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ABSTRACT

The problem of the splitting of a suspension in bifurcatihgrmnels dividing into two branches of non equal flow rates is
addressed. As observed for long, in particular in blood fltwdies, the volume fraction of particles generally incresis
in the high flow rate branch and decreases in the other one.dflesfhere on the possibility of an attraction of the
particles towards one branch through microfluidic expetiseand two-dimensional simulations and show that it is
directed towards the low flow rate branch. The enrichmentrtiples in the high flow rate branch is shown to be mainly
a consequence of the initial distribution in the inlet branahich shows necessarily some depletion near the walls.

1. INTRODUCTION

When a suspension of particles reaches an asymmetric dilomng it is well-known that the particles volume
fractions in the two daughter branches are not equal; dbsita branches of comparable geometrical char-
acteristics, but receiving different flow rates, the volufraetion in particles increases in the high flow rate
branch. This phenomenon, sometimes called Zweifach-Fifegtdl, 2], has been observed for long in the
blood circulation. Under standard physiological circuanstes, a branch receiving typically one fourth of the
blood inflow will see its hematocrit (volume fraction of retbbd cells) drop down to zero, which will have
obvious physiological consequences.

Apart the huge number of in-vivo studies on blood flow (see[B}ffor a review), many other papers have
been devoted to this effect, either to understand it, orédtus order to engineer sorting or purification devices.
In the latter case, one can play at will with the differentgmaeters characterizing the bifurcation (widths of
the channels, relative angles of the branches), in orderaichra maximum of efficiency. As proposed in many
papers, focusing on plain spheres can already give somedkeyslerstand or control this phenomenon [4-11].
In-vitro behavior of red blood cells has also attracted sattention [10,12-17].

All the latter papers consider the low-Reynolds-numbeitjimhich is the relevant limit for applicative

purposes and for the biological systems of interest. Thegethis limit is also considered throughout this paper.

In most studies as well as in in vivo blood flow studies, whioh far historical reasons the main sources
of data, the main output is the particle volume fraction i@ tivo daughter branches as a function of the flow
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Figure 1. (a) The two Y-shaped geometries mainly studied in thedttee. Here); < Q- and the dashed
line stands for the separating streamline between the flbatswill eventually enter branches 1 and 2 in the
absence of particles. (b) The T-bifurcation that is studlietthis paper and also in ref. [5] in order to get rid of
geometrical effects as much as possible.

rate ratio between them. Such data can be well described birieah laws that still depend on some ad-hoc
parameters but allow some rough predictions [12,13, 18[ghave been exhaustively compared recently [19].
On the other hand, measuring macroscopic data such as vilactiens does not allow to identify the relevant

parameters and effects involved in this asymmetric paniitig phenomenon.

For a given bifurcation geometry and a given flow rate ratitwieen the two outlet branches, the final
distribution of the particles can be straightforwardlyided from two data: first, their spatial distribution in the
inlet; second, their trajectories in the vicinity of thediation, starting from all possible initial positionsthie
particles follow their underlying unperturbed streamdirfas would a sphere do in a Stokes flow in a straight
channel), their final distribution can be easily computdthoaigh particles near the apex of the bifurcation
require some specific treatment, since they cannot appibasimuch as their underlying streamline does.
The relevant physical question in this problem is thus taotifie the hydrodynamic phenomenon at the bifur-
cation that would make flowing objects escape from their yihg streamlines, which would have as a con-
sequence that a large particle would be driven towards arechrwhile a tiny fluid particle located at the same
position would go to the other branch.

The radial distribution in the inlet channel obviously #ag key role also: in an extreme case where all
the particles are centered in the inlet channel and follavuhderlying fluid streamline, they all enter in the
high flow rate branch; more generally the existence of a fagerlnear the walls favours the high flow rate
branch, since the depletion in particles it entails is nedfit more important for the low flow rate branch, which
receives fluid that occupied less place in the inlet brantie 8xistence of such a particle free layer near the
wall has been observed for long in blood circulation. Moreagally, it can be due to lateral migration towards
the centre, which can be of inertial origin (high Reynoldsniver regime) [20—24], or viscous one. In such
a situation of low Reynolds number flow, while a sphere dodsmigrate transversally due to symmetry and
linearity in the Stokes equation, deformable objects schesicles (closed lipid membranes) [25], red blood
cells [26, 27] that exhibit similar dynamics as vesicles, P9, drops [30, 31] or elastic capsules [26, 27, 32],
might adopt a shape that allows lateral migration. This atign is due to the presence of walls [33—35] as well
as to the non-constant shear rate [36, 37]. Even in the caseewlo migration occurs, the initial distribution is
still not homogeneous: since the barycentre of particlenaibe closer to the wall than their radius, there is
always some particle free layer near the walls. This sokcefill favour the high flow rate branch.
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As we want to focus in this paper on the question of crosssiiira migration in the vicinity of the bifur-
cation, we will consider rigid spheres, for which no tranmseemigration in the upstream channel is expected,
that are in the vanishing concentration limit and flow thtowgsymmetric bifurcation, that is the T-shaped
bifurcation shown on figure 1(b), where the two daughter tinas have same cross section and are equally
distributed relatively to the inlet channel.

