
HAL Id: hal-00666041
https://hal.science/hal-00666041

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BEHAVIOR OF FLOWING BODIES NEAR A
BIFURCATION: ELUCIDATING THE

ZWEIFACH-FUNG EFFECT
Vincent Doyeux, Thomas Podgorski, Sarah Peponas, Mourad Ismail,

Gwennou Coupier

To cite this version:
Vincent Doyeux, Thomas Podgorski, Sarah Peponas, Mourad Ismail, Gwennou Coupier. BEHAV-
IOR OF FLOWING BODIES NEAR A BIFURCATION: ELUCIDATING THE ZWEIFACH-FUNG
EFFECT. 2nd European Conference on Microfluidics, Dec 2010, Toulouse, France. pp.1-17. �hal-
00666041�

https://hal.science/hal-00666041
https://hal.archives-ouvertes.fr


Proceedings of the 2♥❞ European Conference on Microfluidics - Microfluidics 2010 - Toulouse, December 8-10, 2010

✖FLU10-64

BEHAVIOR OF FLOWING BODIES NEAR A BIFURCATION:
ELUCIDATING THE ZWEIFACH-FUNG EFFECT

Vincent Doyeux✶, Thomas Podgorski✶, Sarah Peponas✶, Mourad Ismail✶, Gwennou Coupier✄✶
�Laboratoire de Spectrométrie Physique, CNRS et Université J. Fourier - Grenoble I, BP 87, 38402
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ABSTRACT

The problem of the splitting of a suspension in bifurcating channels dividing into two branches of non equal flow rates is
addressed. As observed for long, in particular in blood flow studies, the volume fraction of particles generally increases
in the high flow rate branch and decreases in the other one. We focus here on the possibility of an attraction of the
particles towards one branch through microfluidic experiments and two-dimensional simulations and show that it is
directed towards the low flow rate branch. The enrichment in particles in the high flow rate branch is shown to be mainly
a consequence of the initial distribution in the inlet branch, which shows necessarily some depletion near the walls.

1. INTRODUCTION

When a suspension of particles reaches an asymmetric bifurcation, it is well-known that the particles volume
fractions in the two daughter branches are not equal; basically, for branches of comparable geometrical char-
acteristics, but receiving different flow rates, the volumefraction in particles increases in the high flow rate
branch. This phenomenon, sometimes called Zweifach-Fung effect [1, 2], has been observed for long in the
blood circulation. Under standard physiological circumstances, a branch receiving typically one fourth of the
blood inflow will see its hematocrit (volume fraction of red blood cells) drop down to zero, which will have
obvious physiological consequences.

Apart the huge number of in-vivo studies on blood flow (see ref. [3] for a review), many other papers have
been devoted to this effect, either to understand it, or to use it in order to engineer sorting or purification devices.
In the latter case, one can play at will with the different parameters characterizing the bifurcation (widths of
the channels, relative angles of the branches), in order to reach a maximum of efficiency. As proposed in many
papers, focusing on plain spheres can already give some keysto understand or control this phenomenon [4–11].
In-vitro behavior of red blood cells has also attracted someattention [10,12–17].

All the latter papers consider the low-Reynolds-number limit, which is the relevant limit for applicative
purposes and for the biological systems of interest. Therefore, this limit is also considered throughout this paper.

In most studies as well as in in vivo blood flow studies, which are for historical reasons the main sources
of data, the main output is the particle volume fraction in the two daughter branches as a function of the flow
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Figure 1: (a) The two Y-shaped geometries mainly studied in the literature. Here◗✶ ❁ ◗✷ and the dashed
line stands for the separating streamline between the flows that will eventually enter branches 1 and 2 in the
absence of particles. (b) The T-bifurcation that is studiedin this paper and also in ref. [5] in order to get rid of
geometrical effects as much as possible.

rate ratio between them. Such data can be well described by empirical laws that still depend on some ad-hoc
parameters but allow some rough predictions [12,13,18], which have been exhaustively compared recently [19].
On the other hand, measuring macroscopic data such as volumefractions does not allow to identify the relevant
parameters and effects involved in this asymmetric partitioning phenomenon.

For a given bifurcation geometry and a given flow rate ratio between the two outlet branches, the final
distribution of the particles can be straightforwardly derived from two data: first, their spatial distribution in the
inlet; second, their trajectories in the vicinity of the bifurcation, starting from all possible initial positions. Ifthe
particles follow their underlying unperturbed streamlines (as would a sphere do in a Stokes flow in a straight
channel), their final distribution can be easily computed, although particles near the apex of the bifurcation
require some specific treatment, since they cannot approachit as much as their underlying streamline does.
The relevant physical question in this problem is thus to identify the hydrodynamic phenomenon at the bifur-
cation that would make flowing objects escape from their underlying streamlines, which would have as a con-
sequence that a large particle would be driven towards one branch while a tiny fluid particle located at the same
position would go to the other branch.

The radial distribution in the inlet channel obviously plays a key role also: in an extreme case where all
the particles are centered in the inlet channel and follow the underlying fluid streamline, they all enter in the
high flow rate branch; more generally the existence of a free layer near the walls favours the high flow rate
branch, since the depletion in particles it entails is relatively more important for the low flow rate branch, which
receives fluid that occupied less place in the inlet branch. The existence of such a particle free layer near the
wall has been observed for long in blood circulation. More generally, it can be due to lateral migration towards
the centre, which can be of inertial origin (high Reynolds number regime) [20–24], or viscous one. In such
a situation of low Reynolds number flow, while a sphere does not migrate transversally due to symmetry and
linearity in the Stokes equation, deformable objects such as vesicles (closed lipid membranes) [25], red blood
cells [26, 27] that exhibit similar dynamics as vesicles [28, 29], drops [30, 31] or elastic capsules [26, 27, 32],
might adopt a shape that allows lateral migration. This migration is due to the presence of walls [33–35] as well
as to the non-constant shear rate [36,37]. Even in the case where no migration occurs, the initial distribution is
still not homogeneous: since the barycentre of particles cannot be closer to the wall than their radius, there is
always some particle free layer near the walls. This sole effect will favour the high flow rate branch.
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As we want to focus in this paper on the question of cross streamline migration in the vicinity of the bifur-
cation, we will consider rigid spheres, for which no transverse migration in the upstream channel is expected,
that are in the vanishing concentration limit and flow through a symmetric bifurcation, that is the T-shaped
bifurcation shown on figure 1(b), where the two daughter branches have same cross section and are equally
distributed relatively to the inlet channel.

