4 Most geodesic distant vertices of the hand model.

(a) E1. (b) E2. (c) E1 ∩E2.

Fig. 5 Feature point extraction overview.

Let fg1
andfg2

be two scalar functions defined on each
vertexv of T , as follows:

fg1
(v) = δ(v, vs1

) (1)

fg2
(v) = δ(v, vs2

) (2)

Basing on the critical point classification proposed in
[10], a local minimumis defined as a vertex such that all
its direct neighbors have an upper function value. Recipro-
cally, we define alocal maximumas a vertex such that all its
direct neighbors have a lower function value.

Let E1 be the set of local extrema (minima and maxima)
of fg1

(in yellow in fig. 5(a)) andE2 be the set of local ex-
trema offg2

(in cyan in fig. 5(b)). Extremities of prominent
components are configurations wherefg1

andfg2
tend to an

extremum (figs. 5(a) and 5(b)). Consequently, the set of fea-
ture points is both included inE1 and E2. Therefore, we
define the set of feature pointsF of T (fig. 5(c)) as follows:

F = E1 ∩ E2 (3)

In practice,fg1
andfg2

local extrema which correspond
to feature points do not appear exactly on the same vertices
but in the samegeodesic neighborhood. Therefore, the in-
tersection constraint is relaxed as follows, withǫ ∈ [0, 1] the
radius of thegeodesic neighborhood(geodesic distances are
normalized):

v ∈ F ⇐⇒






∃ve1
∈ E1 / δ(v, ve1

) < ǫ
∃ve2

∈ E2 / δ(v, ve2
) < ǫ

δ(v, vfi
) > ǫ ∀vfi

∈ F
ǫ ∈ [0, 1]

(4)

From our experience, using only two geodesic mapping
functions (fg1

andfg2
) and settingǫ = 0.05 give accurate

results. The choice of such settings as well as the efficiency
and properties of the presented algorithm will be discussed
in the experiment dedicated section.
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(a) |F | = 6,
|C| = 100.

(b) |F | = 7, |C| = 92.

Fig. 6 fm mapping function computed on two standard models. The
important number of identified critical points prevents standard algo-
rithms from producing concise shape representations.

5 Mapping function definition

Mapping function definition depends on what is expected
to be revealed. For example, for terrain modeling [30], the
height functionwill present critical points over hills and val-
leys, providing consequently an appropriate topological de-
scription. When dealing with topological skeletons, it is nec-
essary to define an invariant and visually interesting map-
ping function, which highlights the global structure of the
object. Moreover, the mapping function should not generate
an unmanageable set of critical points, in order to make the
graph simplification easier. From our experience, this is not
the case of the function presented in [16].

Firstly, to guarantee invariance to geometrical transfor-
mations and robustness against variations in model pose,
geodesic distances are used. Secondly, to define a visually
interesting mapping function, feature points are taken as ori-
gins for geodesic distance evaluations, because they provide
a good overview of the object global structure [23].

Therefore, we propose the following mapping function,
notedfm in the rest of the paper, which computes in each
vertex v of T the geodesic distance to the closest feature
point:

fm(v) =
fc(v) − minv∈T fc(v)

maxv∈T fc(v) − minv∈T fc(v)
(5)

fm is a normalized version of the functionfc, defined as
follows (fc(v) ≥ 0, ∀v ∈ T ):

fc(v) = 1 − δ′(v, vc) (6)

with vc the closest feature point fromv:

vc ∈ F / δ′(v, vc) = minvfi
∈F δ(v, vfi

) (7)

Notice thatfm is invariant to uniform scaling (thanks
to the normalization), rotation and translation (thanks tothe
use of geodesic distances). Figure 6 presents some compu-
tations offm over arbitrary shapes, the number of extracted
feature points (|F |) and the number of critical points (|C|,
identified according to the classification proposed in [10]).
fm has been defined so as it tends to maxima (in green) at
feature points and it tends to minima (in red) at the center of
the object.

(a) Γ (va). (b) Γ (vb).

Fig. 7 Example of continuous (red) and discrete (blue) level lines
(height function). The upper valued triangulationT+ is colored in light
blue.

As shown in figure 6,fm generates an important number
of critical points. Consequently, standard Reeb graph con-
struction algorithms would create large graphs, counting as
many nodes as critical points, which is a major issue for the
extraction of meaningful topological skeletons. In the next
section, we present a formulation ofdiscrete contours, wh-
ich enables a unified graph construction and simplification
process.

