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The hunt for Julia sets with

positive measure
Arnaud Chéritat

To appear in Complex Dynamics, Families and Friends, Editor

Dierk Schleicher.

Abstract. This article is based on the talk given by the author for the

conference. We will explain the status that had reached, during Hubbard’s 60th

birthday conference, Douady’s plan to produce Julia sets with positive Lebesgue

measure. We will also quickly mention the progress done since then.

1 Introduction

The title of the talk I gave at Hubbard’s 60th birthday conference was “Are
there Julia sets with positive measure?”. Four months later I gave a talk
in Denmark where the first two words were inverted and the question mark
became a period.

I do not know when Adrien Douady set up his plan for finding a Julia
set with positive measure, but in 1998 he offered me to study it for my
PhD thesis. He added that his opinion about whether or not such Julia
sets existed depended on his mood. If the plan worked it would solve
an open conjecture. But in case of failure, it would not say anything on
the measure of the objects he was looking at (quadratic Julia sets with a
Cremer point).1

When I finished my thesis in 2001, I had convinced Adrien that his
plan would work, by proving it would follow from a pair of reasonable
conjectures, supported by analogy with known results for Julia sets with a
bounded type Siegel disk, also supported by computer pictures.

Adrien told me cylinder renormalization could help in proving these
conjectures and had me and Xavier Buff meet and begin a very produc-
tive collaboration on quadratic Julia sets. I also went to Toronto for six
months where I met Yampolsky and had many discussions with him. How-
ever cylinder renormalization turned out to be difficult. We lacked first
an invariant class, second an argument to turn this into a proof of my
conjectures.

1We now have examples with positive measure, but it is still unknown whether or
not some of them have measure 0.
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2 1. The hunt for Julia sets with positive measure

An invariant class was found by Inou and Shishikura in 2003.

To turn it into a proof still required some time and effort. I remem-
ber three key periods. First, I was asked to write a review for the French
Mathematical Society on the book “The Mandelbrot Set, Theme and Vari-
ations” edited by Tan Lei [T]. In the process, I learnt important methods
in holomorphic dynamics, and this knowledge proved very useful. Second,
this is in the favorable atmosphere of Hubbard’s 60th birthday conference
that I saw the end of the tunnel, i.e. how things may fit together to provide
a proof. The third period was when Xavier and I worked hard during the
following summer holiday to make it work.

2 Crash-course

This section introduces some terminology for the non-experts or readers in
the distant future. See for instance [M] for a more thorough introduction.

In this article, it is understood that we work with complex polynomials,
i.e. with some P ∈ C[X ]. A quadratic polynomial is just any degree 2
polynomial. We are interested in the iteration of P , i.e. in the behavior of
sequences zn defined by zn+1 = P (zn), and how this behavior depends on
z0 and on P . Here Pn will refer to the composition P ◦ · · · ◦ P , and not to
the product.

The orbit of a point is the set
{
Pn(z)

∣∣n ∈ N
}
. A periodic point is

a point z0 such that zk = z0 for some k > 0. Its period is the least
value of k such that this hold. A cycle is the orbit of a periodic point.
A period one periodic point is also called a fixed point. Its multiplier is
the derivative λ = (P k)′(z0). The periodic point is repelling if |λ| > 1,
indifferent if |λ| = 1, attracting if |λ| < 1 and superattracting if λ = 0.
Superattracting is considered as a subcase of attracting. For instance, ∞
is a superattracting fixed point of any polynomial of degree > 1.

The periodic point z0 is linearizable when there exists a homeomorphism
φ from a neighborhood of z0 to a neighborhood of 0 such that φ ◦ P k ◦
φ−1(z) = λz holds in a neighborhood of z0. For dimension one analytic
maps, the existence of a continuous conjugacy to the linear part is known
to imply the existence of an analytic one.

If |λ| 6= 0 and |λ| 6= 1, then the periodic point is automatically lineariz-
able. If |λ| = 0 then it can be conjugated to z 7→ zd in a neighborhood
of 0, for some integer d ≥ 2. If |λ| = 1, then write λ = e2iπθ for some
θ ∈ R. This θ is called the rotation number. If θ ∈ Q ( ⇐⇒ λ is a root
of unity), then z0 is a parabolic point. It is most of times non-linearizable.
If θ /∈ Q, then z0 is called an irrationally indifferent periodic point. Sev-
eral subcases occur. In the linearizable case, the Siegel disk refers to the
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3. Status of the hunt at the time of the conference 3

maximal domain on which a conjugacy to a rotation on a disk is possible.
In the non-linearizable case, z0 is called a Cremer point, and the dynamics
becomes very complicated.