In the literature, the most common symmetric case that isidered is the Y-shaped bifurcation with
daughter branches leaving the bifurcation with5& angle relatively to the inlet channel, and cross sections
identical as the one of the inlet channel (figure 1a) [6—1hE T-shaped bifurcation (figure 1b) has attracted
little attention [5, 38]. All studies but ref. [38] show rd&ufor rigid spherical particles, while some results for
deformable particles are given in refs. [11, 38]. In all thigdr papers, although the authors are sometimes con-
scious that the depletion and attraction effects mightesceach other, the relative weight of each phenomenon
is not really discussed. However, Yaagal.[10] consider explicitly that there must be soaté&action towards
the high flow rate branctand give some qualitative arguments for it. This opiniontiatly introduced by
Fung [2, 38, 39], is widely spread in the literature [15, 40, 4Ve shall come back to the underlying arguments
in the following.

Explicit data on a possible attraction towards one branetsearce as they can only be found in a recent
two-dimensional simulations paper [11]. The authord preese simulation of two-dimensional spheres with
R < 0.67 and two-dimensional deformable objects mimicking red Bloells in a symmetric Y-shaped bifur-
cation. For spheres, it is shown that there istiraction towards the low flow rate brancwhich increases with
R. Deformable particles are also considered. However, ibigpossible to discuss from their data (as, probably,
from any other data) whether the cross streamline migrattathe bifurcation is more important in this case
or not: for deformable particles, transverse migrationaxg the centre occurs, due to the presence of walls
and of non homogeneous shear rates. This migration willgiiybscreen the attraction effect, at least partly,
and it seems difficult to quantify the relative contributiofboth effects. It appears finally that there should be
some attraction towards the low flow rate branch, althougHittal result is an enrichment of the high flow rate
branch due to the depletion effect in the inlet channel. @notihher hand, if one considers the flow around an
obstacle, as simulated in ref. [40], it seems that sphepiagicles are attracted towards the high flow rate side.
Moreover, to date, no direct experimental proof of any atiom phenomenon exists. In section 3.1, we show
experimentally that attraction towards the low flow ratenotatakes place and confirm this through numerical
simulations.

It is then necessary to discuss whether this attractionrhpsriant consequences on the final distributions in
particles in the two daughter channels. This was not donkcitipin the work by Barberet al.[11]. It is done

in section 3.2 where we discuss the relative weight of thaetion towards the low flow rate branch and the
depletion effect, which have opposite consequences, Ing wsir simulations.

Before presenting our data, we shall introduce useful mmotat(see figure 1(b)).

The half-width of the inlet branch is set as the length scatb@problem. The inlet channel divides into
two branches of widtRa (the caser = 1 will be mainly considered here by default, unless othensiséed),
and spheres of radiuB < 1 are considered. The flow rate at the inlet is nofggd and @, and Q- are the
flow rates at the upper and lower outletg,(= Q1 + Q2). In the absence of particles, all the fluid particles
situated initially above the ling = y; will eventually enter branch 1. This line is called the (uripebed)
fluid separating streamlingy is the initial transverse position of the considered plrtiar before it reaches
the bifurcation [yo| < 1 — R). N1 and N, are the numbers of particles entering branches 1 and 2 byineit
while Ny = N; + N5 have entered the inlet channel. The volume fractions in thedhes ar@; = V N;/Q;,
where V is the volume of a patrticle.

With these notations, we can reformulate our questiop; i 3, does the particle experience a net force in
they direction (e. g. a pressure difference) that would pushwiatds one of the branches, while a fluid particle
would remain on the separating streamline (by definitiop 9 If so, for which positiony; does this pressure
difference vanish, so that the particle follows the stréaesl and eventually hits the opposite wall and reaches
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an (unstable) equilibrium position? d§; < @2 andy; < vy, then one will talk abouattraction towards the
low flow rate branch
Following these notations, we have:

1
n(y)uy(y)dy, (1)

||
— O%

y)dy, 2)

=
@],

wheren(y) is the mean density in particles at heighin inlet branchu’ andu, are respectively the particles
and flow longitudinal upstream velocitie¥, andQ), are given by the same formula witlj = vy = —1.

The Zweifach-Fung effect can then be written as follows){f/Qo < 1/2 (branch 1 receives less flow than
branch 2) thenV; /Ny < Q1/Qo (branch 1 receives even less particles than fluid) or eqgritigi®; < @ (the
particle concentration is decreased in the low flow rate ditan

2. METHOD
2.1 Experimental setup

We studied the behaviour of hard balls as a first referendersysSince the potential migration across stream-
lines is linked to the way the fluid acts on the particles, vee atudied spherical fluid vesicles. They are closed
lipid membranes enclosing a Newtonian fluid. The lipids thatused are in liquid phase at room temperature,
so that the membrane is a two-dimensional fluid. In particutias incompressible (so that spherical vesicles
will remain spherical even under stress, unlike drops),itisteasily sheared: it entails that a torque exerted
by the fluid on the surface of the particle can imply a diffénezsponse whether it is a solid ball or a vesicle.
Moreover, since vesicle suspensions are polydisperseaitonvenient way to vary the radiisof the studied
object.

The experimental setup is a standard microfluidic chip mdgmlydimethylsiloxane bonded on a glass plate
(figure 2). We wish to observe what happens to an object Idcateund positiory; that is, in branch which
branch it goes at the bifurcation. In order to determine theespondingy;, we need to scan different initial
positions around;;. One solution would be to let a suspension flow and hope thmesaf the particles will

be close enough to the region of interest. In the meantimeeashall see, the cross streamline effect is weak
and requires precise measurement, and noticeable effgmaionly at high radiug, typically R > 0.5. With
such objects, clogging is unavoidable, which would modiky low rates ratio, and if a very dilute suspension
is used, it is likely that the region of interest will only gigirbe scanned.