In the literature, the most common symmetric case that is considered is the Y-shaped bifurcation with
daughter branches leaving the bifurcation with a✹✺✍ angle relatively to the inlet channel, and cross sections
identical as the one of the inlet channel (figure 1a) [6–11]. The T-shaped bifurcation (figure 1b) has attracted
little attention [5, 38]. All studies but ref. [38] show results for rigid spherical particles, while some results for
deformable particles are given in refs. [11,38]. In all the latter papers, although the authors are sometimes con-
scious that the depletion and attraction effects might screen each other, the relative weight of each phenomenon
is not really discussed. However, Yanget al. [10] consider explicitly that there must be someattraction towards
the high flow rate branchand give some qualitative arguments for it. This opinion, initially introduced by
Fung [2,38,39], is widely spread in the literature [15,40,41]. We shall come back to the underlying arguments
in the following.

Explicit data on a possible attraction towards one branch are scarce as they can only be found in a recent
two-dimensional simulations paper [11]. The authord presented simulation of two-dimensional spheres with
❘ ✔ ✵✿✻✼ and two-dimensional deformable objects mimicking red blood cells in a symmetric Y-shaped bifur-
cation. For spheres, it is shown that there is anattraction towards the low flow rate branch, which increases with
❘. Deformable particles are also considered. However, it is not possible to discuss from their data (as, probably,
from any other data) whether the cross streamline migrationat the bifurcation is more important in this case
or not: for deformable particles, transverse migration towards the centre occurs, due to the presence of walls
and of non homogeneous shear rates. This migration will probably screen the attraction effect, at least partly,
and it seems difficult to quantify the relative contributionof both effects. It appears finally that there should be
some attraction towards the low flow rate branch, although the final result is an enrichment of the high flow rate
branch due to the depletion effect in the inlet channel. On the other hand, if one considers the flow around an
obstacle, as simulated in ref. [40], it seems that sphericalparticles are attracted towards the high flow rate side.
Moreover, to date, no direct experimental proof of any attraction phenomenon exists. In section 3.1, we show
experimentally that attraction towards the low flow rate branch takes place and confirm this through numerical
simulations.
It is then necessary to discuss whether this attraction has important consequences on the final distributions in
particles in the two daughter channels. This was not done explicitly in the work by Barberet al. [11]. It is done
in section 3.2 where we discuss the relative weight of the attraction towards the low flow rate branch and the
depletion effect, which have opposite consequences, by using our simulations.

Before presenting our data, we shall introduce useful notations (see figure 1(b)).

The half-width of the inlet branch is set as the length scale of the problem. The inlet channel divides into
two branches of width✷❛ (the case❛ ❂ ✶ will be mainly considered here by default, unless otherwisestated),
and spheres of radius❘ ✔ ✶ are considered. The flow rate at the inlet is noted◗�, and◗✁ and◗✂ are the
flow rates at the upper and lower outlets (◗� ❂ ◗✁ ✰ ◗✂). In the absence of particles, all the fluid particles
situated initially above the line② ❂ ②❢ will eventually enter branch 1. This line is called the (unperturbed)
fluid separating streamline.②� is the initial transverse position of the considered particle far before it reaches
the bifurcation (❥②�❥ ✔ ✶ ✄ ❘). ◆✁ and◆✂ are the numbers of particles entering branches 1 and 2 by unittime,
while◆� ❂ ◆✁ ✰ ◆✂ have entered the inlet channel. The volume fractions in the branches are✟✐ ❂ ❱ ◆✐☎◗✐,
where V is the volume of a particle.
With these notations, we can reformulate our question: if②� ❂ ②❢ , does the particle experience a net force in
the② direction (e. g. a pressure difference) that would push it towards one of the branches, while a fluid particle
would remain on the separating streamline (by definition of②❢ )? If so, for which position②✆� does this pressure
difference vanish, so that the particle follows the streamlines and eventually hits the opposite wall and reaches
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an (unstable) equilibrium position? If◗✶ ✔ ◗✷ and②✄✵ ❁ ②❢ , then one will talk aboutattraction towards the
low flow rate branch.
Following these notations, we have:

◆✶ ❂

❩ ✶

�✁✂

☎✭②✮✉
✄
①✭②✮✆②❀ (1)

◗✶ ❂

❩ ✶

�✝

✉①✭②✮✆②❀ (2)

where☎✭②✮ is the mean density in particles at height② in inlet branch,✉✄① and✉① are respectively the particles
and flow longitudinal upstream velocities.◆✵ and◗✵ are given by the same formula with②✄✵ ❂ ②❢ ❂ ✞✟.
The Zweifach-Fung effect can then be written as follows: if◗✶✠◗✵ ❁ ✟✠✡ (branch 1 receives less flow than
branch 2) then◆✶✠◆✵ ❁ ◗✶✠◗✵ (branch 1 receives even less particles than fluid) or equivalently☛✶ ❁ ☛✵ (the
particle concentration is decreased in the low flow rate branch).

2. METHOD

2.1 Experimental setup

We studied the behaviour of hard balls as a first reference system. Since the potential migration across stream-
lines is linked to the way the fluid acts on the particles, we also studied spherical fluid vesicles. They are closed
lipid membranes enclosing a Newtonian fluid. The lipids thatwe used are in liquid phase at room temperature,
so that the membrane is a two-dimensional fluid. In particular, it is incompressible (so that spherical vesicles
will remain spherical even under stress, unlike drops), butit is easily sheared: it entails that a torque exerted
by the fluid on the surface of the particle can imply a different response whether it is a solid ball or a vesicle.
Moreover, since vesicle suspensions are polydisperse, it is a convenient way to vary the radius❘ of the studied
object.
The experimental setup is a standard microfluidic chip made of polydimethylsiloxane bonded on a glass plate
(figure 2). We wish to observe what happens to an object located around position②❢ that is, in branch which
branch it goes at the bifurcation. In order to determine the corresponding②✄✵ , we need to scan different initial
positions around②❢ . One solution would be to let a suspension flow and hope that some of the particles will
be close enough to the region of interest. In the meantime, aswe shall see, the cross streamline effect is weak
and requires precise measurement, and noticeable effects appear only at high radius❘, typically❘ ❃ ☞✿✺. With
such objects, clogging is unavoidable, which would modify the flow rates ratio, and if a very dilute suspension
is used, it is likely that the region of interest will only partly be scanned.
Therefore we designed a microfluidic system allowing to use only one particle, that would go through the
bifurcation with a controlled initial position②✵, would be taken back, its position②✵ modified, would flow again
in the bifurcation, and so on. Moreover, we allowed continuous modification of the flow rate ratio between the
two daughter branches. The core of the chip is the five branch crossroad shown in inset on figure 2. These five
branches have different lengths and are linked to reservoirs placed at different heights, in order to induce a flow
by hydrostatic pressure gradient. A focusing device (branches❛,❜ and❝) is placed before the bifurcation of
interest (branches 1 and 2), in order to control the lateral position of the particle. Particles are initially located
in the central branch❛, where the flow is weak and the incoming particles are pinchedbetween the two lateral
flows. In order to modify the position②✵ of the particle, the relative heights of the reservoir linked to the
lateral branches are modified. The total flow rate and the flow rate ratios between the two daughter branches
after the bifurcation are controlled by varying the heightsof the two outlet reservoirs. Note the flow rates ratio
also depends on the heights of the reservoirs linked to inletbranches❛, ❜ and❝. Since the two latter must be
continuously modified to vary the position②✵ of the incoming particle in order to find②✄✵ for a given flow rate
ratio, it is convenient to place them on a pulley so that theirmean height is always constant (the resistances
of branches❜ and❝ being equal). If the total flow rate is a relevant parameter (which is not be the case here
since we consider only Stokes flow of particles that do not deform), one can do the same with the two outlet
reservoirs. In such a situation, if reservoir of branch❛ is placed at height 0, reservoirs of branches❜ and❝ at
heights✌❤✵, and reservoirs of branches 1 and 2 at height✞❍✰❤ and✞❍✞❤, the flow rate ratio is governed by
setting✭❤❀❍✮ and❤✵ can be modified independently in order to control②✵. Once the particle has gone through
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Figure 2: Scheme of the microfluidic device. The photograph shows thetrajectory of a particle from branch❛
to branch 1 after having been focused on a given streamline thanks to flows from lateral branches❜ and☛.