The basin of an attracting cycle is the set of points whose orbit tends
to the cycle (i.e. end up staying in every neighborhood of the cycle). The
filled-in Julia set K(P ) of a polynomial P of degree ≥ 2 is the complement
of the basin of ∞. It is a non-empty compact subset of C. The Julia set
J(P ) has three equivalent and standard definitions. It is the boundary of
K(P ) (which is the same as the boundary of the basin of ∞). It is the
closure of the set of repelling periodic points. It is the complement of the
Fatou set F , where z ∈ F ⇐⇒ there exists a neighborhood V of z on
which the family {Pn}n∈N is normal.

A degree 2 polynomial has a connected Julia set J(P ) ⇐⇒ K(P ) is
connected ⇐⇒ the (unique) critical point of P belongs to K(P ). The
Mandelbrot set M is the set of c ∈ C such that the quadratic polynomial
Pc(z) = z2+c has a connected Julia set. It is thus also the set of c such that
the critical point z = 0 of Pc has a bounded orbit. The latter definition is
used for making computer pictures of M .

A hyperbolic polynomial P is one which has an iterate Pn, n > 0, whose
derivative is expanding (for the spherical metric) on all its Julia set.

3 Status of the hunt at the time of the conference

This section chiefly presents the content of the talk I gave for Hamal’s 60th

birthday conference, in a more detailed way and completed by references.

3.1 Motivation

The Julia set is the locus of chaos. To have a Julia set of positive measure
means that a randomly chosen point in the Riemann sphere has a non zero
probability of being in the locus of chaos. It is interesting in itself to know
whether or not this may happen for polynomials.

Yet, the question has strong links with a set of still open conjectures:

Conjecture (Fatou) In the set of degree 2 polynomials, hyperbolic ones are
dense.2

Conjecture (MLC) The Mandelbrot set is locally connected.

Conjecture (NILF) The Julia set of a quadratic polynomial carries no in-
variant line field.3

2Fatou also conjectured that this holds in the set of degree d polynomials and in the
set of degree d rational maps.

3See [Mc] for the definitions of a line field and the invariance thereof.
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4 1. The hunt for Julia sets with positive measure

Let us also label this article’s main question:

Conjecture (Zero) The Lebesgue measure of Julia sets of quadratic polyno-
mials is always equal to 0.

It was also conjectured for higher degree polynomials, and also for ra-
tional maps whose Julia set is not the whole Riemann sphere (there exist
rational maps whose Julia set is the whole Riemann sphere).

We have the following known relations between them (as of 2005):

Fatou

Mañe, Sad,
Sullivan

⇐⇒ NILF

=
⇒

MLC

Douady
Hubbard =

⇒immediate

Zero

For MLC =⇒ Fatou, see [DH] and [Sc].
For Fatou ⇐⇒ NILF, see [MSS] and [Mc].

The Zero conjecture thus fitted well in the picture, all the more so as
its analog for Kleinian group, Ahlfors’ conjecture, was proved in 2004.

Yet, the Zero conjecture fails [BC].

3.2 Known results (where not to look at) for quadratic polyno-
mials

In the rest of this article P denotes a polynomial of degree ≥ 2 (and most
of times = 2), J(P ) its Julia set, Leb the Lebesgue measure, dimH the
Hausdorff dimension, M the Mandelbrot set, and Pol2 the set of polynomials
of degree 2, also called quadratic polynomials. All degree 2 polynomials are
C-affine conjugated to a unique polynomial of the form Qc = z2 + c.

Recall that a hyperbolic polynomial or rational fraction is one which
has an iterate whose derivative is expanding (for the spherical metric) on
all its Julia set. This is equivalent to all the critical points belonging to
attracting or superattracting basins. The Lebesgue measure of such a Julia
set is then equal to 0 (see [DH]), and even better (see [Su]):

Theorem 1.1 (Sullivan) A hyperbolic rational fraction has a Julia set J of
Hausdorff dimension < 2 (thus zero Lebesgue measure):

dimH J < 2.
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3. Status of the hunt at the time of the conference 5

Let’s recall a basic fact (yet not obvious):

Theorem 1.2 (Fatou, Julia, Douady, Hubbard) A degree 2 polynomial has at
most one non repelling cycle.

