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Abstract

We study the statistical mechanics of classical two-dimensional “Coulomb gases” with
general potential and arbitrary [, the inverse of the temperature. Such ensembles also
correspond to random matrix models in some particular cases. The formal limit case
B = oo corresponds to “weighted Fekete sets” and also falls within our analysis.

It is known that in such a system points should be asymptotically distributed according
to a macroscopic “equilibrium measure,” and that a large deviations principle holds for
this, as proven by Ben Arous and Zeitouni [BZ].

By a suitable splitting of the Hamiltonian, we connect the problem to the “renormal-
ized energy” W, a Coulombian interaction for points in the plane introduced in [SS1],
which is expected to be a good way of measuring the disorder of an infinite configura-
tion of points in the plane. By so doing, we are able to examine the situation at the
microscopic scale, and obtain several new results: a next order asymptotic expansion of
the partition function, estimates on the probability of fluctuation from the equilibrium
measure at microscale, and a large deviations type result, which states that configurations
above a certain threshhold of W have exponentially small probability. When 5 — oo, the
estimate becomes sharp, showing that the system has to “crystallize” to a minimizer of
W. In the case of weighted Fekete sets, this corresponds to saying that these sets should
microscopically look almost everywhere like minimizers of W, which are conjectured to
be “Abrikosov” triangular lattices.

keywords:  Coulomb gas, one-component plasma, random matrices, Ginibre ensemble,
Fekete sets, Abrikosov lattice, triangular lattice, renormalized energy, large deviations, crys-
tallization.

MSC classification: 82B05, 82D10, 82D99, 15B52

1 Introduction

We are interested in studying the probability law

1 s
(1.1) dP3(z1,...,2,) = Z—ge 2

wnl@tetn)dpy L dy,

where Z,g is the associated partition function, i.e. a normalizing factor such that ]P’g is a
probability measure, and where

n

(1.2) wn(arl,...,xn):—Zlog\xi—leﬁ—nZV(:ri),

i£j i=1



most often called the Hamiltonian. Here the z;’s belong to R? (identified with the complex
plane C), 8 > 0 is a parameter corresponding to (the inverse of) the temperature and V' is a
potential satisfying some growth and regularity assumptions, which we will detail below.

The probability law IP’Q is the Gibbs measure of what is called either a classical “two-
dimensional Coulomb system” or “Coulomb gas” or “two-dimensional log gas”, or “two-
dimensional one-component plasma”, or also “Gaussian [-ensemble”. It was first pointed
out by Dyson [Dy| that Coulomb gases are naturally related to random matrices. This is
somehow due to the fact that eXii °81% =25l ig the square of the Vandermonde determinant
[lic;lzi — z;| and thus the law PJ, in the particular case when V(z) = |z/? and B = 2
corresponds, as shown in [G] (see also [Me], Chap. 15), to the law of eigenvalues for the
Ginibre ensemble, which is the set of matrices with independent standard (complex) Gaussian
entries. For the general background and references to the literature, we refer to the book by
Forrester [Fo| and references therein.

The Gibbs measure P can also be studied for x;’s belonging to the real line (the one-
dimensional case). In the context of statistical mechanics (general f3), this corresponds to
“log gases”, and in the context of random matrices (8 = 1,2,4), to Hermitian or symmetric
random matrices (whose eigenvalues are always real). We examine that case in our companion
paper [SS2], showing the present study can be extended to handle it. We also point out that
studying ]P’g with the x;’s restricted to the unit circle and with 8 =1, 2,4 also has a random
matrix interpretation: it corresponds to the so-called circular ensembles, e.g. in the § = 2
case, eigenvalues of the unitary matrices distributed according to the Haar measure. We also
plan on examining this case in the future.

All the above models have been studied quite extensively in the literature, particularly
from the random matrix point of view (although there one can say the planar or complex
Ginibre case has attracted less attention than the real or Hermitian case), but also from the
statistical mechanics point of view, more particularly in the physics literature (particularly
relevant are [AJ, SM, JLM]).

The current research on the random matrix aspect in the complex case focuses on studying
the more general case of random matrices with entries that are not necessarily Gaussian and
showing the average behavior is the same as for the Ginibre ensemble, see e.g. [Ba, TV]. This
is referred to as universality. We are instead limited to exact Vandermonde factors but we
emphasize that our results are valid for all 3, hence they are not limited to random matrices
and thus for the proof we cannot rely on any explicit random matrix model. Our results also
have some universality feature in the sense that they are valid for a large class of potentials
V.

The function w,, can also be studied for its own sake: it can seen as the interaction energy
between similarly charged particles confined by the potential V. The case where V(z) is
quadratic arises for instance as the interaction energy for superconducting vortices in the
Ginzburg-Landau theory, in the regime where their number is fixed, bounded (see [SS2],
Chapter 11). In the case where V is equal to zero on a compact set K and to +o0o elsewhere,
which is not treated here, the minimizers of w, are known as Fekete points or Fekete sets,
cf. the book of Saff and Totik [ST] for general reference. These are interesting in their own
right — they arise mainly in polynomial interpolation — and the literature on the question of
their distribution in various situations is vast. When instead V is a general smooth enough
function (the situation we treat here), the minimizers of w, are called “weighted Fekete
points” or weighted Fekete sets, and are also of interest, cf. again [ST].



We will pursue the analysis of these weighted Fekete sets, which can be seen as the formal
limit 5 — +o0 of (1.1), in parallel with the analysis of (1.1) for general 3, and obtain new
results in both cases.

In the case of the Ginibre ensemble, i.e. when V(z) = |z|? and 8 = 1, it is known that the
“spectral measure” v, := % > iy 0z, converges to the uniform measure on the unit disc. More

precisely }P’g, seen as a probability on the space of probability measures on C (the spectral
measures) converges to a Dirac mass at py = %1 B,dz. This is the celebrated “circular law”,
attributed in this case to Ginibre, Mehta, an unpublished paper of Silverstein in 1984, and
then Girko [Gi]. The large deviations from this law was established by Ben Arous and Zeitouni
[BZ] (see Theorem 4 below): they showed that a large deviations principle holds with speed
n~2 and rate function

(1.3) I = [, ozl —yldute)duts) + [ lof du(a)

whose unique minimizer among probabilities is of course the “circle law” distribution %1 B, dx.
For the case of a general V' and a general 5, the same large deviations principle holds with
the rate function, analogue of (1.3), being

(1.4) I = [, ~logla =yl duta) du(o) + | | Vi) duta).

This can be easily readapted from the proof of [BZ], otherwise it is proven in a much more
general setting in [Be]. Again the spectral measure v,, = % >4 84, converges to the minimizer
among probability measures of I, called the equilibrium measure, which we will denote pg. In
the case of weighted Fekete sets, the analogue to the circular law has been known to be true
for a much longer time: it was proved by Fekete, Polya and Szégo that % > 0, converges
to the same equilibrium measure minimizing I (then also referred to as the electrostatic
interaction energy), whose description goes back to Gauss, and was carried out with modern

mathematical rigor by Frostman [FR].

We are interested in examining the “next order” behavior, or that of fluctuations around
the limiting distribution pg. Let us mention that such questions have already been addressed,
often with the point of view of deriving explicit scaling limits (e.g. [BSi, G]) or laws for certain
statistics of fluctuations. One can see for example [AHM] where the authors essentially prove
that the law of the linear statistics of the fluctuations is a Gaussian with specific variance
and mean, or also [Rid] for related results. Our approach and results are quite different.

Recalling I and p are found through the large deviations at speed n~2, we look into the
speed n~! and, while we do not prove a complete large deviations principle at this speed, we
show there is still a sort of rate function for which a “threshhold phenomenon” holds. This
analysis is based on an expansion, through a crucial but simple “splitting formula” (which we
present in Section 1.1 below) of wy(1,...,%y), as equal to n*I(ug) — % logn plus a term of
order n, which tends as n — 400 to the “renormalized energy” W, a Coulombian interaction
of points in the plane with a uniform neutralizing background, that we introduced in [SS1]
and whose definition we will recall below in Section 1.2. To be more precise the limit term is
the average value of W on the set of blow-up limits of the configuration of points x1,...,z,
at the scale 1/4/n. It is this average that partially plays the role of a rate function at speed
n~!. For a precise statement, see Theorem 5.



Another way of saying this is in the language of I'-convergence (for a definition we refer
to [Br, DM], suffice it to know that this is the right notion of convergence to ensure that
minimizers of w, converge (via their empirical measures) to minimizers of I, i.e. to pug): it
is not very difficult to show (for a short proof, see [SS2] Prop. 11.1) that ¥3 I'-converges as
n — 0o to I, defined in (1.4). Here we examine the next order in the “I'-expansion” of w,, i.e.
we study the I'-convergence of 1 (w, —n%I(u)), and show that the I'-limit is (the average of)
W. Consequently, after blow-ups at scale y/n, minimizers of w, (i.e. weighted Fekete sets)
should minimize the (average of the) renormalized energy W. For a precise statement, see
Theorem 2.

Before yet giving a precise definition, let us mention that we introduced the renormalized
energy W in [SS1] for the study of interaction of vortices in the context of the Ginzburg-
Landau energy of superconductivity (for general reference on the topic, cf. [SS2]). Config-
urations that minimize the Ginzburg-Landau energy with applied magnetic field, exhibit in
certain regimes “point vortices” that are densely packed (there are n > 1 of them) and are
expected to arrange themselves in perfect triangular lattices (i.e. with 60° angles), named
Abrikosov lattices after the physicist who predicted them [A]. The Abrikosov lattices are
indeed observed in experiments on superconductors'. In [SS1] we made this partly rigorous
by showing that minimizers of the Ginzburg-Landau energy have vortices that minimize the
renormalized energy W after blow-up at the scale y/n. The conjecture made in [SS1], also
supported by some mathematical evidence (see Section 1.2), is then that the minimal value of
W is achieved by the triangular lattice ; if proven true this would completely justify why vor-
tices form these patterns. Combining this conjecture with the above conclusion that weighted
Fekete sets should (after blow-up) minimize W, we thus obtain the conjecture that they also
should locally form Abrikosov (triangular) lattices.

We can phrase an analogous question for Coulomb gases or random matrices. Here IP’E
induces a probability measure on the family of blow-ups of (z1,...,z,) around a given origin
point in E — the parameter of the family — at the scale y/n, a blow-up scale after which
the resulting points are typically separated by order 1 distances. In the limit n — oo this
yields a probability measure on the set of configurations of points in the plane and we may
ask if, almost surely, the blow-up configurations minimize W. Our results indicate that this
is not the case, however we are able to prove that there is a treshhold phenomenon, in the
sense that except with exponentially small probability, the average of W is below a certain
constant, itself converging to the minimum of W as 8 — oo, which indicates crystallisation,
i.e. if the above conjecture is true, we should see Abrikosov lattices as 8 — oc.

To our knowledge, this is the first time Coulomb gases or Fekete sets are rigorously
connected to triangular lattices, in agreement with predictions in the physics literature (see
[AJ] and references therein).

A corollary of our way of expanding w, is that we obtain a next order estimate of the
partition function fo , a result we can already state:

Theorem 1. Let V' satisfy assumptions (1.11) — (1.13) below. There ezist functions fi, fo
depending only on V', such that for any By > 0 and any B > By, and for n larger than some
ng depending on By, we have

(15) nBfi(8) < log 25 - (—gn%wo) 2 1ogn> < nBha(H).
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with f1, fa bounded in [By, +00) and such that

(1.6) lim fi(B8) = 511_{{.10 f2(B8) = —

B—00

a
2
where a is some constant related to W, and explicited in (1.36) below.