Therefore we designed a microfluidic system allowing to usky one particle, that would go through the
bifurcation with a controlled initial position,, would be taken back, its positiga modified, would flow again

in the bifurcation, and so on. Moreover, we allowed contumsimodification of the flow rate ratio between the
two daughter branches. The core of the chip is the five braradsmad shown in inset on figure 2. These five
branches have different lengths and are linked to resarptaiced at different heights, in order to induce a flow
by hydrostatic pressure gradient. A focusing device (dramse,b andc) is placed before the bifurcation of
interest (branches 1 and 2), in order to control the latevaitipn of the particle. Particles are initially located
in the central branch, where the flow is weak and the incoming particles are pindfeteleen the two lateral
flows. In order to modify the position, of the particle, the relative heights of the reservoir litike the
lateral branches are modified. The total flow rate and the flies ratios between the two daughter branches
after the bifurcation are controlled by varying the heigtitshe two outlet reservoirs. Note the flow rates ratio
also depends on the heights of the reservoirs linked to mketiches:, b andc. Since the two latter must be
continuously modified to vary the positigjg of the incoming particle in order to fing; for a given flow rate
ratio, it is convenient to place them on a pulley so that the#an height is always constant (the resistances
of branches andc being equal). If the total flow rate is a relevant parametdri¢tvis not be the case here
since we consider only Stokes flow of particles that do nobwef, one can do the same with the two outlet
reservoirs. In such a situation, if reservoir of brancls placed at height 0, reservoirs of branchemndc at
heights+hg, and reservoirs of branches 1 and 2 at height+h and— H — h, the flow rate ratio is governed by
setting(h, H) andh can be modified independently in order to congi@l Once the particle has gone through
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Figure 2: Scheme of the microfluidic device. The photograph showdrtjectory of a particle from branah
to branch 1 after having been focused on a given streamlarkthto flows from lateral branchésindc.

the bifurcation, heighf/ and the height of reservoir are modified so that the particle comes back to branch
a, andhg is modified in order to get closer and closer to positignQ):/Qo (or, equivalentlyy ) is a function

of H, h, and the flow resistances of the five branches of rectangrdas sections, which are known functions
of their lengths, widths and thicknesses [42]. The accudddiie calculation of this function was checked by
measuringy; for small particles, that must be equahte

Note that the length of the channel is much more importarri tha size of a single flowing particle, so that
we can neglect the contribution of the latter in the resistato the flow: hence, even though we control the
pressures, we can consider that we work at fixed flow rates.

At the bifurcation level, channels widths are all equabt+ 0.2um. Their thickness i$1 + 0.3um.
We used polystyrene balls of maximum radiigs5 + 0.3 um in soapy water (therefor® < 0.71) and fluid
vesicles of sizer < 0.60. Vesicles membrane is a dioleoylphosphatidylcholinallilayer enclosing an inner
solution of sugar (sucrose or glucose) in water. Vesiclegpanduced following the standard electroformation
method [43]. Maximum flow velocity at the bifurcation levelw around 1 mm:3, so that the Reynolds
number Re~ 10~ 1.

2.2 The numerical model

Our problem is a simple fluid/structure interaction one aal lbte modeled by Navier-Stokes equations for the
fluid flow and Newton-Euler equations for the sphere. Thesepgmeblems can be coupled in a simple manner:
¢ The action of fluid on the sphere is modeled by the hydrodyodance and torque acting on its surface.
They are used as the right hand sides of Newton-Euler eaqsatio
¢ The action of the sphere on fluid can be modeled by a non-stipdery conditions on the sphere (in the
Navier-Stokes equations).
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However, this explicit coupling can be unstable numencaltd its resolution often requires very small time
steps. In addition, as we have chosen to use finite elememiocheEM (for accuracy reasons) and since the
position of the sphere evolves in time we have to remesh tirpatational domain at each time step or in best
cases at each few time steps.

For all these reasons we chose another strategy to modetahlem. Instead of using Newton-Euler equations
for modeling the sphere motion and Navier-Stokes equafmrtie fluid flow, we use only the Stokes equations
in the whole domain of the bifurcation (including the interof the sphere). The use of Stokes equations is
justified by the small Reynolds number in our case and theepoesof the sphere is rendered by a second fluid
with a 'huge’ viscosity on which we impose a rigid body coastt. This type of strategy is widely used in
the literature with different names e.g. the so called FPDigRParticle Dynamics) method [44, 45]) but we
can group them under the generic name of penalty-like methiite one that we use is mainly developed by
Lefebvreet al.[46,47] and we can find a mathematical analysis of these typegthods in ref. [48].

In what follows we describe briefly the basic ingredientsha finite element method and penalty technique
applied to our problem.

The fluid flow is governed by Stokes equations that can beemrdis follow:

—vAu+ Vp=0inQy, 3
V-u=0inQy, 4)
u=fondQ;. 5)

Where:

e v, u andp are respectively the viscosity, the velocity and the pnestalds of the fluid,

e () is the domain occupied by the fluid. Typically; = 2\ B if we denote by the whole bifurcation

and byB the rigid patrticle,

e 0Q; is the border of2;,

e f is some given function for the boundary conditions.
It is known that under some reasonable assumptions thegonog8)-(4)-(5) has a unique solutidm, p) €
H'(Q7)% x LE(S27) [49]. In the sequel we will use the following functional spac

LX) ={f:Q— R;/ |f|? < 400}, (6)
Q

L3(@) = {f € LX(): /Q f=0} @)

HY Q) ={f € L*(Q);Vf € L*(Q)}, (8)

HY(Q) = {f € HY(Q); f =00nd0}. 9)

As we will useFEM for the numerical resolution of problem (3)-(4)-(5), we dee rewrite it in a variational
form (an equivalent formulation of the initial problem).ifsake of simplicity, we start by writing it in a standard
way (fluid without sphere), then we modify it using penaltghrique to take into account the presence of the
particle. In what follow we describe briefly these two methothe standard variational formulation for the
Stokes problem and the penalty technique.