the bifurcation, height❍ and the height of reservoir☞ are modified so that the particle comes back to branch
☞, and✌✵ is modified in order to get closer and closer to position②✍✵. ◗✶❂◗✵ (or, equivalently,②❢ ) is a function
of ❍ , ✌, and the flow resistances of the five branches of rectangular cross sections, which are known functions
of their lengths, widths and thicknesses [42]. The accuracyof the calculation of this function was checked by
measuring②✍✵ for small particles, that must be equal to②❢ .
Note that the length of the channel is much more important than the size of a single flowing particle, so that
we can neglect the contribution of the latter in the resistance to the flow: hence, even though we control the
pressures, we can consider that we work at fixed flow rates.

At the bifurcation level, channels widths are all equal to✺✼ ✎ ✏✿✷✖m. Their thickness is✽✑ ✎ ✏✿✸✖m.
We used polystyrene balls of maximum radius✹✏✿✺ ✎ ✏✿✸ ✖m in soapy water (therefore❘ ✔ ✏✿✼✑) and fluid
vesicles of size❘ ✔ ✏✿✻✏. Vesicles membrane is a dioleoylphosphatidylcholine lipid bilayer enclosing an inner
solution of sugar (sucrose or glucose) in water. Vesicles are produced following the standard electroformation
method [43]. Maximum flow velocity at the bifurcation level was around 1 mm.s✒✶, so that the Reynolds
number Re✬ ✑✏✒✶.

2.2 The numerical model

Our problem is a simple fluid/structure interaction one and can be modeled by Navier-Stokes equations for the
fluid flow and Newton-Euler equations for the sphere. These two problems can be coupled in a simple manner:

✓ The action of fluid on the sphere is modeled by the hydrodynamic force and torque acting on its surface.
They are used as the right hand sides of Newton-Euler equations.

✓ The action of the sphere on fluid can be modeled by a non-slip boundary conditions on the sphere (in the
Navier-Stokes equations).
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However, this explicit coupling can be unstable numerically and its resolution often requires very small time
steps. In addition, as we have chosen to use finite element methodFEM (for accuracy reasons) and since the
position of the sphere evolves in time we have to remesh the computational domain at each time step or in best
cases at each few time steps.
For all these reasons we chose another strategy to model our problem. Instead of using Newton-Euler equations
for modeling the sphere motion and Navier-Stokes equationsfor the fluid flow, we use only the Stokes equations
in the whole domain of the bifurcation (including the interior of the sphere). The use of Stokes equations is
justified by the small Reynolds number in our case and the presence of the sphere is rendered by a second fluid
with a ’huge’ viscosity on which we impose a rigid body constraint. This type of strategy is widely used in
the literature with different names e.g. the so called FPD (Fluid Particle Dynamics) method [44, 45]) but we
can group them under the generic name of penalty-like methods. The one that we use is mainly developed by
Lefebvreet al. [46,47] and we can find a mathematical analysis of these typesof methods in ref. [48].
In what follows we describe briefly the basic ingredients of the finite element method and penalty technique
applied to our problem.
The fluid flow is governed by Stokes equations that can be written as follow:

�✗✁✉✰r♣ ❂ ✵ in ✡❢❀ (3)

r ✂ ✉ ❂ ✵ in ✡❢❀ (4)

✉ ❂ ✄ on❅✡❢ ✿ (5)

Where:
✎ ✗, ✉ and♣ are respectively the viscosity, the velocity and the pressure fields of the fluid,
✎ ✡❢ is the domain occupied by the fluid. Typically✡❢ ❂ ✡ ☎ ✖❇ if we denote by✡ the whole bifurcation

and by❇ the rigid particle,
✎ ❅✡❢ is the border of✡❢ ,
✎ ✄ is some given function for the boundary conditions.

It is known that under some reasonable assumptions the problem (3)-(4)-(5) has a unique solution✭✉❀ ♣✮ ✷

❍✶✭✡❢ ✮
✆ ✝ ▲✆✞✭✡❢ ✮ [49]. In the sequel we will use the following functional spaces:

▲
✆
✭✡✮ ❂ ✟✠ ☛ ✡ ✦ ❘☞

❩

✌
❥✠ ❥

✆
❁ ✰✍❣❀ (6)

▲
✆
✞✭✡✮ ❂ ✟✠ ✷ ▲

✆
✭✡✮☞

❩

✌
✠ ❂ ✵❣❀ (7)

❍
✶
✭✡✮ ❂ ✟✠ ✷ ▲

✆
✭✡✮☞r✠ ✷ ▲

✆
✭✡✮❣❀ (8)

❍
✶
✞ ✭✡✮ ❂ ✟✠ ✷ ❍

✶
✭✡✮☞ ✠ ❂ ✵ on❅✡❣✿ (9)

As we will useFEM for the numerical resolution of problem (3)-(4)-(5), we need to rewrite it in a variational
form (an equivalent formulation of the initial problem). For sake of simplicity, we start by writing it in a standard
way (fluid without sphere), then we modify it using penalty technique to take into account the presence of the
particle. In what follow we describe briefly these two methods, the standard variational formulation for the
Stokes problem and the penalty technique.