This improves on the known results, which only gave the expansion log VA gnzl (10)-

Let us recall that an exact value for Zﬁ is only known for the Ginibre ensemble case of g = 2
and V(z) = |z|%: it is Z2 = nan(nt ) gn [15_, k! (see [Me], Chap. 15). Known asymptotics
allow to deduce (cf. [Fo] eq. (4.184))
2

(1.7) log Z2 = —3% + glogn +n(—1+ %logQ + glogw) + O(logn) as n — oo,
where we note the value of I() is indeed % for this potential. On the other hand, no exact
formula exists for general potentials 2, nor for quadratic potentials if 3 # 2. This is in contrast
with the one-dimensional situation for which, at least in the case of quadratic V, ZP has an
explicit expression for every 3, given by the famous Selberg integral formulas (see e.g. [AGZ]).

In statistical mechanics language, the existence of an exact asymptotic expansion up to
order n for log Z8 s essentially the existence of a thermodynamic limit. This is established
in [LN] for a three-dimensional Coulomb system, and in a nonrigorous way in [SM] in two
dimensions.

As suggested by the strong analogy between Coulomb gases and interacting vortices in
the Ginzburg-Landau model, we will draw heavily on methods we introduced in [SS1], such
as the splitting, blow-up, the use of the ergodic theorem, and particular Ginzburg-Landau
tools.

The rest of the introduction is organized as follows: first we give some more notation, give
the assumptions we need to make on V' and state the splitting formula, then we present the
definition of the renormalized energy and the main results from [SS1] that we will use, and
finally we state our main results and comment on them.

1.1 The equilibrium measure and the splitting formula

We need to introduce some notation, and for this we need to describe the equilibrium measure
o minimizing (1.4) among probability measures.

This description, which is now classical in potential theory (see again [ST]) says that,
provided lim,|_, o V(z) —log |z| = +00 and log V' is lower semicontinuous, this equilibrium
measure exists, is unique, and is characterized by the fact that there exists a constant ¢ such
that, quasi-everywhere,

(1.8) Uro + g >c and UM+ % =c on Supp(up),

where for any measure u, U* denotes the potential generated by p, defined by

(1.9) Ur(w) == [ logla =yl du(y) = =270

2an exception is the result of [DGIL] for a quadrupole potential



Here and in all the paper, we denote by A~! the operator of convolution by % log|-|. It is
such that A o A~! = I, where A is the usual Laplacian. We denote the support of jio by E.

Another way to characterize U0 is as the solution of the following obstacle problem? : It
is a superharmonic function bounded below by ¢ — V/2 and harmonic outside the so-called
coincidence set

(1.10) E={U" =c—V/2).

This implies in particular that U# is C1:1if V is (see [C]).
It is now a good time to state the assumptions on V' that we assume are satisfied in the
sequel.

(1.11) Vis OM and lim V(z) —log|z| = +o0,

|z| =400
(1.12) In a neighborhood of E, V is C* and there exists m,m > 0 s.t. m < AV < 7,

(1.13) V is such that OF is C*.

The assumption on the growth of V' is what is needed to apply the results from [ST]| and
to guarantee that (1.4) has a minimizer. The other conditions are technical, they are meant
to ensure that po and its support are regular enough, which we will need for example when
making explicit constructions, and that po never degenerates. Indeed, assumptions (1.12)—
(1.13), together with (1.8), (1.9) and the regularity of V', ensure that

AV (z)
4

(1.14) o = mo(x)dz, where mg(x) = 1p(z).

hence for some m,m > 0 we have
(1'15) m<mgy<m.
Next, we set ( = UH0 + % — ¢ where ¢ is the constant in (1.8). This function satisfies

AC — %AV ]_RQ\E
(1.16) ¢ =0 in £
¢ >0 in R\ B

From our assumptions on V, in particular assumption (1.12), it follows that for some ¢ > 0
and z in a neighbourhood of F,

(1.17) C(z) > ¢ dist(z, B)?.

This follows for instance by using (1.16), (1.12) to deduce that A{ > 1 outside E, and then
writing A¢ in coordinates (r, o) where r is the distance to E, to obtain a lower bound for (.,
outside but close enough to E (see [KS], [Fre|, [Fri], [C]). In fact [C] shows that this rate is
optimal.

3The obstacle problem is a free-boundary problem and a much-studied classical problem in the calculus of
variations, for general reference see [Fri, KS].



The function ¢ arises in the splitting formula for w,, which we now present. As mentioned
above, expanding the probability density to the next order goes along with blowing-up the
points by a factor /n. We then denote the blown-up quantities by primes. For example
z, = \/nz;, mo' (') = mo(x), etc ...

The splitting formula, proven in Section 2 is the observation that, for any x1,...,Zy,

1 n
(1.18) wa(1, ... mn) = 021 (1g) — glogn W=V H 1) + 20 (),
=1

where V* := (-0,,,0,,) and

(1.19) H' = —2rA™! (Z Ogr — m0’> ,
=1

and where, in agreement with formula (1.27) below,

1
(1.20) W(=VtH 1) := lim / |\VH'|> + mnlogn | .
n—0 \ 2 R2\U™, B(z},n)

Letting, for a measure v

L1 Loy . . n
(121) F)=4n <7TW(—V H' 1g2) + 2n/(du> if v is of the form) " | 6y,

—+00 otherwise,

the relation (1.18) can be rewritten

n n
(1.22) wn (1, ..., x,) = nI () — 3 logn +nk, (Z; 6%.) .

This allows to separate orders as announced since we will see that F, (31", d5,) is typically

of order 1.
We may next cancel out leading order terms and rewrite the probability law (1.1) as

1
1.23 AP (21, ... an) = —se "2 (i) 4y da,
" g
Kn
where
(1.24) KB = 78¢5 (mo)=5 logn),

As we will see below log K% is of order nf, which leads to Theorem 1.

1.2 The renormalized energy

We now define precisely the “renormalized energy” W, which is a way of computing the
Coulomb interaction between an infinite number of point charges in the plane with a uniform
neutralizing background of density m. We point out that, to our knowledge, each of the
analogous Coulomb systems studied in the physics literature (e.g. [SM, AJ]) comprise a finite
number of point charges, and hence implicitly extend only to a bounded domain on which
there is charge neutrality. Here we do not assume any local charge neutrality.

We denote by B(x, R) the ball centered at x with radius R and let Bg = B(0, R).



Definition 1.1. Let m be a nonnegative number. For any continuous function x and any
vector-field j in R? such that

(1.25) curlj = 27(v —m), divj=0
where v has the form

(1.26) v= Z 6p  for some discrete set A C R?,

we let

(1.27) W, y) = lim | -

x|i* +wlogn Y x(»)
n—0 | 2 /RZ\UpEAB(PJI) Z

pEA

Definition 1.2. Let m be a nonnegative number. Let j be a vector field in R2. We say j
belongs to the admissible class Ay, 4 if (1.25), (1.26) hold and

v(Br)
| Br|

(1.28) is bounded by a constant independent of R > 1.

For any family of sets {Ug} g0 in R? we use the notation xy,, for positive cutoff functions
satisfying, for some constant C independent of R,

(1.29) IVxugl <C, Supp(xug) C Ug, xug(z)=1ifd(z,Ug°) > 1.

Definition 1.3. The renormalized energy W is defined, for j € A, by

Wi
(1.30) W(j) = limsupM,
R—o0 ’BR’

with {xBy } r satisfying (1.29) for the family {Br}r>o.

In theory, many different j’s could correspond to a given v (one can always add the
gradient of a harmonic function). But as it turns out, they only differ by a constant:

Lemma 1.4. Let m >0 and v = ZpeA Op, where A C R? is discrete, and assume there exists
7 such that

(1.31) curlj =27x(v—m), divj=0, and W(j) < 4oc.

Then any other j' satisfying (1.31) is such that j — j' is constant.
If there exists j, such that (1.31) holds and such that

(1.32) im {0,

R—o0 Br

then any other j satisfying (1.31) is such that W (j) > W (j,).

4Note that this definition slightly differs from [SS1]: A,, here corresponds to Azxm there.



Proof. Let j, 7' be as above, then j — j' can be seen as as complex function of a complex
variable and from (1.31) it is holomorphic. From the finiteness of W (j) and W (j’) we deduce
easily that [ Br |7 — §/|*> < CR? and using Cauchy’s estimate for the coefficients of a power
series together with a mean value argument it follows that 7 — j’ is constant.

For the second statement, we deduce from the first statement that j = j, + ¢ for some
constant vector ¢ # 0, and then

. . . |c|?
W(]?XBR) = W(]V?XBR) +c- /]VXBR + 7‘ XBr>

2
so that dividing by |Bg|, passing to the limit as R — +oc and in view of (1.32), we find
W(j) =W () + 5lel* O

Note that given v, the above lemma shows that either for all j’s satisfying (1.31) the limit
limp s JCBR 7, exists, or it exists for none of them. Both cases may occur.
The following additional facts and remarks about W are from [SS1]:

- In the definition (1.30), the balls { Bg} r can be replaced by other families of (reasonable)
shapes {Ug}r, this yields a definition of a renormalized energy Wy, where the letter
U stands for the family {URr}.

The value of W does not depend on {xp,}r as long as it satisfies (1.29). The corre-
sponding statement holds for W under certain assumptions on the family {Ugr}r>o.

- W is bounded below and admits a minimizer over A;.

- It is easy to check that if j belongs to A,,, m > 0, then j’ = \/%j(/\/m) belongs to Ay

and
(1.33) W) =m (W(j’) - glog m) .
Consequently if j is a minimizer of W over A,,, then j' minimizes W over A;. In
particular
(1.34) min W = m <minW . logm> .
m ./41 2

- The minimizers and the value of the minimum of Wy are independent of U. However
there are examples of admissible j’s for which Wy (j) depends on the family of shapes
{Ugr}Rr>0 which is used.

- If j € A, then in the neighborhood of p € A we have curl j = 27 (6, —m), div j =0,
thus we have near p the decomposition j(z) = V+log |z — p| + f(z) where f is C*, and
it easily follows that the limit (1.27) exists if y is compactly supported. It also follows
that j belongs to L _ for any p < 2.

- Because the number of points is infinite, the interaction over large balls needs to be
normalized by the volume, as in a thermodynamic limit. Thus W does not feel compact
perturbations of the configuration of points. Even though the interactions are long-
range, this is not difficult to justify rigorously.



- In the case m = 1 and when the set of points A is periodic with respect to some
lattice Zu + Z then it can be viewed as a set of n points ay,...,a, over the torus
T (a5 := R*/(Zi + Z0) with |T (7| = n. In this case, the infimum of W (j) among j’s
which satisfy (1.31) is achieved by ji,,3 = —V+th, where h is the periodic solution to
—Ah =27()_,; 04, — 1), and

(1.35) W (jfan) = ZG )+ lim (G(z) + log |x])

(@) 2#]

where G is the Green function of the torus with respect to its volume form, i.e. the
solution to

_AG($) =27 <50 ’T 1 ’) in T(gﬁ).

An explicit expression for G can be found via Fourier series and this leads to an explicit
expression for W of the form >, .. E(a; — a;) where E is an Eisenstein series (for more
details see [SS1] and also [BSe]). In this periodic setting, the expression of W is thus
much simpler than (1.30) and reduces to the computation of a sum of explicit pairwise
interaction.