6 Discrete contour computation

Defining contours of a real functionf computed on a tri-
angulated surfaceT is not a simple problem. In the continu-
ous case, a level linef−1(f(p)) is the set of pointspi such
that f(pi) = f(p). Moreover, two pointsp1 andp2 belong
to the samecontour if they belong to the same connected
component off−1(f(p1)).

In the discrete case, for a given vertexv ∈ T , depending
onT sampling, the set of verticesvi such thatf(vi) = f(v)
is often reduced to the vertexv itself. With regard to defini-
tion 1, a correct Reeb graph could not be constructed from
this formulation of discrete contours, because the conditions
of the equivalence relation would rarely be satisfied.

To preserve contour topological properties in the discrete
case, we define thediscrete level lineΓ (v) associated to
the vertexv as a curve computed along the edges ofT wh-
ich approximates by upper value the continuous level line
f−1(f(v)). More formally, it can be defined as follows:

Definition 2 (Discrete level line) LetT + be the subset of a
closed connected triangulated surfaceT such that∀v+ ∈
T +, f(v+) ≥ f(v). The discrete level line associated to the
vertexv and notedΓ (v) is the set of edges (and related ver-
tices) belonging toT + such that each edge ofΓ (v) is adja-
cent to only one face ofT +.

Thediscrete level lineΓ (v) is the boundary between the
upper valued triangulationT + and the rest ofT . Figure 7
showsdiscrete level linestraversing an arbitrary triangula-
tion, with regard to the height function. Moreover, each con-
nected subset of adiscrete level lineis referred as adiscrete
contour.

In particular, we define thediscrete contourγ(v) asso-
ciated to the vertexv as the connected subset ofΓ (v) con-
taining v. Notice that the moreT will be dense, the more
discrete contourswill tend to continuous contours.
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(a) (b) (c)

Fig. 8 Examples of discrete level lines (in red) on a 26 000 vertex
mesh (fm function).Γ (v2 000)(a), Γ (v10 000)(b) andΓ (v20 000)(c)
are respectively composed of2, 3 and6 discrete contours.

Algorithm 1 Discrete contour computation.
V t = ∅
Cd← {argminv′∈T f(v′)}
while Cd 6= ∅ do

v ← argminv′∈Cdf(v′)
Γ (v)← Cd
γ(v)← connected subset ofCd, containingv
Removev from Cd
Cd← Cd ∪ {v neighbors, which are not inV t}
Add v to V t

end while

Discrete contourscan be computed for the whole mesh
using a step by step gradient ascent process, described in
algorithm 1. This algorithm describes a propagation fromf
global minimum tof local maxima. It handles two heaps, re-
spectively the set of visited verticesV t and the set of candi-
date vertices for visitCd. At each step,Cd surroundsV t by
upper value and corresponds to the discrete level lineΓ (v),
with v = argminv′∈Cdf(v′).

In figure 8, examples of discrete level linesΓ (vi) are
shown, at different iterationsi of the algorithm.V t vertex
set is displayed in white andΓ (v) is displayed in red. Vis-
iting in a recursive fashion each vertex ofΓ (v) enables the
identification of each of its connected subsets, and partic-
ularly γ(v). In the next sections, discrete contours will be
analyzed, both to detect topological changes and constric-
tions.

7 Topological analysis of discrete contours

Standard Reeb graph construction algorithms need sim-
plification in order to remove noisy details. In this section,
we propose a unified algorithm for graph construction and
simplification, based on the topological analysis of discrete
contours. Following the definition 1 of a Reeb graph in the
continuous case, we can state an analog equivalence relation
in the discrete case between two verticesv1, v2 ∈ T , based
on our notion of discrete contour:

(v1, f(v)) ∼ (v2, f(v)) ⇐⇒

{
v1, v2 ∈ Γ (v)
v1, v2 ∈ γ(v)

(8)

(a) (b) (c) (d) (e) (f)

Fig. 9 Bifurcation and junction contexts on a torus shape (height func-
tion).

(a) (b) (c)

Fig. 10 Dual Reeb graphs of primitive and complex shapes (fm func-
tion).

v1 and v2 belong to the same connected component if
they satisfy the above conditions. Therefore, at each itera-
tion of the contour computation algorithm, each individual
connected component ofT , traversed byΓ (v), can be iden-
tified.