2.2.1 Variational formulation

Let us first recall the deformation tensor✜ which will be useful in the sequel

✜✭✉✮ ❂
✏

✑

✒
r✉ ✰ ✭r✉✮

t
✓
✿ (10)

Thanks to incompressibility constraintr ✂ ✉ ❂ ✵ we have

✁✉ ❂ ✑r ✂ ✜✭✉✮✿ (11)

Hence, the problem (3)-(4)-(5) can be rewritten as follows:find ✭✉❀ ♣✮ ✷ ❍✶✭✡❢ ✮
✆ ✝ ▲✆✞✭✡❢ ✮ such that:

�✑✗r ✂ ✜✭✉✮ ✰r♣ ❂ ✵ in ✡❢ ❀ (12)

r ✂ ✉ ❂ ✵ in ✡❢ ❀ (13)

✉ ❂ ✄ on❅✡❢ ✿ (14)
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By simple calculations we show that problem (12)-(13)-(14)is equivalent to this one: find✭✉❀ ♣✮ ✷ ❍✶✭✡❢ ✮
�✂

▲�✵✭✡❢ ✮ such that:

✁✗

❩

✄☎

✜✭✉✮ ✿ ✜✭✈✮ ✆

❩

✄☎

♣r ✝ ✈ ❂ ✞❀ ✽✈ ✷ ❍
✶
✵✭✡❢ ✮

�
❀ (15)

❩

✄☎

qr ✝ ✉ ❂ ✞❀ ✽q ✷ ▲
�
✵✭✡❢ ✮❀ (16)

✉ ❂ ✟ on❅✡❢ ❀ (17)

where✿ denotes the double contraction.

2.2.2 Penalty method

We chose to use the penalty strategy in the framework ofFEM that we will describe briefly here (see [46, 47]
for more details).
The first step consists in rewriting the variational formulation (15)-(16)-(17) by replacing the integrals over the
real domain occupied by the fluid (✡❢ ❂ ✡ ✠ ✖❇) by those over the whole domain✡ (including the sphere❇).
Which means that we extend the solution✭✉❀ ♣✮ to the whole domain✡. More precisely, by the penalty method
we replace the particle by an artificial fluid with huge viscosity. This is made possible by imposing a rigid
body motion constraint on the fluid that replaces the sphere (✜✭✉✮ ❂ ✞ in ❇). Obviously, the divergence free
constraint is also insured in❇.
The problem (15)-(16)-(16) is then modified as follows: find✭✉❀ ♣✮ ✷ ❍✶✭✡✮� ✂ ▲�✵✭✡✮ such that:

✁✗

❩

✄
✜✭✉✮ ✿ ✜✭✈✮ ✰

✁

✧

❩

☛
✜✭✉✮ ✿ ✜✭✈✮

✆

❩

✄
♣r ✝ ✈ ❂ ✞❀ ✽✈ ✷ ❍

✶
✵✭✡✮

�
❀ (18)

❩

✄
qr ✝ ✉ ❂ ✞❀ ✽q ✷ ▲

�
✵✭✡✮❀ (19)

✉ ❂ ✟ on❅✡☞ (20)

Where✧ ✌ ✍ is a given penalty parameter.
Finally, if we denote the time discretization parameter byt✎ ❂ ✏✑t, the velocity and the pressure at timet✎ by
✭✉✎❀ ♣✎✮, the velocity of the sphere at timet✎ by❱✎ and its centre position by❳✎, we can write our algorithm
as:

❱✎ ❂
✍

✒ ♦❧✓♠❡✭❇✮

❩

☛
✉✎ (21)

❳✎✔✶ ❂ ❳✎ ✰ ✑t❱✎ (22)

✭✉✎✔✶❀ ♣✎✔✶✮ solves:

✁✗

❩

✄
✜✭✉✎✔✶✮ ✿ ✜✭✈✮ ✰

✁

✧

❩

☛
✜✭✉✎✔✶✮ ✿ ✜✭✈✮

✆

❩

✄
♣✎✔✶r ✝ ✈ ❂ ✞❀ ✽✈ ✷ ❍

✶
✵✭✡✮

�
❀ (23)

❩

✄
qr ✝ ✉✎✔✶ ❂ ✞❀ ✽q ✷ ▲

�
✵✭✡✮❀ (24)

✉✎✔✶ ❂ ✟ on❅✡☞ (25)

The implementation of algorithm (21)-(22)-(23)-(24)-(25) is done by using a user-friendly finite element soft-
ware:Freefem++ [50].
Finally, we consider the bifurcation geometry shown in figure 1(b) and impose no-slip boundary conditions on
all walls and we prescribe parabolic velocity profiles at theinlets and outlets such that, for a given choice of
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flow rate ratio,◗✵ ❂ ◗✶ ✰ ◗✷. For a given initial position②✵ of the sphere of given radius❘ at the outlet,
the full trajectory is calculated until it definitely entersone of the daughter branches. A dichotomy algorithm is
used to determine the key position②✄✵. Spheres of radius❘ up to�✿✽ are considered.
In practice, the penalty technique may deteriorate the preconditionning of our underlying linear system. To
overcome this problem, one can regularize equation (24) by replacing it with this one:

✁✧✵

❩

✡
♣✂☎✶q ✰

❩

✡
qr ✆ ✉✂☎✶ ❂ �❀ ✝q ✞ ▲

✷
✵✭✟✮❀ (26)

where✧✵ ✜ ✠ is a given parameter.

3. RESULTS AND DISCUSSION

3.1 The cross streamline migration

3.1.1 The particle separating streamlines

In figure 3 we show the position of the particle separating line②✄✵ relatively to the position of the fluid separating
line ②❢ when branch 1 receives less fluid than branch 2 (see figure 1b),which is the main result of this paper.
For all particles considered, in the simulations or in the experiments, we find that the particle separating line lies
below the fluid separating line, the upper branch being the low flow rate branch. These results clearly indicate an
attraction towards the low flow rate branch: while a fluid element located below the fluid separating streamline
will enter into the high flow rate branch, a solid particle cancross this streamline and enter into the low flow
rate branch, providing it is not too far initially. It is alsoclear that the attraction increases with the sphere radius
❘.
In particular, in the experiments (figure 3a), particles of radius❘ ✳ �✿✸ behave like fluid particles.❘ ❂ �✿✺☛

balls show a slight attraction towards the low flow rate branch, while the effect is more marked for big balls
of radius❘ ❂ �✿✼✠. Vesicles show comparable trend and it seems from our data that solid particles or vesicles
with fluid membrane behave similarly in the vicinity of the bifurcation.
In the simulations (figure 3b) we see clearly that for a given❘, the discrepancy between the fluid and par-
ticle behaviour increases when◗✶☞◗✵ decreases. On the contrary, in the quasi-two-dimensional case of the
experiments, the difference between the flow and the particle streamlines seems to be rather constant in a wide
range of◗✶☞◗✵ values. Finally, for small enough values of◗✶☞◗✵, the attraction effect is more pronounced in
the two-dimensional case than in the quasi-two-dimensional one, as shown on figure 3(a) for❘ ❂ �✿✼✠. This
was to be expected, since this effect has something to do withthe non zero size of the particle and the real
particle to channel size ratio is lower in the experiments for a given❘, due to the third dimension. In all cases,
below a given value of◗✶☞◗✵, the critical position②✄✵ would enter the depletion zone②✵ ❃ ✠ ✁ ❘, so that no
particle will eventually enter the low flow rate branch. The corresponding critical◗✶☞◗✵ is much lower in the
two-dimensional case than in the experimental quasi-two-dimensional situation (see figure 3a).