The proof of this theorem can be found in [D2] and [Bl]. Next, by [L]:

Theorem 1.3 (Lyubich, Shishikura) If P has no indifferent periodic points
and is not infinitely renormalizable, then

LebJ(P ) = 0.

So, to find positive measure in Pol2, we must look either

� at infinitely renormalizable polynomials

� at polynomials with an indifferent cycle

These two conditions are mutually exclusive, and prevent P from being
hyperbolic.

The three theorems mentioned above show that there are plenty of
“small” Julia sets, with different notions of what is “small”. Let us cite
a theorem by [Sh] providing plenty, in some sense, of Julia sets that are
“big”, in some sense:

Theorem 1.4 (Shishikura)

(S1) For a Baire generic set of values of c ∈ ∂M, P = z2 + c has a
Hausdorff dimension 2 Julia set.

(S2) For a Baire generic set of values of θ ∈ R, P = e2iπθz + z2 has a
Hausdorff dimension 2 Julia set.

Remark 1.5 This may sound like an encouragement, but in case (S1), for a
Baire generic set of values of c ∈ ∂M, P has no indifferent cycle, and is not
renormalizable, thus by a previously mentioned theorem: LebJ(P ) = 0.

Let us focus on quadratic polynomials with an indifferent cycle. Ac-
cording to the Douady-Hubbard theory of tuning (quadratic-like renormal-
ization of quadratic maps, [DH2]) it is enough to study the case where the
cycle has period 1. Then, P is C-affine conjugated to

Pθ : z 7→ e2iπθz + z2

for a unique θ ∈ R. In the rational case we have [ADU]:
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6 1. The hunt for Julia sets with positive measure

Figure 3.1. The Julia set of Pθ for θ = the golden mean = 1+
√

5

2
. The basin of

infinity is in white, the Julia set in black and the rest in gray. The latter consists
in the Siegel disk and its iterated preimages. We also drew a few invariant curves
within the Siegel disk and marked its center z = 0 with a cross.

Theorem 1.6 (Aaronson, Denker, Urbanski) If θ ∈ Q then

dimH J(Pθ) < 2.

Recall that the set of bounded type irrationals, i.e. of numbers θ =

a0 +
1

a1 +
.. .

with an bounded, has measure equal to 0. From [Mc2]:

Theorem 1.7 (McMullen) If θ is a bounded type irrational then

dimH J(Pθ) < 2.

Let PZ be the set of irrational θ = a0 +
1

a1 +
.. .

such that

ln an = O(
√
n).

This is a set of full measure in R. By [PZ]:
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3. Status of the hunt at the time of the conference 7

Theorem 1.8 (Petersen, Zakeri) If θ ∈ PZ, then z = 0 is linearizable and

LebJ(P ) = 0.

3.3 Douady’s plan

It takes place in the family

Pθ(z) = e2iπθz + z2

with θ ∈ R. We recall that z = 0 is an indifferent fixed point and that all
other periodic points are repelling (by Theorem 1.2).

Conjecture (Douady) There exists a value of θ ∈ R such that z = 0 is a
Cremer point of Pθ and such that

LebJ(Pθ) > 0.

In short, the idea is to look at the filled-in Julia set K(Pθ) when its
interior is not empty and perturb θ so as to lose much interior but not too
much measure. Let us detail this.

Let us list a few properties concerning J = J(P ) and K = K(P ) where
P is a polynomial of degree at least 2:

� (Fatou, Julia) J = ∂K,

� (Fatou, Julia, Sullivan) int(K) 6= ∅ ⇐⇒ K has a cycle which is
either attracting, parabolic or Siegel,

� (Douady [D]) the map P 7→ Leb(K) is upper semi-continuous.