Thus, topological changes can be detected observing the
numberNΓ (v) of connected subset ofΓ (v), asf evolves.
We define three types of topological changes:

1. bifurcations: when NΓ (v) increases from iterationt to
iterationt + 1 (Γ (v) splits in two contours from 9(a) to
9(c)),

2. junctions: whenNΓ (v) decreases fromt to t+1 and when
several discrete contours merge (two contours merge in
one from 9(c) to 9(e)),

3. terminations: whenNΓ (v) decreases fromt to t+1, with-
out discrete contour merge.

Figure 10 shows several dual Reeb graphs obtained with
this strategy, with regard tofm (graph embedding in space
will be detailed section 9).

The main contribution of our algorithm is that graph con-
struction and simplification are performed at the same time,
without input parameter or preprocessing.

If we compare figures 10 and 6, we notice that the dual
Reeb graphs do not reflect the presence of noisy critical points
(points in red in figure 6), because discrete level lines do not
disconnect in those configurations.

Standard Reeb graph algorithms would have generated
graphs counting as many nodes as critical points:100 nodes
for the hand model and92 nodes for the horse model. In our
approach, as contours do not disconnect infm non-smooth
parts, only meaningful topological variations are encodedin
the graph.

8 Geometrical analysis of discrete contours

Constriction approximations enable the subdivision of
the branches of topological skeletons into more visually in-
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(a) (b) (c)

Fig. 11 Several curvature estimations on the hand model: mean cur-
vature(a), Gaussian curvature(b) and curvature index(c) [19]. The
curvature index generates a more important contrast between convex
and concave areas.

teresting parts, detecting potential articulations for example.
For eachdiscrete contouridentified in the previous stage, its
weighted curvature index is computed and local minima are
identified as constrictions.

8.1 Topological constraint

Since constrictions are defined as closed curves, the anal-
ysis has to be restricted oncloseddiscrete contours only.
Considering each contourγ(v) as a connected and non dir-
ected planar graphG, γ(v) is a cycle, and consequently a
closed curve, if the degree of all its vertices equals two.
Therefore for each discrete contour ofT reduced to a pla-
nar graphG, the degree of each of its vertex is computed
and we only consider in the rest of our algorithms contours
that satisfy the above property.

8.2 Contour curvature estimation

Many curvature computations have been proposed in the
past [19,21]. In this paper, contour curvature is evaluatedus-
ing the curvature index [19]. Firstly it is invariant to uniform
scaling, which contributes to the stability of the algorithm.
Secondly, experiments showed it provided more relevant re-
sults than Gaussian [32] or mean curvatures. The curvature
index is computed for each vertexv ∈ T as follows:

Ic(v) =

{
2
π

arctan k1+k2

k1−k2

if k1 6= k2

0 if k1 = k2
(9)

with k1 andk2 the principal curvatures inv, computed
with the algorithm described in [21]. Figure 11 shows sev-
eral curvature estimations on the hand model (the mean and
the Gaussian curvatures have been displayed with logarith-
mic scales). Notice that the curvature index generates a more
important contrast between convex (in light red) and con-
cave (in dark red) areas, which benefits concave contour de-
tection.

In order to estimate the curvatureζ(γ(v)) associated to
the discrete contourγ(v), a weighted average of curvature
indexes is computed as follows:

ζ(γ(v)) =

∑
∀vi∈γ(v) Ic(vi) × (Le1

(vi) + Le2
(vi))

2 × P(γ(v))
(10)

whereP(γ(v)) stands for the perimeter of the contour
γ(v) and whereLe1

(vi) andLe2
(vi) stand for the lengths

of the edges adjacent tovi on the contour. Vertex curvatures
are weighted so as not to give too much importance to the
densely sampled parts of the contour.

8.3 Component curvature curves

During the topological analysis of discrete contours, each
contour is sequentially linked to its related node in the dual
Reeb graph. Thus, each node of the graph is equipped with
a sorted collection of discrete contours, sorted with regard
to fm. Computingζ(γ(v)) for each element of this sorted
collection gives acurvature curve, an overview ofγ(v) cur-
vature evolution asfm evolves.

Curves shown in figure 12 (left column) give examples
of such evolutions on some connected components of the
hand model.fm is reported on theX-axis whileζ(γ(v)) is
reported on theY -Axis. Left values correspond to contour
curvature at the basis of components while right values cor-
respond to contour curvature at the extremity of components.