3.1.2 Discussion

The first argument for some attraction towards one branch wasinitially given by Fung [2,38,39] and strength-
ened by recent simulations [51]: a sphere in the middle of thebifurcation is considered (②✵ ❂ �) and it is argued
that it should go to the high flow rate branch since the pressure dropP✵ ✁ P✷ is higher thanP✵ ✁ P✶ because
◗✷ ❃ ◗✶ (see figure 1(b) for notations). This is true (we also found②✄✵ ❃ � when◗✶ ❁ ◗✷) but this is not the
point to be discussed: if one wishes to discuss the increase in volume fraction in branch 2, therefore to compare
the particles and fluid fluxes◆✷ and◗✷, one needs to focus on particles in the vicinity of the fluid separating
streamline (to see whether or not they behave like the fluid) and not in the vicinity of the middle of the channel.
On the other hand, this misleading argument by Fung has led tothe idea that there must be some attraction
towards the high flow rate branch in the vicinity of the fluid separating streamline [10], which appears now in
the literature as a well established fact [15,41].
In ref. [11], Fung’s argument is rejected, although it is notexplained why. Arguments for attraction towards the
low flow rate branch (that is,P✷ ❃ P✶ on figure 1(b)) are given, considering particles in the vicinity of the fluid
separating streamline. The authors’ main idea is, first, that some pressure differenceP✵ ✁ P✐ builds up on each
side of the particle because it goes more slowly than the fluid. Then, as the particle intercepts a relatively more
important area in the low flow rate branch region (②❢ ❁ ② ❁ ✠) than in the high flow rate region, they consider
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✭�✁

✭✂✁

✵✳✶ ✵✳✷ ✵✳✸ ✵✳✹ ✵✳✺
✵✳✵

✵✳✶

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻ ❋❧✉✐✄ ☎❉
❋❧✉✐✄ ✆❉
❇✝✞✞s ✝✟✠ ✈✡s☛❝✞✡s ❘❂☞✌✍✎✲☞✌✏
✑❛✒✒✓ ✔✕✖✗✼✘
✑❛✒✒✓ ✔✕✖✗✙✚
❱❡✛✜✢✣❡✛ ✤✥✦✧★
✩✪ ❜✫✬✬✮ ✯✮✰♠✱✬✫t✰♦✴✮✽ ✾✿❀❁❃❄

◗❅❆ ❈◗

❊●❍ ❊●■ ❊●❏ ❊●❑ ❊●▲
❊●❊

❊●❍

❊●■

❊●❏

❊●❑

❊●▲

❊●▼

② ◆
❖

◗❅❆ ❈

P❙❚❯❲ ❳❨❩❬
❭ ❪ ❫❴❵❢
❭ ❪ ❫❴❣❵
❭ ❪ ❫❴❣❤
❭ ❪ ❫❴❢❥
❭ ❪ ❫❴❦❫
❭ ❪ ❫❴❦♣
❭ ❪ ❫❴♣q

◗

② ◆
❖

Figure 3: Position of the particle separating liner✇① . The T-bifurcation with branches of equal widths is con-
sidered. Branch 1 receives flow from highr values, sor✇① ③ r④ for ⑤⑥⑦⑤① ③ ⑧⑦⑨ indicates attraction towards
the low flow rate branch (see also figure 1b). (a) Data from quasi-two-dimensional experiments and compari-
son with two-dimensional case for one particle size. The horizontal dotted line shows the maximum position
r① ⑩ ⑧ ❶ ❷ for ❷ ⑩ ❸❹❺⑧ spheres. Its intersection with the curver✇①❻⑤⑥⑦⑤①❼ yields the critical flow rate ratio
⑤⑥⑦⑤① below which no particle enters branch 1, the low flow rate branch. This expected critical flow rates for
the two- and three-dimensional cases are shown by arrows. (b) Data from two-dimensional simulations.
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✭�✁

✭✂✁ ✭✄✁

Figure 4: Grey lines: some trajectories of a❘ ❂ ✵✿✻✼ particle when◗✶☎◗✆ ❂ ✵✿✷ for (a) branches of equal
widths, (b) daughter branches 2.5 times wider than the inletbranch and (c) daughter branches 7.5 times wider
than the inlet branch. The unperturbed fluid separating streamline starting at② ❂ ②❢ is shown in black. The
particle is shown approximatively at its stagnation point.

that the pressure drop is more important in the low flow rate region, so thatP✝ ❃ P✞. The authors call this effect
’daughter vessel obstruction’.
Indeed, it is not clear in this paper where the particles mustbe for this argument to be valid: at the entrance of
the bifurcation, in the middle of it, or close to the oppositewall as we could think since their arguments are
used to explain what happens in case of daughter branches of different widths. Indeed, we shall see that the
effects can be quite different according to this position and, furthermore, the notion of ’relatively larger part
intercepted’ is not the key phenomenon to understand the final attraction towards the low flow rate branch, even
though it clearly contributes to it.
To understand this, let us focus on the simulated trajectories starting around✟✠✡ shown on figure 4(a) (☛ ☞ ✌✍✎✏,
✑✞✒✑✡ ☞ ✌✍✓). These trajectories must be analysed in comparison with the unperturbed flow streamlines, in
particular the fluid separating streamline, starting at✟ ☞ ✟✔ and ending up against the front wall at a stagnation
point.
Particles starting around✟✠✡ ❁ ✟✔ show a clear attraction towards the low flow rate branch (displacement along
the✟ axis) as they enter the bifurcation. More precisely, there are three types of motions: for low initial position
✟✡ (in particular✟✡ ☞ ✌), particles go directly into the high flow rate branch. Similarly, above✟✠✡, the particles
go directly into the low flow rate branch. Between some✟✠✠✡ ❃ ✌ and✟✠✡, the particles first move towards the
low flow rate branch, but finally enter the high flow rate branch: the initial attraction towards the low flow rate
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branch becomes weaker and the particle eventually follows the streamlines entering the high flow rate branch.
Note that, at this level, there is still some net attraction towards the low flow rate branch: the particle stagnation
point near the opposite wall is still below the fluid separating streamline (that is, on the high flow rate side).
This two-step effect is even more visible when the width✷❛ of the daughter branches is increased, so that the
entrance of the bifurcation is far from the opposite wall, asshown on figures 4(b,c). The second attraction is, in
such a situation, more dramatic: for❛ ❂ ✼✿✺, the particle stagnation point is even on the other side of the fluid
separating streamline, that is, there is some attraction towards the high flow rate branch! Thus, there are clearly
two antagonistic effects along the trajectory. In the first case of branches of equal widths, where the opposite
wall is close to the bifurcation entrance, the second attraction towards the high flow rate branch coexists with
the attraction towards the low flow rate branch and finally only diminishes it.