- When the set of points A is itself exactly a lattice Zu + ZU then W can be expressed
explicitly through the Epstein Zeta function of the lattice. Moreover, using results
from number theory, it is proved in [SS1], Theorem 2, that the unique minimizer of
W over lattice configurations of fixed volume is the triangular lattice. This supports
the conjecture that the Abrikosov triangular lattice is a global minimizer of W, with a
slight abuse of language since W is not a function of the points, but of their associated
current jrg;y-

This last fact allows us to think of W as a way of measuring the disorder and lack of homo-
geneity of a configuration of points in the plane (this point of view is pursued in [BSe] with
explicit computations for random point processes). Another way to see it is to view W as
measuring the distance between Zpe A 0p and the constant m in H~!. However this distance
is infinite, both because the domain is infinite and because Dirac masses do not belong to
H~', which is why the actual definition is more involved and requires this “renormalized”
computation using 7 — 0 (hence the name, borrowed from [BBH]).

We may now define the constant o which appears in Theorem 1 and in Theorem 2 below:

1
(1.36) a=— EAml?)WdJ:_man_/mo x) logmo(x) dz,
mq(x

where we have used (1.34) and the fact that, from (1.14), [, mo = 1. Note that « only
depends on V, via the integral term, and on the (so far) unknown constant min4, W.

1.3 Statement of main results

Our first result identifies the I'-limit of {F},},, defined in (1.21) or (1.22). This in particular
allows a description of the weighted Fekete sets minimizing w,, at the microscopic level. Below
we abuse notation by writing v, = 7" | d;, when it should be v, = > 7" 04, . For such a
v, we let v/ = 3" | 6,/ be the measure in blown-up coordinates and j, = —V+H’, where H’
is defined by (1.19) - equivalently j, is the solution of div j, = 0, curl j, = 27x(v/ — my’) in

10



R? which tends to 0 at infinity. (To avoid confusion, we emphasize here that v lives at the
original scale while j, lives at the blown-up scale.) We also let

i.e. the push-forward of the normalized Lebesgue measure on E by = — (x, j,, (v/nz +-)). It
is a probability measure on E x LfOC(R2, R?) (couples of (blow-up centers, blown-up current
around this center)).

The limiting object as n — 400 in the I'-limit of w,, was v = lim,, i,,. In taking the I'-limit
of F,, the limiting object is more complex, it is the limit P of P, , i.e. a Young measure akin
to the Young measures on micropatterns introduced in [AM]. Note that in the rest of the
paper, the probability P has nothing to do with IP’E, and depends on the realizations of the
configurations of points.

We will here and below use the notation

(1.38) D7) = v (8 (2. 55) ) = (B (72 ) ).

where 2/ = y/nx as usual.

Theorem 2 (Microscopic behavior of weighted Fekete sets). Let the potential V' satisfy as-
sumptions (1.11)~(1.13). Fix 1 <p <2 and let X = E x Lf (R% R?).

loc

A. Lower bound. Let v, = 2?21 0z, be a sequence such that Fy(vy,) < C. Then P,,
defined by (1.37) is a probability measure on X and

1. Any subsequence of {P,, }n has a convergent subsequence converging to a probability
measure on X asn — co. We denote by P such a limit.

2. The first marginal of P is the normalized Lebesgue measure on E. P is invariant by
(,7) = (@,j(A(x) + ), for any A(z) of class C' from E to R? (we will say Ty
invariant ).

3. For P almost every (z,j) we have j € Ap(2)-
4. Defining o as in (1.36), it holds that

E
(1.39) lim inf <Fn(1/n) - Q/Cdun> > H/W(]) dP(z,j) > a.
n— 00 s

B. Upper bound construction. Conversely, assume P is a T),)-invariant probability
measure on X whose first marginal is ﬁd(]}w and such that for P-almost every (z,j) we have
J € Amo(x)- Then there exists a sequence {vn =371 02, }n of empirical measures on E and
a sequence {jn}n in LV (R? R?) such that curlj, = 27(v), — mo’) and such that defining P,
as in (1.37), with j, replacing j,,, we have P, — P as n — oo and

E
(1.40) limsup Fp, (vp,) < ||/VVK(j)dP(x,j),
n—o00 ™
where Wi is the renormalized energy relative to the family of squares {Kp = [~ R, R]*} r.
C. Consequences for minimizers. If (x1,...,x,) minimizes wy, for every n and v, =

Yoy 0z, then the limit P of P, as defined in (1.37) satisfies the following.
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1. For P-almost every (z,j), the current j minimizes W over Ao (a)-

2. We have

n—00 n—00 4

E n
lim F,(v,) = ||/VV(]) dP(z,j) = a, lim E dist?(z;, E) = 0.
™
=1

3. There exists C > 0 such that for every ' € R?, R > 1 and using the notation (1.38) we
have

/
(1.41) D(z', R)? min <1, W) < Cn.

Note that part B of the theorem is only a partial converse to part A because the constructed
Jn need not be divergence free, hence in general j,, # j,, . Also the lower bound (1.39) uses W
and the upper bound (1.40) uses Wx. In fact (1.39) is true with Wy for any family {Ug}r
satisfying (6.2) below, and in particular we could replace W by W there. We recall though
that both have the same minimizers and minimum value, as proved in [SS1].

This theorem is the analogue of the main result of [SS1] but for w, rather than the
Ginzburg-Landau energy. It is technically simpler to prove, except for the possibility of a
nonconstant weight mg(z) which was absent from [SS1]. It can be stated as the fact that
@ J WdP, which can be understood as the average of W with respect to all possible blow-up
centers in E (chosen uniformly at random), is the I'-limit of w, at next order. Its minimum
over all admissible probabilities is .

The estimate (1.41) gives a control on the “discrepancy” D (between the effective number
of points and the expected one) at the scale R/\/n. Note that in a recent paper [AOC],
the authors also study the fine behavior of weighted Fekete sets. Using completely different
methods, based on Beurling-Landau densities and techniques going back to [Lal, they are able
to show the very strong result that

D R
lim sup lim sup L’)

R—o0 n—o0 R?

=0,

as long as dist(z,, 9E’) > log?n. This shows that the density of points follows uo at the
microscopic scale 1/y/n and thus the configurations are very rigid. This still leaves however
some uncertainty about the patterns they should follow. On the contrary, our result is less
precise about D(z, R) since we only recover the optimal estimate when R grows faster than
n'/% but it connects the pattern formed by the points to the Abrikosov triangular lattice via
the minimization of W.

We now turn to Coulomb gases. It is straightforward from the form (1.23) and the estimate
(provided by Theorem 1) log K = O(np) where KP is defined in (1.24), to deduce that
F,, < C except on a set of small probability. This fact allows to derive various consequences,
the first being estimates on the probability of certain rare events.

Theorem 3. Let V satisfy assumptions (1.11)—(1.13).
There exists a universal constant Ry > 0 and ¢, C > 0 depending only on V' such that: For
any By > 0, any n large enough depending on By, and any B > Py, for any x1,...,z, € R2,
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any R > Ry, any x{, = /nzg € R? and any n > 0, letting v, = > 0, we have the
following:

(1.42) log P? (’D(:ca, R)‘ > nRQ) < —cBmin(n?, n*)R* + CB(R? +n) + Cn.

(1.43) log P? </(d1/n > 77) < —%nﬁn +Cn(B +1).

Moreover, for any smooth bounded U' = \/nU C R?,

/ 2 /
D R? (1, D@, R)|

(1.44) logP? ( 5 5 > dx' > 17) <np(—en+ C|U|+ C) + Cn.
R R

Finally, if q € [1,2) there exists ¢,C > 0 depending on V and q such thatVn > 1, R > 0,
1 1
5 R?\2 2
(a9) togB (1475 ) = mmol o, o 2 0V ) < —eni? 4 Ca5 + 1),

where W—14(Q) is the dual of the Sobolev space Wol’p(ﬂ) with % —|—% = 1; in particular W11
is the dual of Lipschitz functions.

These estimates can roughly be read in the following way: as soon as 7 is large enough,
the events in parentheses have probability decaying like e=“*. More precisely, we bound
the probability that a ball contains too many or too few points compared to the expected
number nug(B), but whereas the circular law does it for a macroscopic ball, i.e. for R
comparable to y/n, the estimate (1.42) is effective at microscopic scales, of the order of nt/4,
This is sometimes called in this context “undercrowding” or “overcrowding” of points, see
[JLM, NSV, K]. In view of similar results in [JLM] and the result of [AOC], we could expect
this to hold as soon as R > 1, but this seems out of reach by our method. This can also
be compared with analogous estimates without error terms proven in the case of Hermitian
matrices, cf. [ESY]. These results, in the Hermitian case, are proven in the general setting of
Wigner matrices, i.e. Hermitian matrices with random i.i.d. entries, which do not need to be
Gaussian. They only concern some fixed 8 however.

The estimate (1.44) gives a global version of this result: it expresses a control on the
average microscopic “discrepancy” D. This control is in L? for large values of the discrepancy,
and in L3 for small values. The estimate (1.43) allows, in view of (1.17), to control (again
with some threshhold to be beaten) the probability that some points may be far from the set
E. Note that since v, is a non-normalized empirical measure, (1.43) ensures for example that
the probability that a single point lies at a distance 7 from E' is exponentially small as soon
as 7 is larger than some constant. All these estimates rely on controlling D and F,, by W.

Finally, (1.45) tells us that fluctuations around the law nuo can be globally controlled (take
for example R = /n) by O(y/n) (except with exponentially small probability). We believe
this estimate to be optimal. Its proof uses in a crucial manner the result of [ST], which
controls, via Lorentz spaces, the difference v, — nug in terms of the renormalized energy W.

Our last result mostly expresses Theorem 2 in a “moderate” deviations language. Before
stating it, let us recall for comparison the result of [BZ]:

13



Theorem 4 (Ben Arous - Zeitouni). Let 8 =2 and V(z) = |z|2. We denote by Pl the image
of the law (1.1) by the map (z1,...,xy) = Uy, where v, = %Z?:l dz,- Then for any subset
A of the set of probability measures on R? (endowed with the topology of weak convergence),
we have

—inf I(p) < llmmf—logIP”B(A) < limsupizlog@g(/l) < — inf I(y),

ped n—oo n? n—oo TN ueA

where T = I —min .

Before stating our theorem, we introduce the following notation, which allows to embed
C" into the set of probabilities on X = Ex LP (R? R?): For any n and x = (z1,...,z,) € C"
we let i(x) = P,,,, where v,, = > | 0, and P, is as in (1.37), so that i(x) is an element of
P(X), the set of probability measures on X = E x LI (R? R?).

Theorem 5. For anyn > 0 let A, C C". Denote
(1.46) A=) U i(An)
n>0m>n
Then for any n > 0 there is Cy, > 0 depending on V' and n only such that o being as in (1.36),
: logPh(An) _ B(lE| . &
1.4 1 — < ——( )dP —n— —”)
(1.47) 1£r1_>8£p - _27TP€A/W )dP(x,j) —a—n 3

Conversely, let A C P(X) be a set of Ty -invariant probability measures on X and let A
be the interior of A for the topology of weak convergence. Then for any n > 0, there exists a
sequence of subsets A, C E™ such that

B
2 T PpcA ﬁ n—oo n
and such that for any sequence {vy, = > | 0z, }n such that (z1,...,x,) € A, for every n

loc(R27R2) such that curljn = 271—(”;1 _ m()/) and
such that — defining P, as in (1.37) with j, replacing j,,, — we have

there exists a sequence of currents j, € L

(1.49) lim P, € A.
n

Note that if P,, was P, , then (1.49) would be equivalent to saying that N,U,>ni(A4y) C A.
The difference betwen P,,, and P, is that the latter is generated by a current j, which is not
necessarily divergence free.