Curvature is a well-known noise sensitive entity. Conse-
quently, to compute nice-looking discrete contour constric-
tions, we have to reduce high frequency noise in curvature
curves. Reducing noise on a one-dimensional data set is a
trivial signal-processing problem. This can be achieved by
applying an ideal low-pass filter of cutoff frequencyfτ , de-
fined by the following transfer function:

H(fγ(v)) =

{
1 if fγ(v) ≤ fτ

0 if fγ(v) > fτ
(11)

A filtered version ofζ(γ(v)) is given by the following
expression, whereFT stands for the Fourier Transform:

ζ̂(γ(v)) = FT−1(H(fγ(v)) × FT (ζ(γ(v)))) (12)

As shown in figure 12, low-pass filtering smooths curva-
ture curves and enables a clear discrimination of local min-
ima and maxima. Thefτ parameter has been set experimen-
tally to 8, as discussed in the experiment dedicated section.

8.4 Constriction selection

By definition, if ζ̂(γ(v)) is positive,γ(v) neighborhood
is globally convex, otherwise it is concave. Constrictions
appear on the narrowest, or the most concave, parts of a
surface. Consequently, local negative minima are identified
as contour constrictions. In figure 12(b), one negative min-
imum is identified and is marked as a constriction in figure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12 Unfiltered (left column) and filtered (center column,fτ = 8)
curvature curves and their related components. Local negative minima
have been marked with gradations of red on the hand model views.

(a) (b)

Fig. 13 Enhanced topological skeleton embeddings: graph embedding
(a) and medial axis embedding(b).

12(c). Similarly, two negative minima are identified in figure
12(e) and are displayed in red in figure 12(f).

Constriction detection is motivated by a need to segment
skeleton components into more meaningful subparts. Never-
theless, to keep the high-level interest of such a refinement,
over-segmentation must be avoided. Roughly, if two con-
tours that are negative minima ofζ̂(γ(v)) are too close from
each other (if the difference between their average value of
fm is lower than a given threshold∆ = 0.1), only the most
concave one is identified as ameaningful constriction.

9 Topological skeleton enhancement

In previous stages of the framework, a dual Reeb graph
has been provided by a topological analysis of discrete con-
tours. This graph is composed of nodes and edges which
respectively represent identified connected components and
adjacency relations between them. Each node of the graph
references a collection of vertices as well as the collection
of corresponding discrete contours. Moreover, constriction

detection has been provided by a geometrical analysis of dis-
crete contours. Consequently, for each node of the dual Reeb
graph, its contour and vertex collections can be sub-divided
using contour constriction as boundaries. Thus, each iden-
tified connected component of the mesh can be sub-divided
into more visually meaningful sub-parts.

Basing on these decomposition processes, several em-
beddings of enhanced topological skeletons can be provided.
For display purpose, a graph embedding (figure 13(a)) can
be computed by placing a node at the euclidean barycenter
of the related mesh patch.

For some applications, it is important to constraint the
skeleton position strictly inside the object. Moreover, par-
ticularly for mesh deformation, a link between vertices and
skeleton branches will be additionally needed. Most of the
time, this association is performed computing for each ver-
tex its closest point on the skeleton. Thanks to their theo-
retical foundations, enhanced topological skeletons are ap-
propriate candidates. Firstly, a medial axis embedding (fig-
ure 13(b)) can be computed, placing a node at the euclidean
barycenter of each discrete contour. Secondly, constriction
approximation can be reported with a special node (in red in
figure 13(b)), denoting a potential articulation in the object.
As discrete contours have been defined relatively to a ver-
tex, our algorithm provides a natural equivalence between
the vertices of the mesh and the points of the skeleton.

10 Experiments and results

In this section, we present and comment on experimen-
tal results obtained with our method. The discussion will be
laid out as follows. Firstly, experiments for parameter setting
are detailed. Secondly, we focus on framework evaluation.
To our knowledge, no ground-truth evaluation process has
been proposed in the past for evaluating skeleton extraction
accuracy. Nevertheless, we retained four evaluation criteria:
time execution complexity, intrinsic properties (enumerated
by Wu et al. [33]), robustness to surface degradation and ap-
plicative usability (section 11). Thirdly, framework limita-
tions will be detailed.

Models presented in this discussion are closed connected
triangulated surfaces extracted from thePrinceton Shape Bench-
mark [29] and the I.N.R.I.A. Gamma Research Group [13]
repositories.