2.2.1 Variational formulation

Let us first recall the deformation tensowhich will be useful in the sequel
1
7(u) = 3 (Vu+ (Vu)'). (10)
Thanks to incompressibility constraiRt - u = 0 we have
Au =2V -71(u). (11)
Hence, the problem (3)-(4)-(5) can be rewritten as follofisd (u, p) € H'(25)? x L3(y) such that:

—2vV -1(u)+Vp=0iny, 12)
V-ou=0inQy, (13)
u=fonofy. (14)
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By simple calculations we show that problem (12)-(13)-(@4quivalent to this one: finda, p) € H'(27)? x
L3($2) such that:

21// T(u): 7(v) — / pV v =0,Yv € Hy(S)?, (15)
Qf Qf
/ qV -u=0,Yqg € Lj(y), (16)
Jay
u = fondQy, a7

where: denotes the double contraction.
2.2.2 Penalty method

We chose to use the penalty strategy in the framewofkEdN that we will describe briefly here (see [46, 47]
for more detalils).

The first step consists in rewriting the variational forntigia (15)-(16)-(17) by replacing the integrals over the
real domain occupied by the fluil¢ = Q \ B) by those over the whole domaéh (including the spherés).
Which means that we extend the solutian p) to the whole domaiif2. More precisely, by the penalty method
we replace the particle by an artificial fluid with huge visgpsThis is made possible by imposing a rigid
body motion constraint on the fluid that replaces the sphefe)(= 0 in B). Obviously, the divergence free
constraint is also insured iB.

The problem (15)-(16)-(16) is then modified as follows: fiadp) € H'(2)? x L3(Q) such that:

2
v ./Qr(u) cT(v) + B ./BT(LI) :7(v)
— / pV v =0,Yv € H}(Q)?, (18)
Q
/ qV-u=0,VYq € L3(Q), (19)
Q
u = f onofl. (20)

Wheres <« 1 is a given penalty parameter.

Finally, if we denote the time discretization parametet.by= ndt, the velocity and the pressure at timgby
(un, pn), the velocity of the sphere at tintg by V,, and its centre position bi,,, we can write our algorithm
as:

1
V,=——— n 21
Volume(B) /Bu (21)
Xn+1 = Xn + (575Vn (22)

(un+1 9 pn+1) SOIVeS

zy/QT(unH):T(v)+3/BT(un+l) (V)

9

— / 1V -v=0,Vv e H&(S2)2, (23)
Q

/ qV - u,1 = 0,Yq € LE(), (24)
JQ

u,4+1 = f onoxl. (25)

The implementation of algorithm (21)-(22)-(23)-(24)-J25 done by using a user-friendly finite element soft-
ware:Fr eef emt+ [50].

Finally, we consider the bifurcation geometry shown in fegli(b) and impose no-slip boundary conditions on
all walls and we prescribe parabolic velocity profiles atitiiets and outlets such that, for a given choice of
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flow rate ratio,Qy = Q1 + Q2. For a given initial position), of the sphere of given radiug at the outlet,
the full trajectory is calculated until it definitely enterae of the daughter branches. A dichotomy algorithm is
used to determine the key positigh. Spheres of radiug up t00.8 are considered.

In practice, the penalty technique may deteriorate thegmditionning of our underlying linear system. To
overcome this problem, one can regularize equation (24&pkacing it with this one:

—€0 / Pn+19 +/ qV Uy = 0,Vq € L(Q)(Q)v (26)
Q Q

wheresy < 1 is a given parameter.

3. RESULTS AND DISCUSSION
3.1 The cross streamline migration

3.1.1 The particle separating streamlines

In figure 3 we show the position of the particle separatingggnrelatively to the position of the fluid separating
line y; when branch 1 receives less fluid than branch 2 (see figurevhinh is the main result of this paper.
For all particles considered, in the simulations or in theegiments, we find that the particle separating line lies
below the fluid separating line, the upper branch being twdllmw rate branch. These results clearly indicate an
attraction towards the low flow rate branch: while a fluid edetnlocated below the fluid separating streamline
will enter into the high flow rate branch, a solid particle @aoss this streamline and enter into the low flow
rate branch, providing it is not too far initially. It is alstear that the attraction increases with the sphere radius
R.

In particular, in the experiments (figure 3a), particlesarfius R < 0.3 behave like fluid particlesk = 0.52
balls show a slight attraction towards the low flow rate bhanehile the effect is more marked for big balls
of radiusR = 0.71. Vesicles show comparable trend and it seems from our datadiid particles or vesicles
with fluid membrane behave similarly in the vicinity of thduytation.