Compared to Theorem 4 this result can be seen as a next order (n instead of n?) deviations
result, where the average of W over blow-up centers plays the role of a rate function, with
a margin which becomes small as § — co. While Theorem 4 said that empirical measures
at macroscopic scale converge to pg, except for a set of exponentially decaying probability,
Theorem 5 says that within the empirical measures which do converge to g, the ones with
large average of W (computed after blow-up) also have exponentially decaying probability,
but at the slower rate e~ instead of e=". More precisely, there is a threshhold C'/3 for some
C > 0, such that configurations satisfying

E
H/WdPZoH—C
m B
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have exponentially small probability, where we recall « is also the minimum possible value
of @ J W dP. Since we believe that W measures the disorder of a (limit) configuration of
(blown up) points in the plane, this means that most configurations have a certain order. The
threshhold, or gap, C'//3 tends to 0 as 8 tends to oo, hence in this limit, configurations have
to be closer and closer to the minimum of the average of W, or have more and more order.

Modulo the conjecture that the minimum of W is achieved by the perfect “Abrikosov”
triangular lattice, this constitutes a crystallisation result. Note that to solve this conjecture,
it would suffice to evaluate «, which in view of Theorem 1 is equivalent to being able to
compute the asymptotics of Zﬁ as B — oo. More generally, the following open questions
naturally arise in view of our results, and are closely related to one another:

- Prove that min 4, W is achieved by the triangular lattice.

- Find whether a large deviations statement is true at speed n, and if it is, find the rate
function.

- Describe the limit of the probability measures P? on P(X) defined as the images of P
by the embedding 1.

In [SS2] we will see that all the results we have obtained here are also true in the case
of points on the real line, i.e. for 1D log gases or Hermitian random matrices. There the
minimization of W is solved (the minimum is the perfect lattice Z) and the crystallisation
result is complete.

The rest of the paper is organized as follows: Section 2 contains the proof of the “splitting
formula”. In Section 3, we present the “spreading result” from [SS1] and some first corol-
laries. In Section 4, we present an explicit construction which yields the lower bound on
Zﬁ , whose proof is postponed to Section 7. In Section 5, we show how W controls the over-
crowding /undercrowding of points, and prove Theorem 3. In Section 6 we present the ergodic
averaging approach (the abstract result) and apply it to conclude the proofs of Theorem 2, 5
and 1.

Acknowledgements: We are grateful to Alexei Borodin, as well as Gérard Ben Arous,
Amir Dembo, Percy Deift, and Alice Guionnet for their interest and helpful discussions. We
thank Peter Forrester for useful comments and references. E. S. was supported by the Institut
Universitaire de France and S.S. by a EURYI award.

2 Proof of the splitting formula

The connection between w, and W originates in the following computation

Lemma 2.1. For any x1,...,z, and letting v =, 0, the following holds

1
Conm

W(=V H 1ge) + 2 ()
=1

(21) Fu(v)

1

n
= g <w’n($17 s 7'%.71) - n2[(/”’0) + Elogn> )

where F,, is defined in (1.21), W is defined in (1.27), and H' is defined in (1.19).
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Proof. Let v =" | 6,,. First we note that since v and njo have same mass and compact
support we have H(x) = O(1/|z|) and VH(z) = O(1/|z|?) as |z| — +oo.
We prove that, denoting A the diagonal in R? x R?,

(2.2) / —log |z — gl d(v — ngso) () d(v — njao)(y) = =W (=4 H, 1ge).
(R2xR2)\A ™

First, using Green’s formula,

/ |\VH|? = H—i—Z/ H+27r/ Hd(v — nug).
Br\U; B(z;,m) 0BRr 0B(x,m) v Br\U; B(z;,1)

Let H;(x) := H(x) + log |z — z;|. We have H; = —log*(v; — npugp), with v; = v — §,,, and
near z;, H; is C'. Therefore, using (1.19) and the boundedness of jo in L, we have that,
asn— 0

/ Ha—H —27logn + 2w H;(x;) + o(1),
OB OV

while the integral on 0Bpg tends to 0 as R — +oo from the decay properties of H. We thus
obtain, as n — 0 and R — 400,

/ |\VH|? = —27m10g77—|—27rZHi(xi)—27m/Hd,uo+0(1),
Bi\UiB(z.) i
and therefore, by definition of W,
(2.3) W(=V+H, 1p0) = ﬁZH@(ZL'Z) - Wn/Hduo.
Second we note that given x € R?, either x ¢ {z;} and
L. =logle = yldr = o)) = H(),
R2\{z}
or x = x; and
L. =logle = yld(r = o)) = Hi(w,).
R2\{z}
It follows that

/A —log |x — y| d(v — npo)(x) d(v — npo)(y ZH (x4 —n/H ) dpo(z

which together with (2.3) proves (2.2).
On the other hand, we may rewrite w,, as

wnonsesza) = [ ~logle — yldv@)dvly) +n [ V(@) dv(o)
Ac
and, splitting v as nuo + v — nug and using the fact that pg(A) = 0, we obtain
w(xy, ..., x,) = n?I(u) + 2n / UF (z) d(v — nuo)(z) + n/V(m) d(v — nugp)(z)

4 / —log |z — y|d(v — nuo)(x) d(v — npo)(y).
AC
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Since U0 + % = c+ ¢ and since v and nup have same mass n, we have

2n/ UH () d(v — npuo)(z) + n/V(:r) d(v —npop)(z) = Qn/Cd(V — o) = Qn/CdV,
using the fact that ¢ = 0 on the support of pg. Therefore, in view of (2.2) we have found
1
(2.4) w(xy, ..., x,) = n*I(u) + 2n / Cdv + ;W(—VLH, 1g2).

But, changing variables,

1 1
5 ) vap = [ VH?,
2 Jr2\UL_, B(z;.m) 2 Jr2\U_, B(a},\/mm)

and by adding mnlogn on both sides and letting  — 0 we deduce that W (—V+H, 1g2) =
W (—=V+LH' 1g2) — Znlogn. Together with (2.4) this proves (2.1). O

3 A first lower bound on F, and upper bound on Z’

The crucial fact that we now wish to exploit is that, even though W(j, x) does not have
a sign, there are good lower bounds for F,. This follows from the analysis of [SS1], more
specifically from the following “mass spreading result”, adapted from [SS1], Proposition 4.9
and Remark 4.10 (with slightly different notation), which itself is based on the so-called
“ball construction method”, a crucial tool in the analysis of Ginzburg-Landau equations.
This result, that we will use here as a black box, says that even though the energy density
associated to W (j, x) is not positive (or even bounded below), it can be replaced by an
energy-density g which is uniformly bounded below, at the expense of a negligible error.
For any set (2, Q denotes its 1-tubular neighborhood, i.e. {x € R? dist(z,Q) < 1},

Proposition 3.1. Assume Q C R? is open and (v, j) are such that v = 27 ZpeA 0p for some

finite subset A of Q and curl j =2r(v —m), div j =0 in Q, where m € Loo(ﬁ). Then there
exrists a measure g supported on 2 and such that

- Given any constant 0 < p, there exists a family of disjoint closed balls B, covering
Supp(v), with the sum of the radii of the balls in B, intersecting with any ball of radius
1 bounded by p, and such that

1. oA
(3.1) 9> =C(Imlle +1) + 71i 1oz, nQ,

where C' 1s a universal constant.

1,. .
(3.2) g= §|j|2 outside Upcp B(p, C)

where C' is universal.
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- For any function x compactly supported in Q) we have
(3.3 WG - [ xds] < ONGog N + =) 9

where N = #{p € A : B(p,C) N Supp(Vx) # @} for some universal C'.

- For any U C €,

(3.4) #AN0) < C (14 [mllf< O]+ 9(D))
Note that the result in [SS1] is not stated for any p but a careful inspection of the proof
there allows to show that it can be readapted to make p arbitrarily small.

Definition 3.2. Assume v = Y " | 05,. Letting v/ = > " | dy1 be the measure in blown-up

coordinates and j, = —NLH', where H' is defined by (1.19), we denote by g, the result of
applying the previous proposition to (v, j,) in R2.

Even though we will not use the following result in the sequel, we state it to show how we
can quickly derive a first upper bound on Zﬁ from what precedes.

Proposition 3.3. We have

(3.5) log KP < Cnp + n(log |E| + o(1))
and
(3.6) log Z5 < —gnQI(,ug) + % logn + CnfB + n(log |[E| + o(1))

where o(1) — 0 as n — 0o uniformly with respect to B > By, for any By > 0, and C' depends
only on V.

The proof uses two lemmas.

Lemma 3.4. For any v =Y., 05, we have

(3.7) Fuv) = l/w dg,,+2/(d1/,

nm
where Fy, is as in (1.21).

Proof. This follows from (3.3) applied to xp,, where xp, is as in (1.29). If R is large enough
then #{p € Supp(v) : B(p,C) N Supp(Vx) # @} = 0 and therefore (3.3) reads

W(jV7XBR) :/XBR dgu

Letting R — +oo yields W (j,, 1gz2) = [ dg, and the result, in view of (1.21). O

Lemma 3.5. Letting v, stand for > ;" | 65, we have, for any constant X\ > 0 and uniformly
w.r.t. B greater than any arbitrary positive constant B,

1
(3.8) lim </ e~ S Clvm g .d:rn> = |E|.

n—oo
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Proof. By separation of variables, we have

/ e M i C(xi) dri...dz, = </ e~ Mnd(@) dx)
n C

On the other hand, we have ¢ > 0 and {¢ = 0} = F by (1.16), hence we have e~ ") _ 1
pointwise, as Sn — oo. By Lebesgue’s dominated convergence theorem, it follows that (3.8)
holds uniformly w.r.t. 8 > B, for any By > 0. O

Proof of Proposition 3.3. Let again v, stand for Y ;" | d,,. From (3.2) we have g,,, > 0 outside
U;B(z;,C) and from (3.1) we have g, > —C (depending only on ||zo]|z~ hence on V) in
U;B(x;, C'). Inserting into (3.7) we deduce that

Fn(”n) > _C+2/Cd7/n7

where C' depends only on V. Inserting into (1.23) and integrating over C", we find

1
1< KﬂeCnﬁ/ e~ "B [ Cdvn dxy...dx,.
n n

Inserting (3.8) and taking logarithms, it follows that
log KP < CnfB 4 n(log|E| + o(1)).

The relation (3.6) follows using (1.24). O

4 A construction and a lower bound for Z”

In this section, we construct a set of explicit configurations whose W is not too large, and
show that their probability is not too small, which will lead to a lower bound on Z;f . This
is the longest part of our proof. The method is borrowed from [SS1] but requires various
adjustments that we shall detail in Section 7. We will need (1.13) in order to simplify the
construction and estimates near the boundary.

We recall the following result ([SS1], Proposition 4.2). In this proposition, the notation

Wi is used for the renormalized energy relative to the family of squares Kr = [~ R, R)?, i.e.
defined by Wi (j) = limsupp_, o, % where x i, satisfies (1.29) relative to the family of

centered squares.
The following proves Theorem 2, part B and contains a bit more information useful for
proving Theorem 5.