10.1 Parameter setting

Feature point extraction is the first stage of the pipeline
that requires a threshold value setting. This parameter (ǫ)
stands for the radius of geodesic neighborhoods during the
geodesic based mapping function extrema intersection pro-
cess (extrema representing a same feature point might not
appear on the same vertex but in the same neighborhood).
If ǫ is too small, extrema will have to be very close to be
merged; consequently, some feature points might be missed.
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Model ǫ = 0.01 ǫ = 0.02 ǫ = 0.05 ǫ = 0.1 ǫ = 0.2

Sphere 2 2 2 2 2
Bottle 2 2 2 2 2
Bird 9 9 7 7 6
Dinosaur 6 8 7 7 7
Horse 6 6 7 7 7
Hand 2 5 6 6 8

Table 1 Number of feature points with differentǫ parameter values.

Model NG = 2 NG = 3 NG = 4 NG = 5 NG = 10

Sphere 2 2 2 2 2
Bottle 2 2 2 2 2
Bird 7 6 5 5 4
Dinosaur 7 5 5 4 2
Horse 7 6 2 2 2
Hand 6 1 0 0 0

Table 2 Number of feature points when the numberNG of geodesic
mapping functions for intersection increases. Intersecting more and
more sets reduces the number of common elements.

Model fτ = 1 fτ = 5 fτ = 8 fτ = 10 fτ = 20

Sphere 0 0 0 0 0
Bottle 0 1 1 2 2
Bird 0 8 8 8 8
Dinosaur 0 12 13 15 13
Horse 0 12 16 14 13
Hand 0 10 11 13 13

Table 3 Number of discrete contour constrictions with differentfτ

parameter values. Most visually conforming results have been obtained
with fτ = 8.

On the contrary, if it is too high, distant extrema will tend
be merged into the same feature point; thus some feature
points might represent several protrusions. Table 1 shows
that the number of extracted feature points is quite stable
when ǫ varies. The most visual perception conforming re-
sults have been obtained settingǫ = 0.05 (bold column, see
figure 14 for graphical results).

The number of geodesic based mapping functions used
for intersection (notedNG) can also be discussed as a pa-
rameter of the approach. Table 2 shows experiments with a
variant of proposed algorithm, using a varying number of
mapping functions. It shows that the more mapping func-
tions are intersected, the less feature points are identified, as
a consequence of the intersection process of multiple sets.

Discrete contour constriction detection is conditioned by
the cutoff frequencyfτ of the low-pass filter applied on cur-
vature curves. This filter’s objective is to decrease curvature
high frequency noise influence. Settingfτ = 8 has shown to
result in nice-looking constrictions (see figure 14 and table
3). Moreover, constriction selection is also conditioned by a
threshold parameter (∆) which denotes the minimal accept-
able distance between two consecutive constrictions. Table

Model ∆ = 0 ∆ = 0.05 ∆ = 0.1 ∆ = 0.2

Sphere 0 0 0 0
Bottle 1 1 1 1
Bird 8 8 8 8
Dinosaur 17 17 13 10
Horse 18 18 16 10
Hand 11 11 11 6

Table 4 Number of discrete contour constrictions with different∆ pa-
rameter values. Setting∆ = 0.1 avoids over segmentation on con-
cerned objects (dinosaur and horse models) without affecting constric-
tion selection on others.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 14 Feature points, dual Reeb graph, constriction approximations
and enhanced topological skeleton of simple and complex objects.

4 shows it is not a critical parameter though it helps avoiding
over-segmentation on two models.

As a conclusion, tables show that most of those parame-
ters are not critical for the stability of the overall methodand
that proposed values (used for figures 14 and 15) give visual
perception conforming results.

10.2 Time complexity

Given an input closed connected triangulated surfaceT ,
let n be the number of vertices inT . Feature point extrac-
tion is performed inO(n × log(n)) steps.fm is computed
in O(|F | × n× log(n)) steps with|F | the number of identi-
fied feature points. Notice thatfm has a lower computational
cost than the function proposed in [16] (|F | rarely exceeds
20). Each discrete contour computation takesO(log(n)+n).
Therefore, as contours are computed for each vertex inT ,
the overall discrete contour computation takesO(n2) steps.
Topological and geometrical analyses are more straightfor-
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Model Faces Feature pts Constrictions Time (s.)

Sphere 8 000 2 0 6.342
Bottle 520 2 1 0.045
Bird 2 000 7 8 0.425
Dinosaur 10 000 7 13 3.490
Horse 40 000 7 16 33.793
Hand 52 000 6 11 109.194

Table 5 Computation times.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 15 Enhanced topological skeleton of various objects.

ward. Topological analysis is performed inO(n) steps. Cur-
vature curves are computed inO(n) steps. Their smoothing
is realized inO(n × log(n)), using the Fast Fourier Trans-
form algorithm. Consequently, we can state that the overall
complexity of our method is bounded by the discrete contour
computation, which takesO(n2) steps in the worst case.