In the simulations (figure 3b) we see clearly that for a givgnthe discrepancy between the fluid and par-
ticle behaviour increases whépy /@), decreases. On the contrary, in the quasi-two-dimensicexse of the
experiments, the difference between the flow and the paickamlines seems to be rather constant in a wide
range ofQ1/Qo values. Finally, for small enough values@f /Q,, the attraction effect is more pronounced in
the two-dimensional case than in the quasi-two-dimensione, as shown on figure 3(a) fét = 0.71. This
was to be expected, since this effect has something to dothdtmon zero size of the particle and the real
particle to channel size ratio is lower in the experimentsafgivenR, due to the third dimension. In all cases,
below a given value of);/Qo, the critical positiony; would enter the depletion zong > 1 — R, so that no
particle will eventually enter the low flow rate branch. Tteeresponding criticad); /Qo is much lower in the
two-dimensional case than in the experimental quasi-tingedsional situation (see figure 3a).

3.1.2 Discussion

The first argument for some attraction towards one branchinitgdly given by Fung [2, 38, 39] and strength-
ened by recent simulations [51]: a sphere in the middle obthecation is considered, = 0) and it is argued
that it should go to the high flow rate branch since the presdwp P, — P is higher thanP;, — P; because
Q2 > Q1 (see figure 1(b) for notations). This is true (we also foypd> 0 when@; < )2) but this is not the
point to be discussed: if one wishes to discuss the increagdume fraction in branch 2, therefore to compare
the particles and fluid fluxed’>s and@-, one needs to focus on particles in the vicinity of the fluigasating
streamline (to see whether or not they behave like the fluid)ret in the vicinity of the middle of the channel.
On the other hand, this misleading argument by Fung has légetadea that there must be some attraction
towards the high flow rate branch in the vicinity of the fluighamting streamline [10], which appears now in
the literature as a well established fact [15, 41].

In ref. [11], Fung’s argument is rejected, although it is explained why. Arguments for attraction towards the
low flow rate branch (that is» > P, on figure 1(b)) are given, considering particles in the vigiof the fluid
separating streamline. The authors’ main idea is, first,dbme pressure differendg — P; builds up on each
side of the particle because it goes more slowly than the.fltheén, as the particle intercepts a relatively more
important area in the low flow rate branch regign « y < 1) than in the high flow rate region, they consider
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(b)

Figure 3: Position of the particle separating ligg. The T-bifurcation with branches of equal widths is con-
sidered. Branch 1 receives flow from higlvalues, sa5 < y, for Q1/Qo < 1/2 indicates attraction towards
the low flow rate branch (see also figure 1b). (a) Data from igtwasdimensional experiments and compari-
son with two-dimensional case for one particle size. Thezbotal dotted line shows the maximum position
yo = 1 — Rfor R = 0.71 spheres. Its intersection with the cumyQ1/Q0) yields the critical flow rate ratio
Q1/Qo below which no particle enters branch 1, the low flow rate bhaihis expected critical flow rates for
the two- and three-dimensional cases are shown by arrop®atia from two-dimensional simulations.
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(a) (b) |

Yr

Figure 4: Grey lines: some trajectories of/a = 0.67 particle whenQ:/Qo = 0.2 for (a) branches of equal
widths, (b) daughter branches 2.5 times wider than the brktch and (c) daughter branches 7.5 times wider
than the inlet branch. The unperturbed fluid separatingstliee starting ayy = y; is shown in black. The
particle is shown approximatively at its stagnation point.

a="175

that the pressure drop is more important in the low flow ragéore so that?, > P;. The authors call this effect
'daughter vessel obstruction'.

Indeed, it is not clear in this paper where the particles rhador this argument to be valid: at the entrance of
the bifurcation, in the middle of it, or close to the oppositall as we could think since their arguments are
used to explain what happens in case of daughter brancheaffesédt widths. Indeed, we shall see that the
effects can be quite different according to this positiod,egnrthermore, the notion of ‘relatively larger part
intercepted’ is not the key phenomenon to understand thidfitnaction towards the low flow rate branch, even
though it clearly contributes to it.

To understand this, let us focus on the simulated trajed@tarting aroungl; shown on figure 4(a)i = 0.67,
Q1/Qo = 0.2). These trajectories must be analysed in comparison wétutiperturbed flow streamlines, in
particular the fluid separating streamline, starting at 7y, and ending up against the front wall at a stagnation
point.

Particles starting aroung}, < y, show a clear attraction towards the low flow rate branch (@esment along
they axis) as they enter the bifurcation. More precisely, theedlaree types of motions: for low initial position
yo (in particularyy = 0), particles go directly into the high flow rate branch. Sarly, abovey;, the particles
go directly into the low flow rate branch. Between sogjé > 0 andy;, the particles first move towards the
low flow rate branch, but finally enter the high flow rate brarttle initial attraction towards the low flow rate
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branch becomes weaker and the particle eventually followstreamlines entering the high flow rate branch.
Note that, at this level, there is still some net attractimmards the low flow rate branch: the particle stagnation
point near the opposite wall is still below the fluid separgtstreamline (that is, on the high flow rate side).
This two-step effect is even more visible when the wiglthof the daughter branches is increased, so that the
entrance of the bifurcation is far from the opposite wallshewn on figures 4(b,c). The second attraction is, in
such a situation, more dramatic: for= 7.5, the particle stagnation point is even on the other side eflthid
separating streamline, that is, there is some attractioartts the high flow rate branch! Thus, there are clearly
two antagonistic effects along the trajectory. In the fiestec of branches of equal widths, where the opposite
wall is close to the bifurcation entrance, the second attnad¢owards the high flow rate branch coexists with
the attraction towards the low flow rate branch and finallyatiininishes it.