Proposition 4.1. Let P be a T)\,)-invariant probability measure on X = E X L:fOC(RQ,]RQ)
with first marginal dz\g/|E| and such that for P almost every (z,j) we have j € Ay, ). Then,
for any n > 0, there exists § > 0 and for any n a subset A, C C" such that |A,| > n!(76%/n)"
and for every sequence {vy, = 0y, + -+ + Oy, tn with (Y1,...,Yyn) € Ay the following holds.

i) We have the upper bound

) 1 n E ) )
(4.1) lim sup — (wn(yl,.--,yn) —nI(po) + 510gn> < u/WK(J)dP(l‘J) + 1.

n—oo N
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ii) There exists {jn}n in L} (R*,R?) such that curl j, = 2m (v}, — mq’) and such that the
image P, of dx|g/|E| by the map x — (x, jn(v/nx + -)) is such that

(4.2) lim sup dist(P,, P) < n,

n—oo
where dist is a distance which metrizes the topology of weak convergence on P(X).

Applying the above proposition with 7 = 1/k we get a subset A, ; in which we choose
any n-tuple (y; r)i<i<n. This yields in turn a family {P, 5} of probability measures on X. A
standard diagonal extraction argument then yields

Corollary 4.2 (Theorem 2, Part B) Under the same assumptions as Proposition 4.1, there
exists a sequence {Vn = 0z + -+ + 0, }n and a sequence {jn}n in LY (R* R?) such that
curl j, = 27 (v}, — mgy’) and

1
(4.3) lim sup — (wn(:zl, o) — 2T (o) + logn < 1] /W )dP(z, 7).
n—oo N

Moreover, if we assume in addition that P is Ty(,-invariant then, denoting P, the image of
dz|g/|E| by the map x +— (z, jn(v/nx +-)), we have P, — P as n — +00.

Another consequence of Proposition 4.1 is, recalling (1.36) and (1.24):

Corollary 4.3 (Lower bound part of Theorem 1). For any n > 0 there exists Cy) > 0 such
that for any B > 0 we have

log K7,
(4.4) lim inf —2 > —g(a +n)—Cy.

n—-4o0o n

Proof of the corollary. We use Proposition 4.1. Choose jo € A; to be a minimizer for
min 4, W, and let P be the image of the normalized Lebesgue measure on E by the map
T+ (T, Oy (2)Jo), Where

(4.5) omj(y) == vmj(v'my).

Then by construction P-almost every (z,j) satisfies j € A, () and the first marginal of P is
dz g /|E|.

Given n > 0, applying Proposition 4.1 and using the notation there we have |A4,| >
n!(6%/n)"™ and from (1.23) we have

1 B
4.6 1> / — e e ) gy dy,,
(4.6) %
where v, = > | 0,,. From (1.22) and (4.1), when (y1,...,yn) € Ap we have
F(Vn)<77+/WK )dP(x,j) =n+ — /WK O’mo(x)j())d
From (1.33), which is true for Wy as well as W, and since [ Mo = 1, we obtain
1 . 1 , 1
/ Wk (0o (2)do) dv = =Wk (jo) — / mo(z) log mo(z) de = «,
T™JE i 2 E
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by definition (1.36) and using the fact that W and Wy have the same minimum and mini-
mizers (see the remark after (1.34)). We deduce

Fn(Vn) <n+oa.

Together with (4.6) we find 1 > %ef’lg("“‘). Taking logarithms, we find

1
log KP > logn! 4+ nlog 6* — nlogn — inﬂ(n + a).

From Stirling’s formula, logn! > nlogn — Cn and we deduce (4.4), with C,, = —log§* + C.
Note that the dependence on 7 comes from J. O

5 Consequences for fluctuations: proof of Theorem 3

In this section, we prove Theorem 3. The first step is to find, via the method first introduced
in [SS3] and tools from [SS1, ST| how F,, and W control the discrepancy between v, and the
measure 7.

Proposition 5.1. Let v =", 0z,, and g, be as in Definition 3.2. There exists a universal
constant Ry > 0 such that for any R > Ry, and any z{, = \/nzo € R?, we have

D /
(5.1) / dg, > eD(xh, R)* min ( 1, Do, By CR?,
Bon(eh) R

where ¢ > 0 and C depend only on V, and where D was defined in (1.38). °

Proof. From Proposition 3.1 we have, defining j, as in Definition 3.2,
1,
(5.2) gy 2 =C+ 1l 125,

where B, is a set of disjoint closed balls covering Supp(v’), and the sum of the radii of the
balls in B, intersecting any given ball of radius 1 is bounded by p and we may take p < é.

We distinguish two cases. Either D(z(, R) > 0 or D(xj, R) < 0. Let us start with the first
case. We must introduce a modified distance function to z,, as follows. For any x, f(z) is the
infimum over the set of curves 7 joining a point in Bgr(zj) to « of the length of v\ B,. This
is also the distance to zf, for the degenerate metric which is Euclidean outside Br(z() U B,
and vanishes on Bg(z() U B,. We claim the following:

Lemma 5.2. If v — x| > R+ 2 then

—ah R

0L < f@) <o —abl - R

Proof. The upper bound is obvious so we turn to the lower bound. Let 7(¢) be a continuous
curve joining x = (0) to Br(x}). Let us build by induction a sequence z° = z,... 2
with 2*+1 defined as follows: let ¢, be the smallest ¢ > t; such that v(¢) ¢ B(z*, 1) N~ or

5In fact Ro could be any positive constant, and then ¢, C' would depend on Ry as well, but this requires to
adjust p accordingly and we omit for simplicity to prove this fact.
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v(t) € Br(x}). This procedure terminates after a finite number of steps at 2% € 9Bg(z}).
By triangle inequality we have

K-1
(5.3) o — 2| < > 2 — 2| 4 2K —af| < K+ R.
k=0

On the other hand, by property of B,, for any 0 < k < K — 1 we have
C [ty tia] \ By) > |2+ — aF| = 2p.
Summing this over k£ and using (5.3), we find
((y\B,) > K—-1-2Kp>|z—xzj| —R—1—-2p(|z — x| — R) .
Taking the infimum over all curves v we deduce that
f(2) > (ja —ah| — B) (1 —2p) — 1.

Since by assumption |z — zj| — R > 2, we obtain f(z) > (jz — 2(| — R) (1 — 2p — 3) and the
result follows since p < 1/8. O

We proceed with the proof of Proposition 5.1. Since f is Lipschitz with constant 1, almost
every t is a regular value of f. For such a t the curve v, := {f =t} is Lipschitz and does not
intersect B, since Vf = 0 there. Moreover, restating Lemma 5.2 we have

(5.4) f(x) <t = @ € Bryat(xp) U Brya(ap),

thus 74 C Bag(z() if R+ 4t < 2R, i.e. if t < R/4, and R+ 2 < 2R, i.e. if R > 2. It follows
from (5.2) and the coarea formula that if R > 2 then

1 R/4
(5.5) / dg, > —CR* + / (/ Uﬁ) dt.
Bar(c)) 4Ji=o \Jy,

We proceed by estimating the innermost integral on the right-hand side. If ¢ > 1/2 then
Bprto C Briat and using (5.4) we find, using Definition 3.2 and writing D instead of D(x(, R)
in the course of this proof,

/ Ju-T = / curl j,, > 27v (BR (330)> — 2o <BR+4t (IQ))
¥t {r<t} v v
> 21D — C ((R+4t)* — R?),

where we have used (1.15). The right-hand side is bounded below by 7D if R+4t < VR? + ¢D
and c is small enough. Thus, if

R D
(5.6) 1/2<T::4( 1+cR2—1>,
it follows using Cauchy-Schwarz’s inequality that for every t € (1/2,T') we have
D2
(5.7) g2 > w2
Yt h/t‘
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Inserting into (5.5) while reducing integration to 1/2 < ¢t < min(7, R/4) we obtain

min(T,R/4) 1

(5.8) / dg, > —CR? + n*D? —dt.
Bon () t=1/2 7]

The evaluation of the last integral is complicated by the fact that ~; is the level set for f
rather than the usual circle, however the result will be comparable to the one we would get
if we had |v| = 27(R + t), this is proven as follows: From Lemma 5.2 we have for every
t € [1/2,min(T, R/4)] that v C {z : 0 < |z — z{| — R < min(47, R)}. From the coarea
formula and the fact that |V f| <1 it follows that

min(T,R/4)
/ || dt < |{z: R < |z — xp| < R+ min(47, R)}| < CRmin(4T, R).

2

-

Then, using the convexity of z +— 1/x and Jensen’s inequality in (5.8) we obtain for some
¢ > 0 that )
min(T,R/4) in(T. R/4) — 1
/ —dtzc(mm( . /4= 3)
1 |yt ] Rmin(4T, R)

2

Inserting into (5.8) we obtain assuming (5.6) and

(5.9) 1 < min(T, R/4)
that
s D* [ | 1
(5.10) dgy, > —CR*+c— | min(T,R/4) — = | .
Ban(}) R 2

One may check that (5.6), (5.9) are satisfied if R > 4 and D > CyR for a large enough
Co > 0. Then it is not difficult to deduce (5.1) from (5.10) by distinguishing the cases T' < R/4
and T > R/4,ie. D < C1R? and D > C1R? for a well chosen Cy. Finally, if D < CyR then
(5.1) is trivially satisfied, if C' is chosen large enough.

Let us turn to the case D(xp, R) < 0, which implies |D(xzg, R)| < nuo(Bpr)m(70)) <
7 R*m.

In this case we define f(z) to be the distance of x to the complement of Br(x() with
respect to the metric which is Euclidean on Bg(xz) \ B,. As in Lemma 5.2 and assuming
|z — x| < R — 2 we have

R — |z — x|

0 < f@) < R— o — g

and as above, if R > 2 and for almost every 1/2 < t < R/4 the curve v = {f =t} is a
Lipschitz curve which does not intersect B, and {f < t} C Br(x() \ Br—at(z(). It follows
that, writing as before D for D(zo, R)

(5.11) / Ju-T = / curl 5, —/ curl j, —/ curl j, <
Yt {r<t} Br(z() B(zgp, R)\{f>t}

2D + 2wnug (B% \ BRﬁ) <27D+C (R* - (R —4t)%).
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The proof then proceeds as in the first case by using Cauchy-Schwarz’s inequality and inte-
grating with respect to ¢ € [1/2, min(T, R/4)], where

R / D

which ensures that the right-hand side in (5.11) is bounded above by wD. Note that D is
nonpositive, but bounded below by —CR? hence if ¢ > 0 is small enough the quantity inside
the square root above is positive. O

We now proceed to the proof of Theorem 3, starting with (1.42). If R > Ry and
D(z), R)| > nR? then from Proposition 5.1 and using the fact — from Proposition 3.1
0 n

— that g, is positive outside U ; B(x},C) and that g, > —C everywhere, we deduce from
(3.7) and (5.1) that

(5.12) F,(v) > % (=CR? + emin(n?, n*)R*) + Q/Cdu.

Inserting into (1.23) we find

B

n

1
P, (| D(xp, R)| = nR?) < 7 oxP (CBR® — B min(n*,n°) R*) / eI oy L da,.
Then, using the lower bound (4.4) and Lemma 3.5 we deduce that if 5 > fy > 0 and n is
large enough depending on By then
log Pg (|D(m6, R)’ > nRQ) < —cfmin(n?, *)R* + CBR?* + CnB + Chn,

where ¢,C > 0 depend only on V. Thus (1.42) is established.