Presented algorithms have been implemented in C lan-
guage under GNU/Linux and experimented on a desktop PC
with a 3 GHz P4-CPU and 2 gigabytes of RAM. Table 5
shows the computation times corresponding to the models
presented in fig. 14.

For comparison, latest constriction detection algorithms
[14] run in 80 seconds for a10 000 faced model. Domain
connected graph [33] are computed in more than1 900 sec-
onds for such models. 3D mesh segmentation based on fea-
ture points and core extraction [17] takes28 seconds for
4 000 faced models. Notice that our overall method has a
significantly lower running time than these state-of-the-art
methods for equivalently sampled meshes.

10.3 Discussion

Intermediary results and topological skeletons are shown
in figures 14 and 15. On these illustrations, the reader can
notice that enhanced topological skeletons concisely encode

(a) (b) (c)

Fig. 16 Zooming in the alien model, we can see that feature points
have been extracted on each finger and toe, thus creating corresponding
branches in the skeleton.

both shape topology (Reeb graph, in blue) and geometry
(constrictions, in red). On the one hand, the topological anal-
ysis results in the identification of the most significant topo-
logical components only, preserving the topological prop-
erties of the shape: model in figure 15(e) is a 1-genus sur-
face and its skeleton consequently contains a cycle. On the
other hand, the geometrical analysis enables the subdivision
of these topological components into more visually mean-
ingful subparts, increasing the description quality of tradi-
tional topological skeletons (subdividing humanoid models’
limbs along potential articulations).

According to Wu et al. [33], a shape skeleton is expected
to respect certain intrinsic properties: simplicity, stability,
meaningfulness, neutrality and hierarchy. Firstly, as illus-
trated in figure 13(a), enhanced topological skeletons can be
collapsed into very concise representations. Secondly, the
stability of the presented method can be observed in fig-
ures 15(f) and 15(g), where two different horse models have
nearly identical skeletons. More generally, the overall ro-
bustness of the framework will be addressed later on this dis-
cussion. Thirdly, reader can notice that no noisy details are
encoded in the skeletons, which shows the meaningfulness
of the framework. Fourthly, the neutrality of the skeleton is
provided by the medial axis embedding we proposed in sec-
tion 9. Fifthly, a natural skeleton hierarchy is provided bythe
mapping functionfm: skeleton subparts at the center of the
object, at the root of the hierarchy, have a low function value
(denoted in dark blue in figures 14 and 15) whereas extrem-
ity parts have a high function value (denoted in light blue
in figures 14 and 15). Consequently, we can state that en-
hanced topological skeletons respect the intrinsic properties
of shape skeletons [33], and consequently provides a good
description of 3D meshes.

Feature points have been extracted in the past. Contrary
to the algorithm presented by Mortara et al. [23], the pre-
sented method resolves extraction on constant curvature ar-
eas, such as a sphere where two poles are extracted (figure
14(a)). Moreover, the algorithm presented by Katz et al. [17]
runs in quadratic execution complexity while our algorithm
needsO(n× log(n)) steps, withn the number of vertices in
the mesh. At last, we can state that our feature point extrac-
tion algorithm leads to visual perception conforming results,
as shown in figures 16(b) and 16(c), where feature points
have been extracted on the extremity of each finger and toe.
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(a) (b) (c) (d)

Fig. 17 Algorithm robustness against surface degradations: original
(a), surface noise(b), under sampling(c) and user deformations(d).

As for the topological skeleton construction algorithm,
reader can notice that no noisy details have been encoded
in the skeletons, because discrete contours do not discon-
nect infm non-smooth configurations (denoted with red and
black critical points in figure 6). Contrary to traditional Reeb
graph simplification algorithms, no noise-corrective thresh-
old is required.

Discrete contour constriction detection also leads to vi-
sual perception conforming results, identifying the most sig-
nificant surface bottlenecks (such as humanoid models’ el-
bows and knees for example). As shown in figures 14(n)
and 14(o) proposed algorithms leads to acceptable results
even with coarsely designed objects, even on strongly tubu-
lar components. Notice that it also behaves correctly with
primitive shapes, such as the sphere (fig. 14(m)), where no
constriction is identified. Moreover, contrary to previouswo-
rks [15,14], onlymeaningfulconstrictions are extracted.