The idea is then to construct a sequence of θn ∈ R such that

(D1) θn −→ θ ∈ R,

(D2) each Pθn is Siegel or parabolic at 0 (then intK(Pθn) 6= ∅),

(D3) Pθ is Cremer at z = 0,

(D4) Leb int(K(Pθn)) is bounded below,

i.e. we do not lose too much measure between two successive θn. Then, by
(D1), (D4) and the semi-continuity mentioned above, LebK(Pθ) > 0. By
(D3), int(K(Pθ)) = ∅, i.e. J(Pθ) = K(Pθ):

LebJ(Pθ) > 0.

To build such a sequence, θn+1 is defined as a perturbation of θn. The
main problem is to ensure that the measure loss for the interior of the
filled-in Julia set is small, so as to have (D4) hold. Adrien proposed to do
this in two steps:
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8 1. The hunt for Julia sets with positive measure

� Start from a θn ∈ R \ Q with Pθn having a Siegel disk, and take
θn+1 ∈ Q to be one of its convergents.

� Start from θn+1 ∈ Q and take θn+2 ∈ R\Q close to θn+1 to be one of
its special irrational perturbations, as described below. Such a Pθn+2

has a Siegel disk.

It is easy to get (D3) if the perturbations can be taken arbitrarily small.
The special sequence of irrational perturbations (αk)k∈N of a rational p/q
is defined as follows: write one of the two (necessarily finite) continued
fraction expansions

p/q = [a0, . . . , am] = a0 +
1

a1 +
1

.. . +
1

am

then let4

αk = [a0, a1, . . . , am, k, 1, 1, . . .].

So here is a Wish list he asked me to check as a PhD thesis subject:

Wish 1 Let α be such that Pα has a Siegel disk (with possible additional
conditions, like “α has bounded type”). Let pn/qn be the continued fraction
convergents of α. Then

lim inf
n→+∞

Leb
◦

K(Ppn/qn) ≥ Leb
◦

K(Pα),

in other words, the loss of measure of interiors is tame.

This allows to do Adrien’s first step: replacing some θn for which Pθn has a
Siegel disk by one of its convergent without losing too much measure, and
calling this convergent θn+1.

Yet, when one perturbs a rational, the theory of parabolic implosion [D]
easily implies that there is a definite loss of measure, which necessarily
complicates the second step:

lim sup
α−→p/q

LebK(Pα) < LebK(Pp/q) = Leb
◦

K(Pp/q).

To miminize this loss, Adrien proposed to take the special sequence αk −→
p/q described above.

4It is chosen so that in the cylinder renormalization associated to the parabolic im-
plosion at θn+1, the virtual multiplier = the golden mean.



✐

✐

✐

✐

✐

✐

✐

✐

3. Status of the hunt at the time of the conference 9

Let loss(p/q) be defined by:

lim inf
k→+∞

Leb
◦

K(Pαk
)

LebK(Pp/q)
= 1− loss(p/q),

which is sort of a measure of the area loss for this special sequence. One
has 0 < loss(p/q) < 1 (the lower bound follows from the definite loss
aforementioned, the upper bound from the fact that the Siegel disk of
cannot shrink too much in terms of its area, which is proved using the the
theory of parabolic implosion and a lower bound on the size of Siegel disks
with a fixed rotation numer (diophantine in our case), due to Siegel. See
also my thesis [C] completed with [C2]).

Wish 2 With possible additional conditions, for big values of q, loss(p/q) is
arbitrarily close to 0.

Then in the second step of Adrien’s plan (defining the irrational θn+2 once
the rational θn+1 has been fixed), to keep the loss of measure small so
that (D4) can hold, it is necessary that in the previous step (deciding
which approximant of the irrational θn the rational θn+1 shall be), we took
the approximant deep enough, so that its denominator is big, so that the
quantity loss(θn+1) is small.

3.4 Analysis of the plan, reduction

Based on the preparatory work of Jellouli [J], I gave a positive answer to
Wish 1 in my thesis [C]:

Theorem 1.9 (Chéritat) Wish 1 is granted, without any additional condition
on α.

To prove this theorem, it was enough to prove that the set Un of points
which under iteration of Ppn/qn never leave the Siegel disk ∆ of the unper-
turbed map, takes most of the area of ∆, in the sense that Leb(∆\Un) −→ 0
as n −→ +∞. This is done by comparing the dynamics to a vector field.
For the expert reader, let us mention that the comparison is made possible
thanks to a control on parabolic explosion, allowed by Yoccoz’s inequality
on the size of the limbs of the Mandelbrot set. See [C] for details.