We next prove (1.44). By Fubini’s theorem, and using again the facts that g, is positive
outside U, B(«},C) and > —C everywhere we have

dg, > / <][ dg,,) dr' — C|U'| — Cn.
R2 * \/B(«'2R)

Combining with Proposition 5.1 it follows that

1 D(x'
/ dg, > —C(|U'| +n) + Rz/ —CR? + ¢D(', R)*> min <1, |(:E’R)’) da’.
R2 U’

R2
i.e., changing the constants if necessary,

c _ D(z',R
613 [ daz-cqultm+ g [ o i (1P 4
R2 U’

It follows, using as above (1.23), (3.7), (4.4) and Lemma 3.5, and since |U’| = n|U|, that

D / 2 D /
log P2 ( (:CR’Pmin (1,%}3”) dmZn) < —enpn+Cnp (Ul + 1)+ Chn,
U/

where ¢, C' > 0 depend only on V', where 5 > 5y > 0 and where n > ng(5p).
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We next turn to (1.43). Arguing as above, from (3.7) we have F,(v) > —C + 2 [ (dv.
Splitting 2 [ (dv as [ (dv + [ (dv, inserting into (1.23) and using (4.4) we are led to

IP’;% (/(dy > 77) < e~ 2mBn+Cn(B+1) /e”ﬁf(d” dzy...,dz,,

where C depends only on V. Then, using Lemma 3.5 we deduce (1.43).
There remains to prove (1.45). Let v = """ | 0, and x be a nonnegative function such

that x = 1 on U := E' U (U, B(2}, 1)) UBg and |x|les, VX[l < 1, compactly supported

on U = {z :d(z,U) < 1}. We have |[?] < C(n+ R?), where C depends only on E, i.e. on V.
Then Corollary 1.2 in [ST] asserts that, for any ¢ < 2,

. 1_1 . 1
(5.14) Ivxdvllze < Coln+ R2)a™2 (W (ju, x) +n)2 .

where we use that by construction, #{p € A|B(p, 3)N{0 < x < 1} # @} = 0. This same fact
implies that v/ = 0 in the support of 1 — x, hence

. 1 .
Wi =0 =5 [(1=0lif 20

In particular W(j,,x) < W, x) + Wy, 1 — x) = W(jy,1gz2). It then follows from (5.14)
and the fact that F,(v) = ZW(j,, 1g2) + 2 [ (dv (cf. (1.21)), that

q
2

(5.15) /B ju|9 < Cy(n + R?)3n2 <Fn(y) - 2/Cdu+ 1)

But, reasoning as above after (5.12), the probability that F,(v) — 2 [ (dv > n is bounded
above for any 8 > [y > 0 an n large enough depending on 3y by exp(—%nﬁn +Cn(B8+1)),
where C depends on V only. In view of (5.15),

5 . g R*\'"
Py, lju]? > Cqn(n +1)2 {1+ —
Br n

Rescaling we have fQ IVH|? = ”%_1fﬂ/ 15,19, where H = —27A~! (v — npug), while |lv —
npollw-raq) < CIVH| La(q). Therefore

q
2

) < exp(—%nﬁn +Cn(B+1)).

N[
D=

1 1
R*\2 « 1
] <(1+n) I~ gl sz > Com (14 1) ) < exp(—inn + Cn(B + 1)).

After a slight rewriting, this concludes the proof of Theorem 3.

6 Lower bounds via the ergodic theorem and conclusions

6.1 Abstract result via the ergodic theorem

In this section, we present the ergodic framework introduced in [SS1] for obtaining “lower
bounds for 2-scale energies”. We cannot directly use the result there because it is written
for a uniform “macroscopic environment”, which would correspond to the case where mg(x)
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is constant on its support (as in the circular law). To account for the possibility of varying
environment or weight at the macroscopic, we can however adapt Theorem 3 of [SS1] and
easily prove the following variant:

Let X denote a Polish metric space, when we speak of measurable functions on X we will
always mean Borel-measurable. We assume there is a d-parameter group of transformations
0, acting continuously on X. More precisely we require that

- Forallu € X and A\, u € RY, 0, (0,u) = Orypuu, bou = u.

- The map (A, u) — @yu is continuous with respect to each variable (hence measurable
with respect to both).

Typically we think of X as a space of functions defined on R? and 6 as the action of trans-
lations, i.e. O u(z) = u(x + ). Then we consider the following d-parameter group of trans-
formations T§ acting continuously on R? x X by T5(x,u) = (z + ), 0 u). We also define
Th(z,u) = (x,0)\u).

For a probability measure P on R x X we say that P is translation-invariant if it is
invariant under the action T', and we say it is T (,)-invariant if for every function A(z) of class
C1, it is invariant under the mapping (z,u) (z,0\()u). Note that T),)-invariant implies
translation-invariant.

Let G denote a bounded compact set in R? such that

(G +ex) AG|

(6.1) |G| > 0, ;136 el =0,

for every x € R%2. We let {f.}. and f be measurable nonnegative functions on G' x X, and
assume that for any family {(zc, u:)}< such that

VR >0, limsup fe(T5(ze,ue)) dX < 400

e—0 Bpr
the following holds.

1. (Coercivity) {(zs,us)}e admits a convergent subsequence (note that {z.}. subsequen-
tially converges since G is compact).

2. (P-liminf) If {(x., us)}- converges to (z,u) then

liminf fe(ve,ue) > f(z,u).
e—0
Then we consider an increasing family of bounded open sets {Ug}r>o such that

(6.2) (i) {Ug}r>o is a Vitali family, (i) lim (A+Ur) & Ur| _

0
R—+o00 ’UR‘

for any A € R?, where Vitali means (see [Ri]) that the intersection of the closures is {0}, that
R — |Ug| is left continuous, and that |[Ur — Ug| < C|Ug|.
We have
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Theorem 6. Let G, X, {0,\}x, and {f:}<, f be as above. Let

F.(u) :]{;fg(x, Ozu)dz.

Assume that {F:(us)}e is bounded. Let P. be the probability on G x X which is the image of
the normalized Lebesgue measure on G under the map x — (x,0zu.). Then P. converges to a
Borel probability measure P on G x X whose first marginal is the ‘normalized Lebesgue measure
on G, which is Ty(y)-invariant, such that P-a.e. (z,u) is of the form lim. (e, 0%&%) and
such that

(6.3) liminf Fy(ue) > /f(a:,u) dP(x,u).
e—0
Moreover,
(6.4) [ #Gewapton) =5 ( aim_ L0 i),

where EX denotes the expectation under the probability P.

Proof. We only sketch the proof as it is very similar to [SS1]. The following points have to
be checked:

1. P; is tight hence has a limit P. This follows from the coercivity property of f. as in
[SS1].

2. P is Ty()-invariant. Let ® be bounded and continuous, and let Py be the push-forward
of P by (z,u) = (z,0\)u). Then from the definition of Py, P, P., we have

/fb(:v,u) dPy(xz,u) = /@(x,ﬂk(m)u) dP(z,u) = liH(l] O(x,05(z)u) dP:(7,u) =

E—>
O((I+eN)L(y), Ouue)
him 4 ®(x, 02 g ue) dz = Ii :
50 f, (@, 02 7@ te) d = limy ren@) |det(I + eDA((T +eX)~1(y))]

dy,

where the last equality follows by the change of variables y = (I + e))(z). Using the
boundedness of ®, the C! character of \, the compactness of G and (6.1), we may
replace (I + e\)(G) by G and the denominator by 1 in the last integral and we find,
using the definition of P

(6.5) /@(m,u) dPy(z,u) = lim [ ®((I +e\) " (z),u) dP-(x, u).

e—0

Since {P.}. is tight, for any § > 0 there exists K5 such that P.(K;°) < § for every e.
Then by uniform continuity of ® on K3 the map (x,u) — ®((I +e)\)~!(z), u) converges
uniformly on Ky to (x,u) — ®(x,u) and thus

lim O((I +eX)"Hx),u) dP.(x,u) = lim O(x,u) dP:(z,u).

e—0 K;s e—0 K;s
Since this is true for any > 0, and using the boundedness of ® we get
lim [ ®((I + e\ (x),u) dP-(z,u) = lim [ ®(z,u) dP-(z,u) = /Cb(m,u) dP(z,u),
e—0 e—0

by definition of P. Thus in view of (6.5) we have P\ = P and P is thus T),)-invariant.
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3. liminf.,o F-(u;) > [ fdP. This follows from Lemma 2.2 of [SS1], since F(ur) =
ffE dP:-.

To conclude, as in [SS1], the fact that P is T(,)-invariant (which implies T)-invariant) and
Wiener’s multiparametric ergodic theorem (see e.g. [Be]) imply that

/f(a;,u) dP(z,u) = EP ( lim f(TA(:z:,u))d)\> . < lim f(z,05u) d/\> .

R—+o00 Ug R—+o00 Ug

O

6.2 Proof of Theorem 2, part A

The proof follows essentially [SS1], Proposition 4.1 and below. Let {v,}, and P,, be as in the
statement of Theorem 2. We need to prove that any subsequence of {P,, },, has a convergent
subsequence and that the limit P is a T)(,)-invariant probability measure such that P-almost
every (w, j) is such that j € A, (,) and (1.39) holds. Note that the fact that the first marginal
of P is dx|p/|E| follows from the fact that, by definition, this is true of P, .

We thus take a subsequence of {P,,,} (which we don’t relabel). We may assume that it
has a subsequence, denoted 7,, which satisfies F),(7,) < C, otherwise there is nothing to
prove. This implies that 7, is of the form > | 0z;.,,- We let 7, denote the current and g, the
measures associated to 7, as in Definition 3.2. As usual, 7, = > ;| § ;- Another useful
consequence of F,(#7,) < C is that, using (2.1), we have wy,(z;,) = n?I(uo) + O(nlogn),
which in turn implies (see [ST]) that

1
(66) —Vp — HO-
n

Step 1: We set up the framework of Section 6.1

We will use integers n instead of € to label sequences, and the correspondence will be ¢ =
1/y/n. Welet G = E and X = My x LI (R% R?) x M, where p € (1,2), where M., denotes
the set of positive Radon measures on R? and M the set of those which are bounded below
by the constant —C'y := —C(||mo]|so + 1) of Proposition 3.1, both equipped with the topology
of weak convergence.

For A € R? and abusing notation we let #) denote both the translation  — =+ A and the

action
Ox(v, 7, 9) = (Ox#v,5 0 O, 0x#9) -
Accordingly the action T™ is defined for A € R? by

. A .
T)T\l(xuyajag) = ('T + %79)\#”7] 00)\79/\#9) .

Then we let x be a smooth cut-off function with integral 1 and support in B(0, 1) and define

1

—_ d f 7‘7 zenx *,"1’*7“7”,
(6.7) £,(z,v,].g) = W/RQ X(W)dg(y) if (v,.9) = 0 g (T Tns Gn)

+00 otherwise.
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Finally we let, in agreement with Section 6.1,

(6.8) F.(v,7,9) :]{Efn (:U,Hx\/ﬁ(u,j,g)) dx.

We have the following relation between F,, and F),, as n — 4o00:

(6.9) (g is 4~ 1 ) =2 Cdom) +0(1) i (v,,9) = (7%, Jn: Gn)
e = +00 otherwise.