These two effects occur in two very different situations.tié¢ entrance of the channel, an attraction effect
must be understood in terms of streamlines crossing: doessayre difference build up orthogonally to the
main flow direction? Near the opposite wall, the flow is dieglctowards the branches and being attracted means
flowing up- or downstream. In both cases, in order to discusster some pressure difference builds up or not,
the main feature is that, in a two-dimensional Stokes flowbeh two parallel walls, the pressure difference
between two points along the flow direction scales k& o« @Q/h3, where(Q is the flow rate and the dis-
tance between the two walls. This scaling is sufficient toulis in a first order approach the two effects at stake.

The second effect is the simplest one: indeed, the sphelaciscin a quasi-elongational, but asymmetric, flow.
As shown on figure 5(b), around the flow stagnation point, Hrtig}e movement is basically controlled by the
pressure differenc&;, — P/, than can be writtei/; — P|) — (P} — P3). Focusing on thg component of the
velocity field, which becomes all the more importantaas larger than 1, we havg) — P! « Q;/(a — R)>.
Around the flow stagnation point, the pressure differeige- P has then the same sign & — @2 and

is thus negative, which indicates attraction towards thyh Hiiow rate branch. For wide daughter branches,
when this effect is not screened by the first one, this imgheas the stagnation point for particles is above the
fluid separating line, as seen on figure 4(c). The argumenhttbaise here is similar to the one introduced by
Fung [10, 39] but resolves only one part of the problem. kahg these authors, it can also be pointed out that
the shear stress on the sphere is non zero: in a two-dimeth$oiseuille flow of widthh, the shear rate near a
wall scales a€)/h?, so the net shear stress on the sphere is directed towardigthitow rate branch, making
the sphere roll along the opposite wall towards this branch.

Finally, this situation is similar to the one of a flow arourml @bstacle, that was considered in ref. [40] as a
model situation to understand what happens at the bifertatdeed, the authors find that spheres are attracted
towards the high velocity side of the obstacle. However, h@ishere that this modeling is misleading, as it
neglects the first effect, which is the one which eventuatlyegns the net effect.

This first effect leads to an attraction towards the low flote faranch. To understand this, let us consider a
sphere located in the bifurcation with transverse positips= ;. The exact calculation of the flow around it
is much too complicated, and simplifications are needed.a®use considered the largecase to understand
the second mechanism eventually leading to attractionrasvéne high flow rate branch, let us consider the
smalla limit to understand the first effect: as soon as the ball erttez bifurcation, it hits the front wall. On
each side, we can write in a first approximation that the floi® eetween the sphere and the wall scales as
Q o APh3, whereAP = P, — P; is the pressure difference between the back and the frohedfghere, and

h the distance between the sphere and the wall (see figure 5a).

Since the ball touches the front wall, the flow ra}es eitherQ; or Q2 and is, by definition of;;, the integral

of the unperturbed Poisedille flow velocity between the \aalll they = y line, soQ o h? — 53/3, where
h=1%+ yy (see figure 5(a) for notations).

We have then, on each side:

h? — h?/3

AP x E;

(27)

To make the things clear, let us consider then the extreneeafasflat particler = h.ThenAP o 1/h —1/3

is a decreasing function &f that is, a decreasing function @f Therefore, the pressure drop is more important
on the low flow rate side, and finalliy, < P»: there is an attraction towards the low flow rate branch. This
exactly the opposite result from the simple view claimingttimere is some attraction towards the high flow rate
branch sinceA P scales a€)/h3 so ask. Since one has to discuss what happens for a sphere in théyviai
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Figure 5: Scheme of the geometry considered for the two effects oioguin the bifurcation. (a) Entrance of
the bifurcation: attraction towards the low flow rate brafeh < P). (b) opposite wall: attraction towards the
high flow rate branch®; > P}).

the separating ling) and are not independent. This is the key argument. Note finadlyttere is no need for
some obstruction arguments to build up a different presdiffierence on each side. It only increases the effect
since the functiorh — (h? — h%/3)/(h — R)® decreases faster than the function- (h> — h3/3)/h3. One
can be even more precise and take into account the variatidine gap thickness as the fluid flows between the
sphere to calculate the pressure drop by lubrication thé&tity; it is found thatA P is a decreasing function of
h.

In the more realistic case~ 1, the flow repartition becomes more complex, and the panlecity along the

x axis is not zero. Yet, as it is reaching a low velocity area (thlocity alongr axis of the streamline starting
aty drops to 0), its velocity is lower than its velocity at the saposition in a straight channel. In addition, as
the flow velocities between the sphere and the opposite wealba, and since the fluid located e. g. betwgen
and the top wall will eventually enter the top branch by d&fini we can assume it will mainly flow between
the sphere and the top wall. Note this is not true in a straightnel: there are no reasons for the fluid located
between one wall and the= yq line, wherey is the sphere lateral position, to enter completely, or tthiee
only fluid to enter, between the wall and the particle. Thenefwe can assume that the arguments proposed to
explain the attraction towards the low flow rate branch remnvalid, even though the net effect will be weaker.
Note finally that, contrary to what discussed for the secdfate the particle rotation probably plays a minor
role here, as in this geometry the shear stress exerted Huitien the particle will mainly result in a force
acting parallel to the: axis.