10.4 Robustness against surface degradation

As fm is based on normalized geodesic distance eval-
uation, the algorithm is invariant to geometrical transfor-
mations (translation, rotation and uniform scaling). The fol-
lowing experiments try to estimate our framework’s stability
against more complex transformations.

The first experiment deals with surface noise (fig. 17(b)),
denoting scanning acquisition noise for example. Each ver-
tex of the input triangulation has been moved randomly in a
box whose volume corresponds to1% of the bounding box
of the overall object. Reader can notice that the topological
description (in blue) remains unchanged while the geomet-
rical description (in red) slightly varies. Notice that such a
noise dramatically affects the surface and is known to be
critical for Medial Axis Transform or segmentation based
methods.

In comparison to [1], no re-meshing pre-process is re-
quired in our framework. To evaluate our method depen-
dence on the triangulation of the surface, we propose in the
second experiment to divide by5 the number of vertices in
the mesh, as shown in figure 17(c). In a similar way to previ-
ous experiment, surface under-sampling slightly affects the
constriction detection process only.

(a) (b)

Fig. 18 False positive constriction on the head of a coarsely designed
humanoid model. As the eye areas are deeply concave, associated dis-
crete contour is incorrectly identified as a constriction.

The third experiment purpose is to evaluate enhanced to-
pological skeletons robustness against variations in model
pose. This property benefits applications such as surface com-
parison. Geodesic metrics are commonly attributed the prop-
erty to be invariant to variations in model pose though it
is rarely experimented. In figure 17(d), the hand model has
been deformed using rigid rotations (as detailed in section
11). Then, the enhanced topological skeleton of the deformed
surface has been computed. Notice not only the topological
but also the geometrical analyses behaved nearly identically:
only one constriction is missing in the little finger and the
other ones kept precisely their original position. Thus, we
can conclude from this experiment that the presented method
is also robust against variations in model pose.

10.5 Framework limitations

In figure 15(d), the bear model seems symmetrical while
it is not rigorously. This results in a skeleton whose structure
is not symmetrical. Generally speaking, topological skele-
tons (because of their theoretical foundations) tend to am-
plify models’ asymmetry. We believe that for future work,
capturing the notion ofperceived symmetrycould increase
the descriptive quality of the framework, inserting in an ar-
tificial way some symmetry in the skeleton if needed. In this
sense, recent results in geometry processing for symmetry
detection [27] worth being investigated. This property could
benefit applications such as skeleton-based surface similar-
ity estimation, which often uses asymmetry sensitive graph-
matching algorithms.

Moreover, proposed method assumes that constrictions
appear along extracted discrete contours. Even if it is veri-
fied in practice for most of tested objects (see figures 14 and
15), this is a strong hypothesis. An undesired consequence
of this hypothesis is presented in figure 18, where a contour
passing through a deeply concave area is incorrectly iden-
tified as a constriction. Reciprocally, expected constrictions
that are not located along discrete contours will not be iden-
tified. Graph-cut based optimization algorithms could bring
a solution to this issue, moving constriction approximations
to their exact location, helping the constriction selection.
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11 Examples of application

In previous section, our framework has been evaluated
according to its time execution complexity, its descriptive
properties and its robustness against surface degradation. In
this section, we focus on its applicative usability as its last
evaluation criteria and propose two applications: topology
driven mesh segmentation and skeleton driven mesh defor-
mation.

11.1 Topology driven mesh segmentation

Mesh segmentation roughly consists in cutting up a sur-
face into meaningful sub-parts [2]. Similarly to skeleton ex-
traction, it benefits a large spectrum of applications. Recently,
the need forcompatible segmentation– which means seg-
menting identically two meshes representing the same class
of object – has been expressed [17]. Contrary to geomet-
rical low-level based approaches [34], a solution to this is-
sue could reside in driving the segmentation using high-level
shape information, such as symmetry or topology. In this
sense, Berreti et al. [3] proposed to use the topological de-
scription provided in [16] to compute simple, but similar
segmentations. In this paragraph, we propose to exploit this
idea and to take advantage of the higher descriptive qual-
ity of our skeletons (in comparison to traditional topological
skeletons) to improve topology driven mesh segmentation.