Indeed it is obvious from (6.7) that if (v,7,9) # (7}, Jn, gn) then Fy (v, j,g) = +oco. On the
other hand, if (v, j,9) = (7, In, gn), then from the definition of the image measure 0)#gp,

1
n(v,7,9) ][/ (y — xv/n) dgn(y) dx 7T’E/|/X*1E/d§n.

Since x * 1x/ is bounded above by 1 and is equal to 1 on U := {2/ : dist(z/,R? \ E’) > 1} we
deduce that

g (R —g,(U)  gu(R?) +g, (U°)

Bl b
rgr< )2 Cd) \E\>

Then we note that from (3.2) in Proposition 3.1 the measure g, is supported in the union of
balls B(z',C) for 2’ € Supp(7,), and bounded above by a constant. Thus g, (U¢) is bounded
by a constant times the number of balls intersecting U¢, hence by Cv, {«’ : dist(z’,U¢) < C'}.

From (6.6) this is equal to Cnug{x : dist(xz,0F) < C’/\f} +o0(n), which from the assumption
(1.13) on E is o(n). Plugging this into (6.10) proves (6.9).

(6.10) 7Fn(v,j,9) <

Step 2: We check the hypotheses in Section 6.1

We must now check the Gamma-liminf and coercivity properties of {f;, }.

Lemma 6.1. Assume that {(n, Vn, jn, gn) }n converges to (x,v,j,q). Then

o . : 1
hI’I}Ilnffn (xTMVTL:jTLagn) 2 f(x,]/h]’g) = W/ng

Proof. We may assume that the left-hand side is finite, in which case f, (xn, Vn, jn, gn) =
% | x dgn, for every large enough n, from which the result follows by passing to the limit. [

Lemma 6.2. Assume that for any R > 0 we have

A
6.11 limsup/ f, <xn + —, 0\(Vn, Jn, 9n > dA < 400.
(6.11) 5 Ot o)

n—-+0o0o

Then a subsequence of {(xn, Vn, jn,gn)}n converges to some (z,v,j,9) € E x X.
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Proof. Assume (6.11). Then the integrand there is bounded for a.e. A and from the definition
(6.7) we deduce that

O\ Vi, Jins gn) = 9\/51;”+>\(17;L7 Ins Gn)

and then that (vy,jn, gn) = 0 /s, (Vn, In, Gn). Thus (6.11) gives, in view of (6.7), that for
every R > 0 there exists C'r > 0 such that for any n

| [t = vz =N dauwyar= [ 1oy, din < Cr
R

This and the fact that g, is bounded below implies that g, (Br(y/nz,)) is bounded in-
dependently of n and then, using (3.4), that the same is true of 7, (Br(y/nzy)). In other
words {v, =6 ST U} }n is a locally bounded sequence of (positive) measures hence converges
weakly after taking a subsequence, and the same is true of {g, = 6 N Jntn. On the other
hand {z,}, is a sequence in the compact set F hence converges modulo a subsequence.

It remains to study the convergence of {j, = 7,00 /my, 11 }n- From (3.3) in Proposition 3.1
and the local boundedness of {vy}, we get that W (Jn, x * 1p,(/me.)) = W(n: X * 1Bg) is
bounded independently of n for any R > 0 and then, using Corollary 1.2 in [ST], that {j,}n
is locally bounded in L} (R? R?), for any 1 < p < 2 hence a subsequence locally weakly

converges in LY (R2,R?). Strong local convergence follows as in [SS1] using elliptic regularity
with curl 7, = 7/, — g’ and div 7, = 0. O

Step 3: Conclusion

From the previous steps, we may apply Theorem 6 in this setting and we deduce in view of
(6.9) that, letting @,, denote the push-forward of the normalized Lebesgue measure on E by

the map = — (2,0 /. (71, In, Gn)), and Q = limy, Q,

1
(6.12) hmninfE (Fn(ﬂn) = Q/Cdﬂn> > limniann(D;,jn,gn) >

/(/ng> dQ(z,v, j,g) = /RETWJ{BR/X(y—A) dg(y) dNdQ(x,v, j,g) =

. 1 :
/ LU (m/ X L dg) 4z, v.5.9).

Now we use the fact that for Q-almost every (z, v, j, g):
i) There exists a sequence {zn}, in E such that (z,v, j,g) = limp(zn, 0 57, (D), Tns Gn))-
ii) As a consequence of the above # [ x *1p, dg converges to a finite limit as R — +o0.

The first point implies, since curl 7, = 7, — mg’ and div 7, = 0, that curl j = v — my(x) and
div j = 0. The second point implies in particular using (3.4) that v(Bgr) < CR?2, proving
that (j,v) € Apg(a)-

Moreover the second point implies that for any C' > 0 we have g(Bric \ Br_c) = o(R?)
as R — +o00, and thus from point i) above

lm im0 (Brio (Vi) \ Bro(vi) =0

R—400 n—+00
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Using (3.4) we deduce that

lim  lim %%(BRW(\/E%))\BT_C(\/ﬁmn)):o

R—+00n—+00

and then from (3.3),

=0.

lim lim
R—400 n—+00

—5 (W X * L (man)) — /X * 1, (Viwn) 40n
Thus, using Lemma 4.8 in [SS1] in the limit with respect to n we deduce

T 1
im —
R—+o00 R?

W(j,x * 1) — /X* 1, dg‘ = 0.

Together with (6.12) this yields, by definition of W,

(6.13) hmlnf 7] < /Cdl/n> /W )dQ(x,v,7,9)

and, we recall, Q-a.e. (j,v) € Ap(a)-

Now we let P, (resp. P) be the marginal of @,, (resp. @) with respect to the variables
(x,7). Then the first marginal of P is the normalized Lebesgue measure on E and P-a.e. we
have j € A, (»), in particular

W(j) > min W =mg(z) (Ir}‘inW - ;Tlogmo(x)> :
1

mg(z)
Integrating with respect to P and noting that since only x appears on the right-hand side

we may replace P by its first marginal there we find, in view of (1.36) that the lower bound
(1.39) holds.

6.3 Proof of Theorem 2, completed

As mentioned above, Part B of the theorem is a direct consequence of Proposition 4.1, see
Corollary 4.2.

Part C follows from the comparison of Parts A and B and the fact that W and Wk
have the same minimizers and minimal value. This implies that, for minimizers, the chains
of inequalities (1.39) and (1.40) are in fact equalities and that [ W dP must be minimized
hence equal to a. Since (1.39) follows from (6.13), the inequality (6.13) must also be an
equality and moreover we must have lim,_,~ [ {dv, = 0, which in view of (1.17), implies
that lim ), dist(z;, E)? = 0.

From the fact that F,,(v,,) = O(1), we deduce from Proposition 5.1, 3.1 and (3.7), (arguing
exactly as in the proof of Theorem 3) that there exists C' > 0 such that for every z, R > 1,

we have Dis. R
D(z, R)? min (1, ’(;2)> < Chn.

This completes the proof of Theorem 2.
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6.4 Deviations: proof of Theorems 5 and Theorem 1

We start with the upper bound on log P2. Let A, be a subset of C™. We identify points in
C™ with measures v, of the form Y " | d,,.
From (1.23), we have

]P"B(A ) = 1 e~ 2AnFn (i 8;) dry...dz
hence
log P2 (A, log K2 1 0
(6.14) 0g P (4n) =% + log/ e 2P En(Ei 02 gy | day,.
n n n A,

We deduce, writing Fy,(v) = Fn(v) — 2 [ ¢ dv, that

0 B -
(6.15) log P (Ay) < _log Kp n 1 log (e—;ﬁniann B, / e B Cdvn g .dmn> ‘
n An

n n

Let v, such that F,(1,) < infa, Fj, + 1/n. Then from (1.39) in Theorem 2 we have, using
the notations there, lim inf,, oo F, (vn) > |E‘ [W(j)dP(z,j) where P = lim, P,,. Since
P, € i(Ay) by definition we have P € A since Aoo = Np>0Ums>ni(A4n) . We may thus write

(6.16) hmlan( > — inf /W )dP(x, 7).

n—-+o0 T PEA

Inserting into (6.15) we are led to

log P2 (A, E B K'B
617y ‘8Fuldn) _ BIEL /W )dP(x o8

n - 2T PeAs
+ —log (/ eIl Cdvn o, ..da:n> +o(1)
n n

thus in view of Lemma 3.5 and (4.4), we have established (1.47). An immediate corollary of
(6.17), choosing A, to be the full space and using inf 1 [ W(j) dP(j) = o and Lemma 3.5, is
that

log K7,
(6.18) lim sup 08 B < —'BTa—i—log\E\.

n—00 n

We next turn to the lower bound. Fix n > 0. Given A, let P € A be such that

(6.19) /W )dP(zx,j) <1nf/W )dP(j —1—*
PeA

Since P € A, if 1 is chosen small enough (which we assume) then B(P,2n) C A, where the
ball is for a distance metrizing weak convergence as in Proposition 4.1.

We then apply Proposition 4.1 to P and 5. We find § > 0 and for any n large enough a
set A, such that |A,| > n!(762/n)" and, rewriting (4.1) with (2.1),

E
(6.20) lim sup sup F,, < ’ﬂ’/WK(j) dP(j) +

n—oo  Ap
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Moreover, for every (yi,...,yn) € Ay and letting {v,, = 0y, + - - - + Jy, }n, there exists {j,}n
in L} (R? R?) such that curlj, = 2m (1}, — mg’) and such that the image P, of dzg/|E| by

the map x — (z, j,(v/nz + -)) is such that
(6.21) lim sup dist(P,, P) < .

n—oo

In particular (1.49) holds. Moreover, inserting (6.20) and (6.19) into (1.23), we find that

log P2 (A, log K  B|E 1 1
logPu(dn) , logKn _JSIE| inf /W(j)dP(j) — 580+ —log
PeA

n

n

On the other hand, using |A,| > n!(7é%/n)" and Stirling’s formula, we have log|A,| >
2nlog 6 — Cn. Combining with (6.18), (1.48) follows, with C;,, = —2logd + C + log |E].
Theorem 1 immediately follows by combining (6.18), (4.4) and (1.24).

+o(1).

n - n 2T

7 Proof of Proposition 4.1

The construction consists of the following. We are given € > 0, which is the error we can
afford. First we select a finite set of currents Ji,...,Jn (N will depend on €) which will
represent the probability P(x,j) with respect to its j dependence, and whose renormalized
energies are well-controlled. Since P is T)\(,)-invariant, we need it to be well-approximated by
measures supported on the orbits of the J;’s under translations. Secondly, we work in blown-
up coordinates and split the region E’ (whose diameter is order \/n) into many rectangles K
with centers xx and sidelengths of order R large enough. Even though we choose R to be
large, it will still be very small compared to the size of E’, as n — oo, so that the Diracs
at xx /4/n approximate P(z,j) with respect to its x dependence. On each rectangle K, the
weight mg’ is temporarily replaced by its average mg. Then we split each rectangle K into
¢® identical rectangles, with sidelengths of order 2R = R/q, where both R and ¢ will be
sufficiently large. We then select the proportion of the rectangles that corresponds to the
weight that the orbit of each J; carries in the approximation of P. In these rectangles we
paste a (translated) copy of J; at the scale mg and suitably modified near the boundary
according to a construction of [SS1] (Proposition 7.4 below) so that its tangential component
on the boundary is 0 (this can be done while inducing only an error € on W). In the few
rectangles that may remain unfilled, we paste a copy of an arbitrary Jy whose renormalized
energy is finite. We perform the construction above provided we are far enough from OE’. The
layer near the boundary must be treated separately, and there again an arbitrary (translated
and rescaled) current can be pasted. Finally, we add a vector field to correct the discrepancy
between my and mg’ in each of the rectangles.