Finally, this separation into two effects can be used toudisca scenario for bifurcations with channels of
different widths: if the inlet channel is broadened, thet faffect becomes less strong while the second one is
not modified, which results in a weaker attraction towarasltw flow rate branch. If the outlet channels are
broadened, as in figures 4(b,c), it becomes more subtle.d stant again by the second effect (migration up-
or downstream) before the first effect (transverse mignatids seen on figure 4, the position of the particle
stagnation point (relatively to the flow separating lineamsincreasing function af, so the second effect is
favoured by the broadening of the outlets: dor~ oo, we end up with the problem of flow around an obstacle,
while for smalla, one cannot write that the width of the gap between the ballthe wall is justa — R,
therefore independent frof;, as it also depends on theposition of the particle relatively tg. In other
words, in such a situation, the second effect is screenetidfiirst effect. On the other hand, asncreases,
the distance available for transverse migration becomgeravhich could favour the first effect, although the

12 © SHF 2010



Proceedings of the™ European Conference on Microfluidics - Microfluidics 201®ulbuse, December 8-10, 2010

R| 0| 025|042 | 048 | 0.53| 0.60 | 0.67 | 0.71 | 0.80
0|-0.96|-3.45| -4.77| -6.33| -9.52| -11.6| -12.6| —
-0.85|-0.65| -0.70| -0.64| -0.61| -0.71| -0.73| —
1|09 )| 091| 089| 087| 0.84| 0.81| 0.79 | 0.75
—1-1.35|-1.25|-1.17|-1.09| -1.01| -0.90| -0.81

M2 || e
R

Table 1: Values for the fitting parametets;, 3,~) for the longitudinal velocityu’ (yo) = ayg + Byg + v of

a two-dimensional sphere of radifisin a Poiseuille flow of imposed velocity at infinity,(y) = 1 — y?; for

R = 0.80, the velocity profile is too flat to be reasonably fitted by asBgmeter law. All velocities are equal to
0.75 £ 0.005 in the explored intervajy € [—0.15;0.15]. We also give the values for the fitting parametef
the linear relationship between particle separating lostpny; and flow rate ratiogy = £ x (Q1/Qo—1/2).
For R = 0.8, the strong confinement leads to numerical problems as thersapproaches the walls.

slow down of the patrticle at the entrance of the bifurcatiendmes less pronounced.

Finally, it appears to be difficult to predict the conseque=nof an outlet broadening: for instance, in our two-
dimensional simulations presented in figurefd<€ 0.67, Q1/Qo = 0.2), y; varies from 0.27 when the outlet
half-width a is equal to 1, to 0.31 whemis equal to 2.5 and drops down to 0.22 to= 7.5! Note that the net
effect is always an attraction towards the low flow rate biiafag < /).

For daughter branches of different widths, it was illugdain ref. [11] that the narrower branch is favoured.
This can be explained through the second effect (see figyretibpressure drop}, — P! < Q;/(a — R)?
increases when the channel width decreases, which favoeirsatrower branch even in case of equal flow rates
between the branches.

3.2 The consequences on the final distribution

As there is some attraction towards the low flow rate braneéh¢ould expect some enrichment of the low flow
rate branch. However, as already discussed, even in theumiéstm situation, the presence of a free layer near
the walls will favour the high flow rate branch. We discuss nthwough our simulations, the final distribution
that results from these two antagonistic effects.

In order to compute the final splittingy; / IV, of the incoming particles as a function of flow rate rafle/Q

one needs to know, according to equation (1), the positjoof the particle separating line and the veloaity

of the particles in the inlet channel. From figure 3 we seeghatepends roughly linearly ofQ:/Qo — 1/2),

so we will consider a linear fit of the calculated data in ortteget values for alty;/Qo. The longitudinal
velocity u} was computed for all studied particles as a function of trarse positionyy. The functionu (yo)

is well described by a quartic functiom’(yo) = ayg + By2 + ~, which is an approximation also used in
ref. [11] (data not shown). Values for the fitting paramefershis velocity profile and for the linear relationship
Yy =& x (Q1/Qo — 1/2) are given in table 1.

The evolution ofN; /Ny as a function of);/Q, for two-dimensional rigid spheres is shown on figure 6 for
two representative radii. By symmetry, considerig < @) is sufficient. In order to discuss the enrichment
in particles in the high flow rate branch (branch 2 then), &ls convenient to consider directly the volume
fraction variation®, /@y = (N2/Q2)/(No/Qo)-

When@1/Qo = 1/2, the particles flow splits equally into the two branch&g: = Ny and ®, = . For

all explored sizes of spheres, when the flow rate in branchcledses, there is an enrichment in particles in
branch 2, which is precisely the Zweifach-Fung effé¢ty/ Ny < Q1/Qq or ®2/®y > 1. Then, even in the most
homogeneous case, the attraction towards the low flow ratechris not strong enough to counterbalance the
depletion effect that favours the high flow rate branch. H@wethis attraction effect cannot be considered as
negligible, in particular for large particles: while, insgathe particles follow their underlying fluid streamline,
the maximum enrichment in the high flow rate branch would tmeiad 40% for R = 0.71, it drops down

to less thanl7% in reality. Similarly, the critical flow rate rati@), /Q, below which no particle enters into
branch 1 is greatly shifted: from arouiic29 to around0.15 for R = 0.71. For smaller spheredi( = 0.42),

this asymmetry in the distribution between the two brandbeseak: while the maximum enrichment in the
high flow rate branch would be around”% in a no-attraction case, it drops to less ti8&hdue to the attraction
towards the low flow rate branch.