These two effects occur in two very different situations. Atthe entrance of the channel, an attraction effect
must be understood in terms of streamlines crossing: does a pressure difference build up orthogonally to the
main flow direction? Near the opposite wall, the flow is directed towards the branches and being attracted means
flowing up- or downstream. In both cases, in order to discuss whether some pressure difference builds up or not,
the main feature is that, in a two-dimensional Stokes flow between two parallel walls, the pressure difference
between two points along the flow direction scales like✁P ✴ ◗�❤✸, where◗ is the flow rate and❤ the dis-
tance between the two walls. This scaling is sufficient to discuss in a first order approach the two effects at stake.

The second effect is the simplest one: indeed, the sphere is placed in a quasi-elongational, but asymmetric, flow.
As shown on figure 5(b), around the flow stagnation point, the particle movement is basically controlled by the
pressure differenceP ✵✂ ✄ P ✵✶, than can be written✭P ✵☎ ✄ P ✵✶✮ ✄ ✭P ✵☎ ✄ P ✵✂✮. Focusing on the② component of the
velocity field, which becomes all the more important as❛ is larger than 1, we haveP ✵☎ ✄ P ✵✐ ✴ ◗✐�✭❛ ✄ ❘✮✸.
Around the flow stagnation point, the pressure differenceP ✵✂ ✄ P ✵✶ has then the same sign as◗✶ ✄ ◗✂ and
is thus negative, which indicates attraction towards the high flow rate branch. For wide daughter branches,
when this effect is not screened by the first one, this impliesthat the stagnation point for particles is above the
fluid separating line, as seen on figure 4(c). The argument that we use here is similar to the one introduced by
Fung [10,39] but resolves only one part of the problem. Following these authors, it can also be pointed out that
the shear stress on the sphere is non zero: in a two-dimensional Poiseuille flow of width❤, the shear rate near a
wall scales as◗�❤✂, so the net shear stress on the sphere is directed towards thehigh flow rate branch, making
the sphere roll along the opposite wall towards this branch.
Finally, this situation is similar to the one of a flow around an obstacle, that was considered in ref. [40] as a
model situation to understand what happens at the bifurcation. Indeed, the authors find that spheres are attracted
towards the high velocity side of the obstacle. However, we show here that this modeling is misleading, as it
neglects the first effect, which is the one which eventually governs the net effect.

This first effect leads to an attraction towards the low flow rate branch. To understand this, let us consider a
sphere located in the bifurcation with transverse position②☎ ❂ ②❢ . The exact calculation of the flow around it
is much too complicated, and simplifications are needed. Just as we considered the large❛ case to understand
the second mechanism eventually leading to attraction towards the high flow rate branch, let us consider the
small❛ limit to understand the first effect: as soon as the ball enters the bifurcation, it hits the front wall. On
each side, we can write in a first approximation that the flow rate between the sphere and the wall scales as
◗ ✴ ✁P❤✸, where✁P ❂ P☎ ✄P✐ is the pressure difference between the back and the front of the sphere, and
❤ the distance between the sphere and the wall (see figure 5a).
Since the ball touches the front wall, the flow rate◗ is either◗✶ or◗✂ and is, by definition of②❢ , the integral
of the unperturbed Poiseuille flow velocity between the walland the② ❂ ②❢ line, so◗ ✴ ⑦❤✂ ✄ ⑦❤✸�✆, where
⑦❤ ❂ ✝ ✞ ②❢ (see figure 5(a) for notations).
We have then, on each side:

✁P ✴

⑦❤✂ ✄ ⑦❤✸�✆

❤✸
✿ (27)

To make the things clear, let us consider then the extreme case of a flat particle:❤ ❂ ⑦❤. Then✁P ✴ ✝�⑦❤✄✝�✆

is a decreasing function of⑦❤, that is, a decreasing function of◗. Therefore, the pressure drop is more important
on the low flow rate side, and finallyP✶ ❁ P✂: there is an attraction towards the low flow rate branch. Thisis
exactly the opposite result from the simple view claiming that there is some attraction towards the high flow rate
branch since✁P scales as◗�❤✸ so as◗. Since one has to discuss what happens for a sphere in the vicinity of
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✭�✮✭✁✮

Figure 5: Scheme of the geometry considered for the two effects occurring in the bifurcation. (a) Entrance of
the bifurcation: attraction towards the low flow rate branch(P✶ ❁ P✷). (b) opposite wall: attraction towards the
high flow rate branch (P ✵✶ ❃ P ✵✷).

the separating line,◗ and⑦❤ are not independent. This is the key argument. Note finally that there is no need for
some obstruction arguments to build up a different pressuredifference on each side. It only increases the effect
since the function⑦❤ ✼✂ ✄⑦❤☎ ✆ ⑦❤✸❂✝✞❂✄⑦❤ ✆ ❘✞✸ decreases faster than the function⑦❤ ✼✂ ✄⑦❤☎ ✆ ⑦❤✸❂✝✞❂⑦❤✸. One
can be even more precise and take into account the variationsin the gap thickness as the fluid flows between the
sphere to calculate the pressure drop by lubrication theory. Still, it is found that✟✠ is a decreasing function of
⑦❤.