Towards Wish 2, I gave in my thesis an upper bound on loss(p/q) in
terms of the image of the basin of∞ in Fatou coordinates (see Figure 3.5 for
an illustration): let us put the natural Euclidean metrics on C/Z inherited
from C, and do the same with the Lebesgue measure. For p/q ∈ Q, the
basin of ∞ for Pp/q is an open set, and its image in a repelling cylinder of
the parabolic point is a bounded non empty open set U = U(p/q). Let
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10 1. The hunt for Julia sets with positive measure

Figure 3.2. On this picture, we superposed (semi-transparent) the Julia set of Pα for
the approximant α = 13/8 of the golden mean over the Julia set for α = the golden
mean. Adrien’s Wish 1 was based on that kind of pictures. In particular, notice how
thin is the intersection between the unperturbed Siegel disk and the basin of infinity
for the perturbed Julia set.

� A(p/q) be its Lebesgue measure, and

� h(p/q) its height: h(p/q) = sup
z∈U

Im z − inf
z∈U

Im z.

The Figure 3.5 shows an example.

Theorem 1.10 (Chéritat) There exists a function m(A′, h′) of A′ > 0 and
h′ > 0 s.t.

1. ∀p/q ∈ Q, if A(p/q) ≤ A′ and h(p/q) ≤ h′ then

loss(p/q) ≤ m(A′, h′),

2. for all fixed h′ > 0, m(A′, h′) −→ 0 as A′ −→ 0.

See [C]. Hence if U(p/q) has small area and not too big height, then the
loss is small, allowing Adrien’s plan to work:
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3. Status of the hunt at the time of the conference 11

Figure 3.3. The fat Douady rabbit (α = 1/3 = [0, 3] = [0, 2, 1]), and one of its

perturbations (α = [0, 2, 1, k, 1+
√

5

2
], for k = 150).

Corollary 1.11 If the next conjecture holds, then ∃θ such that LebJ(Pθ) > 0.

To state this conjecture, let us say that an irrational α is gilded if its
continued fraction expansion has its entries eventually all equal to 1: α =
[a0, . . . , ak, 1, 1, . . .].

Conjecture (Chéritat) For all gilded irrational α, denoting pn/qn its conver-
gents, we have

(C1) A(pn/qn) −→ 0,

(C2) h(pn/qn) is bounded.

Backing this conjecture, Figure 3.6 is the kind of experiment that al-
lowed me to convince Adrien that his method worked.

Proof (of Corollary 1.11): The above conjecture with Theorem 1.10 imply
that for all gilded irrational α, loss(pn/qn) −→ 0 where pn/qn denote the
convergents of α. Now we want to construct a sequence θn satisfying con-
ditions (D1) to (D4) of Douady’s plan. Let θ0 be any gilded irrational,
for instance the golden mean. Let θn be defined by induction according to
the two steps of Douady’s plan, which are reminded here: θ2p is irrational,
θ2p+1 is one of its convergents and is thus rational, θ2p+2 is a special gilded
irrational perturbation of the rational number θ2p+1. We claim we can
choose the sequence (θn) so that for all n > 0:

Leb
◦

K(Pθn) >
(
1− 2−n

)
Leb

◦

K(Pθn−1
). (3.1)
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12 1. The hunt for Julia sets with positive measure

Figure 3.4. The Julia set for α = 89/55 (9-th approximant to the golden mean).
Compare with Figure 3.1.

Given θ2p, the existence of a convergent θ2p+1 satisfying (3.1) with n =
2p + 1 is granted by Theorem 1.9. We moreover choose θ2p+1 so that
loss(θ2p+1) < 2−2p−2. Therefore, there exists a special perturbation θ2p+2

of θ2p+1 so that (3.1) holds for n = 2p + 2. The sequence (θn)n∈N thus
satisfies (D2) and (D4). To have it also satisfy (D1) it is enough to require at
each step that |θn+1−θn| < 2−n, which is possible since in the construction
above, there is a whole sequence of valid choices of θn+1, sequence which
tends to θn. So now the sequence θn tends to some θ. To also satisfy (D3), it
is enough to have a θ that satisfies Cremer’s Liouvillian sufficient condition
(see [M]) for non-linearizability, which can be achieved for instance by
requiring that max

(
|θ2p+1 − θ2p|, |θ2p − θ2p−1|

)
< 1/ exp(p · 2q) where q is

the denominator of θ2p−1. �

3.5 Analogy with McMullen’s results

This subsection is rather informal, because first the details are a bit com-
plicated, and second at that time we did not know how to make it work.
The results we are referring to will be found in [Mc2].