When the flowQ); is equal to zero 0€)y/2, @, is equal tod; thus there is a maximal enrichment for some
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Figure 6: Full lines: spheres relative distributia¥y; /Ny and volume fractior, /P, as a function of flow rate
distribution@1/Qo from our two-dimensional simulations for two represen@tadiiR = 0.42 andR = 0.71.
The curves are straightforwardly derived from equationsafid 2 and computed values gf andu}. (table
1). The results are compared with the hypothesis where thielea would follow the streamlineg/§ = y;)
(dashed lines).

flow rate ratio between 0 and 1/2. The increasebinwith the decrease af); (right part of the curves of
figure 6) is mainly due to the decrease of the relative impageof the free layer near the wall on the side of
branch 2. Two mechanisms are responsible for the decreabg when (), decreases (left part of the curves
of figure 6): first, when no particle can enter the low flow raternizh because its hypothetical separation line
Yo is above its maximum positioh — R, then the high flow rate branch receives only additionaleatiwhen
Q1/Qo decreases and its particles are more diluted. Then all sdalledown on the same cun@, /@, =
1/(1 — Q1/Qo) corresponding taV; = 0 (or Na = Np), which results in a sharp variation 65 /Qo goes
trough the critical flow rate ratio. A smoother mechanismise & be taken into account here, as it is finally the
one that determines the maximum for smalerAs Q1 /Qo decreases, branch 2 recruits fluid and particles that
are closer and closer to the opposite wall. As the discrgpbetween the flow and particle velocities increases
near the walls)V; increases less thaps: the resulting concentration in branch 2 finally decreases.
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Finally, for applicative purposes, the consequences oéttnaction towards the low flow rate branch are
twofold: if one wishes to obtain a particle-free fluid (e.tagmma without red blood cells), one has to@etlow
enough so thalv; = 0. Due to attraction towards the low flow rate branch, thidaaitflow rate is decreased
and the efficiency of the process is lowered. If one prefersotacentrate particles, then one must find the
maximum of the®, /P, curve. This maximum is lowered and shifted by the attractawards the low flow
rate branch (see figure 6). Note that for small spheres [&4. 0.42) the position of the maximum does not
correspond to the point wher€; vanishes; in addition, the shift direction of the maximunsiion depends
on the spheres size: while it shifts to low@f /Q, values fork = 0.71, it shifts to higher values foR = 0.42.

The choice of the geometry, within our symmetric frame, clo greatly modify the efficiency of a
device. Since the depletion effect eventually governs the fiistribution, narrowing the inlet channel is the
first requirement. On the other hand, it also increases tractibn towards the low flow rate branch, but one
can try to diminish it. As discussed in the preceding sectthis can be done by widening reasonably the
daughter branches. For instance, if their half-width is hdtut 2.5, as in figure 4(b), the slogen the law
Yy =& x (Q1/Qo — 1/2) increases by arounth% for R = 0.67. The criticalQ, /@, below which no particle
enters the low flow rate branch increases from 0.13 to 0.18%hwis good for fluid-particle separation, and
the maximum enrichmenis /@, that can be reached 22% instead ofl5%. Alternatively, since the attraction
is higher in two dimensions than in three, we can also infat tionsidering thicker channels, which does not
modify the depletion effect, can greatly improve the finaule Note that this conclusion would have been
completely different in case of high flow rate branch enriehtrdue to some attraction towards it, as claimed
in some papers: in such a case, confining as much as possible mave been required, as itincreases all kinds
of cross-streamline drifts.

4. CONCLUSION

In this paper, we have focused explicitly on the existenckdarection of some cross streamline drift of particles
in the vicinity of a bifurcation with different flow rates ié daughter branches.

The first direct experimental proof of attraction towards tbw flow rate branch was shown and arguments
for this attraction were given with the help of two-dimenmsb simulations. In particular, we showed that this
attraction is the result of two antagonistic effects: th&t fine, that takes place at the entrance of the bifurcation,
induces migration towards the low flow rate branch, whilegbeond one takes place near the stagnation point
and induces migration towards the high flow rate branch bubistrong enough, in standard configurations of
branches of comparable sizes, to counterbalance the fiest.ef

This second effect is the only one that was previously cameitlin most papers of the literature, which has
lead to the misleading idea that the enrichment in particdse high flow rate branch is due to some attraction
towards it. On the contrary, it had been argued by Badbexl. that there should be some attraction towards
the low flow rate branch. By distinguishing the two effectsntitned above, we have tried to clarify their
statements.

In a second step, we have discussed the consequences ohsaftfaetion on the final distribution of particles.

It appears that the attraction is not strong enough, eventwoalimensional system where it is stronger, to
counterbalance the impact of the depletion effect. Evehémbost homogeneous case where the particles are
equally distributed across the channel but cannot apprivectvall closer than their radius, the existence of a
free layer near the walls favours the high flow rate branchclwvlventually receives more particles than fluid.
However, these two antagonistic phenomena are of comganaiplortance, and none can be neglected: the
particle volume fraction increase in the high flow rate braisaypically divided by two because of the attraction
effect. On the other hand, the initial distribution is a keygmeter for the prediction of the final splitting. For
deformable particles, initial lateral migration can indwcnarrowing of their distribution, which will eventually
favours the high flow rate branch. For instance, in [11], thihars had to adjust the free layer width in their
simulations in order to fit experimental data on blood flow.t@@other hand, in a network of bifurcations, the
initially centered particles will find themselves close teeovall after the first bifurcation, which can favour a
low flow rate branch in a second bifurcation.
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