In the more realistic case❛ ✬ ✡, the flow repartition becomes more complex, and the particlevelocity along the
① axis is not zero. Yet, as it is reaching a low velocity area (the velocity along① axis of the streamline starting
at ②❢ drops to 0), its velocity is lower than its velocity at the same position in a straight channel. In addition, as
the flow velocities between the sphere and the opposite wall are low, and since the fluid located e. g. between②❢

and the top wall will eventually enter the top branch by definition, we can assume it will mainly flow between
the sphere and the top wall. Note this is not true in a straightchannel: there are no reasons for the fluid located
between one wall and the② ☛ ②☞ line, where②☞ is the sphere lateral position, to enter completely, or to bethe
only fluid to enter, between the wall and the particle. Therefore, we can assume that the arguments proposed to
explain the attraction towards the low flow rate branch remain valid, even though the net effect will be weaker.
Note finally that, contrary to what discussed for the second effect, the particle rotation probably plays a minor
role here, as in this geometry the shear stress exerted by thefluid on the particle will mainly result in a force
acting parallel to the① axis.

Finally, this separation into two effects can be used to discuss a scenario for bifurcations with channels of
different widths: if the inlet channel is broadened, the first effect becomes less strong while the second one is
not modified, which results in a weaker attraction towards the low flow rate branch. If the outlet channels are
broadened, as in figures 4(b,c), it becomes more subtle. Let us start again by the second effect (migration up-
or downstream) before the first effect (transverse migration). As seen on figure 4, the position of the particle
stagnation point (relatively to the flow separating line) isan increasing function of❛, so the second effect is
favoured by the broadening of the outlets: for❛ ✂ ✌, we end up with the problem of flow around an obstacle,
while for small❛, one cannot write that the width of the gap between the ball and the wall is just❛ ✆ ❘,
therefore independent from◗✐, as it also depends on the② position of the particle relatively to②✍☞. In other
words, in such a situation, the second effect is screened by the first effect. On the other hand, as❛ increases,
the distance available for transverse migration becomes larger, which could favour the first effect, although the
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❘ 0 0.25 0.42 0.48 0.53 0.60 0.67 0.71 0.80

☛ 0 -0.96 -3.45 -4.77 -6.33 -9.52 -11.6 -12.6 �

☞ -1 -0.85 -0.65 -0.70 -0.64 -0.61 -0.71 -0.73 �

✌ 1 0.96 0.91 0.89 0.87 0.84 0.81 0.79 0.75

✘ � -1.35 -1.25 -1.17 -1.09 -1.01 -0.90 -0.81 �

Table 1: Values for the fitting parameters✭✁❀ ✂❀ ✄✮ for the longitudinal velocity✉☎
①✭②✵✮ ❂ ✁②✹

✵ ✰ ✂②✷
✵ ✰ ✄ of

a two-dimensional sphere of radius✆ in a Poiseuille flow of imposed velocity at infinity✉①✭②✮ ❂ ✶ ✝ ②✷; for
✆ ❂ ✞✿✽✞, the velocity profile is too flat to be reasonably fitted by a 3-parameter law. All velocities are equal to
✞✿✼✺ ✟ ✞✿✞✞✺ in the explored interval②✵ ✠ ❬✝✞✿✶✺✡ ✞✿✶✺❪. We also give the values for the fitting parameter✍ of
the linear relationship between particle separating line position②☎

✵ and flow rate ratios:②☎
✵ ❂ ✍✎✭◗✏✑◗✵✝✶✑✒✮.

For ✆ ❂ ✞✿✽, the strong confinement leads to numerical problems as the sphere approaches the walls.

slow down of the particle at the entrance of the bifurcation becomes less pronounced.
Finally, it appears to be difficult to predict the consequences of an outlet broadening: for instance, in our two-
dimensional simulations presented in figure 4 (❘ ✓ ✔✕✻✖, ✗✙✚✗✛ ✓ ✔✕✜), ✢✣

✛ varies from 0.27 when the outlet
half-width ❛ is equal to 1, to 0.31 when❛ is equal to 2.5 and drops down to 0.22 for❛ ✓ ✖✕✤! Note that the net
effect is always an attraction towards the low flow rate branch (✢✣

✛ ❁ ✢❢ ).
For daughter branches of different widths, it was illustrated in ref. [11] that the narrower branch is favoured.
This can be explained through the second effect (see figure 5b): the pressure dropP ✥

✛ � P ✥
✐ ✴ ✗✐✚✦❛ � ❘✧✸

increases when the channel width decreases, which favours the narrower branch even in case of equal flow rates
between the branches.

3.2 The consequences on the final distribution

As there is some attraction towards the low flow rate branch, we could expect some enrichment of the low flow
rate branch. However, as already discussed, even in the mostuniform situation, the presence of a free layer near
the walls will favour the high flow rate branch. We discuss now, through our simulations, the final distribution
that results from these two antagonistic effects.
In order to compute the final splitting◆✙✚◆✛ of the incoming particles as a function of flow rate ratio✗✙✚✗✛

one needs to know, according to equation (1), the position✢✣
✛ of the particle separating line and the velocity★✣

✩
of the particles in the inlet channel. From figure 3 we see that✢✣

✛ depends roughly linearly on✦✗✙✚✗✛ � ✪✚✜✧,
so we will consider a linear fit of the calculated data in orderto get values for all✗✙✚✗✛. The longitudinal
velocity ★✣

✩ was computed for all studied particles as a function of transverse position✢✛. The function★✣
✩✦✢✛✧

is well described by a quartic function★✣
✩✦✢✛✧ ✓ ☛✢✫

✛ ✬ ☞✢✯
✛ ✬ ✌, which is an approximation also used in

ref. [11] (data not shown). Values for the fitting parametersfor this velocity profile and for the linear relationship
✢

✣
✛ ✓ ✘ ✱ ✦✗✙✚✗✛ � ✪✚✜✧ are given in table 1.

The evolution of◆✙✚◆✛ as a function of✗✙✚✗✛ for two-dimensional rigid spheres is shown on figure 6 for
two representative radii. By symmetry, considering✗✙ ❁ ✗✯ is sufficient. In order to discuss the enrichment
in particles in the high flow rate branch (branch 2 then), it isalso convenient to consider directly the volume
fraction variation✲✯✚✲✛ ✓ ✦◆✯✚✗✯✧✚✦◆✛✚✗✛✧.
When✗✙✚✗✛ ✓ ✪✚✜, the particles flow splits equally into the two branches:◆✙ ✓ ◆✛ and ✲✯ ✓ ✲✛. For
all explored sizes of spheres, when the flow rate in branch 1 decreases, there is an enrichment in particles in
branch 2, which is precisely the Zweifach-Fung effect:◆✙✚◆✛ ❁ ✗✙✚✗✛ or ✲✯✚✲✛ ❃ ✪. Then, even in the most
homogeneous case, the attraction towards the low flow rate branch is not strong enough to counterbalance the
depletion effect that favours the high flow rate branch. However, this attraction effect cannot be considered as
negligible, in particular for large particles: while, in case the particles follow their underlying fluid streamline,
the maximum enrichment in the high flow rate branch would be around ✳✔✾ for ❘ ✓ ✔✕✖✪, it drops down
to less than✪✖✾ in reality. Similarly, the critical flow rate ratio✗✙✚✗✛ below which no particle enters into
branch 1 is greatly shifted: from around✔✕✜❄ to around✔✕✪✤ for ❘ ✓ ✔✕✖✪. For smaller spheres (❘ ✓ ✔✕✳✜),
this asymmetry in the distribution between the two branchesis weak: while the maximum enrichment in the
high flow rate branch would be around✪✤✾ in a no-attraction case, it drops to less than❅✾ due to the attraction
towards the low flow rate branch.
When the flow✗✙ is equal to zero or✗✛✚✜, ✲✯ is equal to✲✛; thus there is a maximal enrichment for some
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Figure 6: Full lines: spheres relative distribution✢✣❂✢✤ and volume fraction✦✷❂✦✤ as a function of flow rate
distribution✧✣❂✧✤ from our two-dimensional simulations for two representative radii❘ ★ ✩✿✹✪ and❘ ★ ✩✿✼✫.
The curves are straightforwardly derived from equations (1) and 2 and computed values of②✬✤ and✉✬① (table
1). The results are compared with the hypothesis where the particles would follow the streamlines (②✬✤ ★ ②❢ )
(dashed lines).