McMullen proved that the critical point is a Lebesgue density point



✐

✐

✐

✐

✐

✐

✐

✐

3. Status of the hunt at the time of the conference 13

Fatou
coords−→ U(1/3)

h(1/3)

Figure 3.5. Left: closeup at the parabolic fixed point on the Julia set of Pα for
α = 1/3. We sketched a fundamental domain. By P 3

1/3, its inner boundary is
mapped to the outer, and the quotient is a Riemann surface isomorphic to C/Z,
called the Ecalle-Voronin cylinder. The isomorphism is called the Fatou coordinate.
Right: image of the Julia set by the Fatou coordinate. The cylinder C/Z has been
unwrapped: the picture is invariant by z 7→ z+1 and vertical lines mark a fundamental
domain of the cylinder C/Z. We hatched its intersection with the basin of ∞. The
quantities h and A are the euclidean height and area of the hatched set.

of the interior of the filled-in Julia set of Pα for any bounded type α.
Now, the pictures of the parabolic filled-in Julia sets K(Ppn/qn) in Fatou
coordinates bear some kind of resemblance to that of zooms on the critical
point of the Siegel disk bearing filled-in Julia set K(Pα). This is illustrated
in Figure 3.7.

Could McMullen’s density results be adapted to our setting, i.e. to
the parabolic filled-in Julia sets seen in Fatou coordinates, and yield my
conjecture, henceforth positive measure?

McMullen proved more: for instance, when the entries of the continued
fraction of α are eventually periodic of period p, then there exist a map
λ : z 7→ τz if p is even and τz if p is odd, with τ ∈ C, 0 < |τ | < 1 and
analytic functions gk such that the sequence

λ−n ◦ P qn+kp
α ◦ λn −→

n→+∞
gk.

We conjecture5 the existence of a similar tower of limits g̃k

λ−n ◦ P qn+kp

pn+kp/qn+kp
◦ λn −→

n→+∞
g̃k.

Figure 3.8 shows closeups on the Julia sets for the convergents pn/qn of
the golden mean (whose period p = 1), with n ranging from 5 to 13. In

5This conjecture is still unproven today. We found another way to transfer Mc-
Mullen’s Lebesgue density result to parabolic filled-in Julia sets seen in cylinders.
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Figure 3.6. The interior of the filled-in Julia set of Ppn/qn (gray), the Julia set (black), and basin of infinity (white), seen in Fatou
coordinates, for the first 16 approximants pn/qn of the golden mean. Each time we drew a fundamental domain for C/Z, using the
same scale, and flipped a strip upside down every two strip, so that a convergence is clearly visible. Of course we put only a finite
part of each infinite strip but what is missed is just plain grayness. It really looks like the white set has bounded height and measure
tending to 0. But keep in mind that the black set is in the closure of the white, so that some measure may hide there even if it looks
unlikely (for instance the fjords are extremely thin).
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each frame, the scale has been set so that the distance between the critical
point (at the center of the frame) and its qn-th iterate, is constant (about
a 16th of the frame width). The convergence of these Julia sets echoes the
aforementioned conjectured convergence of the rescaled qn-th iterate.

3.6 What remained to be done

Together with Xavier Buff, we were addressing my conjecture (on the areas
A(pn/qn), and heights h(pn/qn)) via the study of cylinder renormalization
(Buff, Epstein, Shishikura, Yampolsky, . . . ).6 Let us denote R this renor-
malization.

H. Inou and M. Shishikura had recently proved the existence of a stable
class for R. This was, and still is, done by perturbation of the parabolic
case thus requires the rotation number to be close enough to 0. In partic-
ular, there is an integer N > 0 such that this class contains the quadratic
polynomials Pα for which α has all its continued fraction entries ≥ N .

In the discussion above, we used gilded numbers, i.e. numbers whose
continued fraction entries are eventually constant equal to 1. The whole
discussion is valid if instead we look at numbers whose continued fraction
entries are eventually constant equal to N . With this modification, Inou
and Shishikura’s result proved part (C2) of my conjecture (i.e. the height
h(pn/qn) is bounded).