Proposed algorithm is summed up in figure 19. First,
for each node of the graph, its related surface patch is dis-
played with a distinctive color. This results in a raw over-
segmentation (fig. 19(b)). Then, the graph is simplified (fig.
19(c)) and the final segmentation (fig. 19(d)) is computed
using the following two node-merging heuristics:

1. Delete thin patches:if the degree of processed node is
greater than 2, then merge it with its adjacent node of
biggest area, except if a constriction separates them;

2. Select the most concave boundaries:if the degree of
processed node is equal to 2 and it is the first node of
a branch and its last contour has aζ̂(γ(v)) value lower
than a given threshold̂ζmin (fixed to−0.1), then merge it
with its parent node (its adjacent node of lowest average
fm value).

More results are shown in figure 20. On these illustra-
tions, objects are segmented into core and limbs and limbs
are segmented along constrictions. Notice that this algorithm
benefits our skeleton extraction framework properties, and
particularly its robustness against surface degradation.

11.2 Skeleton driven mesh deformation

User defined 3D model deformations often need tricky
mesh editing operations. Shape skeletons have shown to be
user-friendly shape abstraction for surface deformation [8,

(a) (b) (c) (d)

Fig. 19 Topology driven segmentation overview: a raw segmentation
(b) is obtained from the enhanced topological skeleton(a), then a node
merging algorithm(c) completes the process(d).

(a) (b) (c) (d)

Fig. 20 Topology driven segmentation results for some test objects.
Proposed algorithm identifies core and limbs, subdividing limbs along
deeply concave areas.

(a) (b) (c) (d)

Fig. 21 Application to mesh deformation. The user directly grabs the
branches of the skeleton(b) and rotates them using constrictions (in
red) as articulations(c). Thanks to the equivalence relation between
the vertices of the mesh and the points of the skeleton, deformations
are directly reflected on the object(d).

18,33]. Basically, the user grabs the branches of the skele-
ton and move them to produce the desired deformation. Con-
trary to conventional topological skeletons, our skeletons are
enhanced with constrictions which mostly corresponds to ar-
ticulations. Consequently, the user can employ these special
points of the skeleton (in red in figure 21) as natural rotation
reference points. Once a branch of the skeleton has been ro-
tated, the corresponding rotation matrix is constructed. Then,
for each vertex of the related surface patch, its new position
is computed multiplying its original position vector by the
rotation matrix. Figure 21 shows that nice-looking defor-
mations can be obtained with only a few user interactions,
thanks to the high-level description provided by enhanced
topological skeletons.
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12 Conclusion and future work

In this paper, we presented a new concise shape abstrac-
tion, enhanced topological skeleton, that encodes both topo-
logical and geometrical evolutions of some mapping func-
tion contours. We also proposed a unified and fully auto-
matic algorithm for its extraction. First, it computes a Reeb
graph. Then it refines it using discrete contour constriction
as boundaries. To the authors’ knowledge, this is the first ap-
proach that unifies Reeb graph construction and constriction
computations.

Three scientific contributions are given. Firstly, we pro-
posed a robust and straightforward algorithm for feature point
extraction. It enables the computation of an invariant map-
ping function which reveals well the shape most significant
features. Secondly, we presented an algorithm fordiscrete
contourscomputation. We showed that a topological analy-
sis of thesediscrete contoursenables a unified Reeb graph
construction and simplification process. Finally, we showed
that a geometrical analysis of thediscrete contoursprovides
visual perception conforming constriction approximations,
enabling the refinement of the traditional Reeb graphs into
more visually meaningful skeletons.

Moreover, we presented an extensive evaluation discus-
sion of experimental results, according to four criteria. Firstly,
we have shown thatenhanced topological skeletonsrespect
shape skeleton intrinsic descriptive properties [33], improv-
ing traditional topological skeletons description quality. Sec-
ondly, we have shown that the presented algorithm runs sig-
nificantly faster than state-of-the-art methods. Thirdly,we
have shown thatenhanced topological skeletonsare affine-
invariant and robust to a variety of surface degradations,
such as surface noise, mesh sampling variation and surface
deformation. At last, to evaluate the usability of the pre-
sented framework, we developed two applications related
to topology driven mesh segmentation and skeleton driven
mesh deformation.

Some limitations have been enumerated along the dis-
cussion. In future work, we would like to capture the no-
tion of perceived symmetryin order to extract symmetrical
skeletons if the objects seem roughly symmetrical. We be-
lieve this could benefit many applications, like surface simi-
larity estimation. As a long term perspective, we would like
to useenhanced topological skeletonsas a shape abstraction
for mesh editing operations within the framework ofmodel-
ing by examplesystems [12].
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