flow rate ratio between 0 and 1/2. The increase in✭✮ with the decrease of✯✰ (right part of the curves of
figure 6) is mainly due to the decrease of the relative importance of the free layer near the wall on the side of
branch 2. Two mechanisms are responsible for the decrease of✭✮ when✯✰ decreases (left part of the curves
of figure 6): first, when no particle can enter the low flow rate branch because its hypothetical separation line
✱✲✳ is above its maximum position✸ ✺ ✻, then the high flow rate branch receives only additional solvent when
✯✰✽✯✳ decreases and its particles are more diluted. Then all curves fall down on the same curve✭✮✽✭✳ ✾
✸✽❀✸ ✺ ✯✰✽✯✳❁ corresponding to❃✰ ✾ ❄ (or ❃✮ ✾ ❃✳), which results in a sharp variation as✯✰✽✯✳ goes
trough the critical flow rate ratio. A smoother mechanism is also to be taken into account here, as it is finally the
one that determines the maximum for smaller✻. As✯✰✽✯✳ decreases, branch 2 recruits fluid and particles that
are closer and closer to the opposite wall. As the discrepancy between the flow and particle velocities increases
near the walls,❃✮ increases less than✯✮: the resulting concentration in branch 2 finally decreases.
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Finally, for applicative purposes, the consequences of theattraction towards the low flow rate branch are
twofold: if one wishes to obtain a particle-free fluid (e.g. plasma without red blood cells), one has to set◗✶ low
enough so that◆✶ ❂ ✵. Due to attraction towards the low flow rate branch, this critical flow rate is decreased
and the efficiency of the process is lowered. If one prefers toconcentrate particles, then one must find the
maximum of the✟✷�✟✁ curve. This maximum is lowered and shifted by the attractiontowards the low flow
rate branch (see figure 6). Note that for small spheres (e.g.❘ ❂ ✵✿✹✂) the position of the maximum does not
correspond to the point where◆✶ vanishes; in addition, the shift direction of the maximum position depends
on the spheres size: while it shifts to lower◗✶�◗✁ values for❘ ❂ ✵✿✼✄, it shifts to higher values for❘ ❂ ✵✿✹✂.

The choice of the geometry, within our symmetric frame, can also greatly modify the efficiency of a
device. Since the depletion effect eventually governs the final distribution, narrowing the inlet channel is the
first requirement. On the other hand, it also increases the attraction towards the low flow rate branch, but one
can try to diminish it. As discussed in the preceding section, this can be done by widening reasonably the
daughter branches. For instance, if their half-width is not1 but 2.5, as in figure 4(b), the slope✘ in the law
②☎✁ ❂ ✘ ✆ ✭◗✶�◗✁ ✝ ✄�✂✮ increases by around✄✺✪ for ❘ ❂ ✵✿✻✼. The critical◗✶�◗✁ below which no particle
enters the low flow rate branch increases from 0.13 to 0.19, which is good for fluid-particle separation, and
the maximum enrichment✟✷�✟✁ that can be reached is✂✂✪ instead of✄✺✪. Alternatively, since the attraction
is higher in two dimensions than in three, we can also infer that considering thicker channels, which does not
modify the depletion effect, can greatly improve the final result. Note that this conclusion would have been
completely different in case of high flow rate branch enrichment due to some attraction towards it, as claimed
in some papers: in such a case, confining as much as possible would have been required, as it increases all kinds
of cross-streamline drifts.

4. CONCLUSION

In this paper, we have focused explicitly on the existence and direction of some cross streamline drift of particles
in the vicinity of a bifurcation with different flow rates in the daughter branches.
The first direct experimental proof of attraction towards the low flow rate branch was shown and arguments
for this attraction were given with the help of two-dimensional simulations. In particular, we showed that this
attraction is the result of two antagonistic effects: the first one, that takes place at the entrance of the bifurcation,
induces migration towards the low flow rate branch, while thesecond one takes place near the stagnation point
and induces migration towards the high flow rate branch but isnot strong enough, in standard configurations of
branches of comparable sizes, to counterbalance the first effect.
This second effect is the only one that was previously considered in most papers of the literature, which has
lead to the misleading idea that the enrichment in particlesin the high flow rate branch is due to some attraction
towards it. On the contrary, it had been argued by Barberet al. that there should be some attraction towards
the low flow rate branch. By distinguishing the two effects mentioned above, we have tried to clarify their
statements.
In a second step, we have discussed the consequences of such an attraction on the final distribution of particles.
It appears that the attraction is not strong enough, even in atwo-dimensional system where it is stronger, to
counterbalance the impact of the depletion effect. Even in the most homogeneous case where the particles are
equally distributed across the channel but cannot approachthe wall closer than their radius, the existence of a
free layer near the walls favours the high flow rate branch, which eventually receives more particles than fluid.
However, these two antagonistic phenomena are of comparable importance, and none can be neglected: the
particle volume fraction increase in the high flow rate branch is typically divided by two because of the attraction
effect. On the other hand, the initial distribution is a key parameter for the prediction of the final splitting. For
deformable particles, initial lateral migration can induce a narrowing of their distribution, which will eventually
favours the high flow rate branch. For instance, in [11], the authors had to adjust the free layer width in their
simulations in order to fit experimental data on blood flow. Onthe other hand, in a network of bifurcations, the
initially centered particles will find themselves close to one wall after the first bifurcation, which can favour a
low flow rate branch in a second bifurcation.
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