We then had a framework to attack part (C1) (which claims that the
area A(pn/qn) should tend to 0).

4 After the conference

4.1 Present results

Xavier Buff and I finished the proof during the summer following the confer-
ence (2005). To bound the area A(pn/qn), we first used Inou-Shishikura’s
results to prove that the post-critical set of Ppn/qn stays arbitrarily close
to the Siegel disk ∆ of Pα:

6Roughly, it consists in the following: draw a well chosen curve C between the fixed
point 0 and the other fixed point of Pα. Among other conditions, we want that Pα be
injective on C and send it to a curve disjoint from C apart from its endpoints. Consider
the bounded region D bounded by C and Pα(C). Consider the first return map from
D to D. Now glue the boundary of D by identifying z ∈ C with Pα(z). Remove the
two endpoints from this. One gets a Riemann surface isomorphic to a cylinder, or if one
prefers to C∗. The first return map is conjugated by this isomorphism to a map which
is the cylinder renormalization of Pα. The fixed point 0 of Pα corresponds to one end of
the cylinder, and drawing another curve from this end to a fixed point of the first return
map allows to renormalize the renormalized map, and so on. . .
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Figure 3.7. The image on the left shows the Julia set of Ppn/qn in Fatou coordinate for some approximant pn/qn of the golden mean.
The image in the middle shows a closeup on the same Julia set, but in the initial coordinates, centered on the critical point. The image
on the right shows a closeup at the same scale, also centered on the critical point, on the Julia set of Pα for α = the golden mean.
There is some kind of resemblance, especially when one looks at the thick part of the basin of infinity.
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Figure 3.8.
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18 1. The hunt for Julia sets with positive measure

Theorem 1.12 Let α be any irrational with every continued fraction entry
≥ N and with moreover bounded type, i.e. the entries form a bounded
sequence. Then ∀ε > 0, ∃n0 such that ∀n ≥ n0, every point in the post-
critical set of Ppn/qn is at distance < ε from ∆ (or in ∆).

Then, using Wish 1 (which I proved earlier in my thesis), McMullen’s
theorem of Lebesgue density of intK(Pα) near ∆, a pull-back argument, a
lemma à la Vitali, and the bound on h(pn/qn), it is easy to conclude and
prove part (C1) of my conjecture, thus finishing the proof of the existence
of a Julia set with positive Lebesgue measure.

We also extended the method to yield examples of Julia sets with pos-
itive measure for quadratic polynomials with a Siegel disk, and also for
infinitely renormalizable quadratic polynomials.

The preprint [IS] presenting the near-parabolic renormalization of Inou
and Shishikura has been just been submitted; our preprint [BC] giving the
full details of our positive measure result too.

4.2 Prospects

There are still open questions:7

� Does there exist a polynomial or a rational map, of degree ≥ 2, with
a Cremer point, but whose Julia set has Lebesgue measure = 0?

� Quadratic Julia sets bearing a Cremer point, or a fixed Siegel disk
not containing the critical point in its boundary, are non-locally con-
nected. There is also a construction by Dan Sørensen of some in-
finitely renormalizable quadratic polynomials with a non-locally con-
nected Julia set [So]. Could it happen that for quadratic polynomials,
J is non-locally connected ⇐⇒ J has positive Lebesgue measure?

� Similarly, is it equivalent for a quadratic Julia set with a fixed Siegel
disk ∆, to have a positive measure Julia set and to have ∆ not con-
taining the critical point?

� Is it possible to characterize the set of irrational numbers α such that
Leb J(Pα) > 0?

� Can we produce accurate computer pictures quadratic Julia sets with
positive measure?

7Thanks to the people who formulated some of them.
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� Would one be able to see anything on an accurate picture? The
problem being that around the critical point, the Julia set could be
so dense that it would not be possible to see the difference between
J and a neighborhood of the Cremer point, unless one draws an
astronomical number of pixels.

� Is P ergodic on J in our examples?

Moreover, let us mention the following open conjecture, which if it were
true, would give another proof of the existence of Cremer point bearing
quadratic Julia sets with positive measure:

Conjecture (Hubbard)

inf
|λ|<1

LebK(λz + z2) > 0
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