To conclude the proof of Proposition 4.1, we collect all of the estimates on the constructed
vector field to show that its energy wy, is bounded above in terms of [ W dP and that the
probability measures associated to the construction have remained close to P.

7.1 Estimates on distances between probabilities

First we choose distances which metrize the topologies of L (R% R?) and B(X), the set of

loc
finite Borel measures on X = E x LP (R? R?). For ji,j2 € L (R? R?) we let

o0
dp(ji,j2) = Y 27F
=1

171 = Jallze(B(o.k))
L+ 71 = Jelle(Biok))
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and on X we use the product of the Euclidean distance on E and d),, which we denote dx.
On B(X) we define a distance by choosing a sequence of bounded continuous functions {yy }«
which is dense in Cy(X) and we let, for any uq, pue € B(X),

o
k 80k7/i1 M2>’
511, p2) 2" ,
; 1+ |k, 1 — p2)|

where we have used the notation (p, u) = [ du.
We have the following general facts.

Lemma 7.1. For any € > 0 there exists n9 > 0 such that if P,Q € B(X) and ||P — Q|| < no,
then d(P,Q) < . Here |P — Q|| denotes the total variation of the signed measure P — @, i.e.
the supremum of (p, P — Q) over measurable functions ¢ such that |¢| < 1.

In particular, if P = Y a0y, and Q = >, Bidy, with >, Ja; — ;| < mo, then
dB(P7 Q) <ée.

Lemma 7.2. Let K C X be compact. For any € > 0 there exists n1 > 0 such that if
re K,yeX anddx(z,y) < m then dg(dy,0,) <€

Lemma 7.3. Let 0 < e < 1. If u is a probability measure on a set A and f,g: A — X are
measurable and such that dg(0(z), 64(x)) < € for every x € A, then

ds (%, g7 1) < Ce(Jlog e] +1).

Proof. Take any bounded continuous function ¢y, defining the distance on B(X). Then if
dB(0f(z)s dg(z)) < € for any x € X we have in particular

lor(f(x)) — pr(g(x))] k
T4 ool F @) — erlg(@))] =2 ©

It follows that

o0

ds(f* u, g% ) Z min(e2¥,1) < e ([logy €] + 1) + Z 27% < Ce(|log e| + 1).
k k=[log, ]+1

7.2 Preliminary results

In what follows E' = \/nE, mg'(x) = mo(x/y/n): we work in blown-up coordinates. We
consider a probability measure P on E x Lf o C(RQ, R?) which is as in the proposition. We let P
be the probability measure on E' x A; which is the image of P under (z, j) = (¥, 01 /mq(2)7),
so that

(7.1) P= /5:,; D Oy o 0y AP (2, 5), P = /535 ® 80, 0y AP (@, 5)

It is easy to check that since P is T)(,-invariant, Pis as well, and in particular it is translation-
invariant.

The construction is based on the following statement which is a rewriting of Proposition 4.2
in [SS1] and the remark following it:
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Proposition 7.4. Let K = [~ R, R)?, let {xr}r satisfy (1.29) and let Wy be the renormal-
ized energy relative to the family {Kgr}r.
Let G C Ay be such that there exists C > 0 such that for any j € G we have

v(KR)
2 1
(7.2) VR > 1, Knl <C,
for the associated v’s, and
Wi
(7.3) lim WUXR) g

R—+o00 ’KR|

where the convergence is uniform w.r.t. j € G.

Then for any € > 0 there exists Ry > 0, ny > 0 such that if R > Ry and L is a rectangle
centered at 0 whose sidelengths belong to [2R,2R(1 + n2)] and such that |L| € N, then for
every j € G there exists a j;, € LY (R? R?) such that the following hold

loc

i) jL =0 in L,

ii) There is a discrete subset A C L such that

curl jp, = 27 25;; -1z
pEA
iii) If d(z, L) > Rt then ji(z) = j(z)
i)

W(jLa 1L)

(7.4) =

< Wk(j) +e.

The next lemma explains how to partition F into rectangles.

Lemma 7.5. There exists a constant Cy > 0 such that, given any R > 1 and q € N*, there
exists for any n € N* a collection K,, of closed rectangles in E' with disjoint interiors, whose
sidelengths are between R = 2qR and R + CoR/R?, and which are such that

{r e E :d(z,0E") <R} C E'\ U K Cc{z € FE :d(z,0E") < CyR}
Keky

and, for all K € Ky,
(7.5) mo’ € ¢°N.

Proof. For each j € Z we let

35



Then each strip {jR < y < (j +1)R} is cut into rectangles [t;;, tit1),5] X [jR, (j +1)R] where
toj = —oo and

tiv1,5 = min{t > ti; + R: mj(tij) € QQN}.
Since by assumption (1.12) we have mo/(z) € [m,m] for any = € E’, it is not difficult to check
that if such a rectangle is included in E’ then

2
ti; +R< tit1,; < tij + R+ L—,
mR
and thus its sidelengths are between R and R+CR/R? since R/R? = 4¢*/R. We let K, be the
set of rectangles of the form [ti;, ¢(;i41 ;] X [ R, (j+1)R] which are included in { : d(z,0E’) >
R}. From the above, it follows that these rectangles in fact cover the set {x : d(x,0E’) > CR}
for some C' > 0 independent of R > 1, ¢q. By construction each K € I, is such that

/K my’ = mj(t(iJrl),j) —my(ti;) € ¢°N.

The next lemma explains how to select a good subset of Lfo C(RQ, R?).

Lemma 7.6. Let P be a translation invariant measure on X such that P-a.e. je€Ai. Then
for any € > 0, there exist subsets H. C G, in LfOC(RQ,]R2) which are compact and such that,
for any R. > 0,

i) Mo being given by Lemma 7.1 we have

(7.6) P(E x G.°) < min(no?,me), P(E x HE) < min(n,e).
ii) For every j € H., there exists I'(j) C Kmpg. such that
(7.7) IT(j)| < CR.2ng and X\ ¢ T'(j) = 60,j € G-.

ii1) The convergence in the definition of Wi (j) is uniform w.r.t. (z,j) € G and, writing
curlj =27(v — 1),

K
(7.8) Wk (j) and V(R2R) are bounded uniformly w.r.t. (x,j) € Ge and R > 1.

iv) We have
(7.9) dg(P,P") < Ce(|log €| +1), where

1 ~
P//:/ - - 8y @ 0y 0. dpdP(z, ).
ExHe mo(m)|KR5| \/WKRE\F(j) mq(x)%n] ( )

Moreover, there exists a partition of He into uﬁV;ng satisfying diam (H!) < n3, where 13 is
such that

(7.10) j € He, dp(j.j') < n3, m € [m,m], p € VIRKR\L(j) = dB(00,,0,j> Oomb,j7) < &
and there exists for all i, J; € H. such that

(7.11) Wi (J;) <iII{1fWK+8.
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Proof.

Step 1: Choice of G.. Since LfOC(RQ,RQ) is Polish we can always find a compact set Ge¢
satisfying (7.6) and P(G:°) < mo. Then from Lemma 7.1, PLG. (the restriction of P to G¢)
satisfies dg(P, PLG;) < e.

From the translation invariance of P and for any A, we have ﬁ(E X 0\G:) > 1 =19
and therefore dg(P, PL0,G.) < e. In view of (7.1), it follows that for any A € R? we have

||P — Py|| < no and then dg(P, Py) < &, where

Py = / 00 ® 0o, ()i AP (x, ) = / Ox ® 8050, 0y AP (7).
Ex0)Ge ExGe

Then using Lemma 7.3 we deduce that if A C R? is any measurable set of positive measure,
then

(7.12)  dp(P,P') < Ce(|log €| + 1), where P’ = / ][ Oz @ 0050, ()7 AN dP(z, ).
ExG:J A

Moreover, since P is T)(,)-invariant, choosing x to be a smooth positive function with
integral 1 supported in B(0,1), the ergodic theorem (as in Section 6.1 or see again [Be])
ensures that for P-almost every (x,j) the limit

lim —— W EA+-), x(A+-))dA
i [ W)
exists. Then 1x, * x is a family of functions which satisfies (1.29) with respect to the family
of squares {Kg}pr, and from the definition of the renormalized energy relative to { Kr}r we
may rewrite the limit above as

: : 1 ,
(7.13) Wk (5) = lim @W(j,IKR*X).

By Egoroff’s theorem we may choose the compact set G- above to be such that, in addition
to (7.12), the convergence in (7.13) is uniform on G.. In fact, since Wk (j) < +oo and
limsupp v(KR)/R? < +oo for P-a.e. (x,7), where curl j = 27(v — 1), we may choose G, such
that (7.8) holds.

The arguments above show that the properties (7.12), (7.8) can be satisfied for a compact
set G¢ of measure arbitrarily close to 1. We choose G. such that (7.6) holds.

The next difficulty we have to face is that 8)j need not belong to G¢ if j does.

Step 2: Choice of H.. For j € Ge, let T'(j) be the set of \’s in VmKg, such that 0,j ¢ G-.
Since, from (7.6) and the translation-invariance of P, for any A € R? we have P(Ex0,(G.)¢) <
no2, it follows from Fubini’s theorem that

/ 0G| dP(z, j) = / P(E x (0xG.)%) dX < 4mR.? min(ne?, 1oc).
Ge mKRg,

Therefore, letting
(7.14) H. = {] € Ge: |F(]>’ < 4mRa2770}7

we have that (7.6) holds.
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Combining (7.6) and (7.14) with Lemma 7.1, we deduce from (7.12) that (7.9) holds,
where we have used the fact that Oxomj = om0 /myJj to change the integration variable to

= +/mo(z)\ in (7.12).
Step 3: Choice of Ji,...,Jn.. We use the fact that G, is relatively compact in L} (R? R?),

Lemma 7.2, and the fact that (m,j) — o,,J is continuous to find that there exists ny > 0
such that for any m € [m,m| and any j € G. it holds that

(7.15) dp(4, ) <ma = dB(66js00nj) <E.
Moreover, from the continuity of (i, j) — 6,7, there exists n3 > 0 such that
(7.16) J€Gedp(§,i') <ms, pe€VimKr, = dp(0,5,0,5") < ma

If j € H. and p € K\... then 6,5 € G. hence applying (7.15), we get (7.10).

Now we cover the relatively compact H. by a finite number of balls By, ..., By, of radius
n3/2, derive from it a partition of H. by sets with diameter less than 73, by letting Hl =
Bi N H. and

H' =By NH\ (ByU---UB;).

we then have

Ne
(7.17) H.=|JH., diam (H}) < ns,
i=1
where the union is disjoint. Then we may choose J; € H! such that (7.11) holds. O

7.3 Completing the construction

Step 1: Choice of R.. We apply Proposition 7.4 with G = G. and \/mR, where m € [m,m).
The proposition yields 72 > 0, R. > 1 such that for any j € G, and any m € [m,m] and any
rectangle L centered at 0 with sidelengths in [2/mR., 2v/mR.(1 + n2)], (7.4) is satisfied for
some jr, with R replaced by v/mR.. The reason for including /m is that we will need to
scale the construction to account for the varying weight mg(x).

Since our rectangles will be obtained from Lemma 7.5 and we wish to use the approxi-
mation by jz in them, we choose R, large enough so that if m € [m,m] and L is a rectangle
centered at zero with sidelengths in [2\/mR., 2v/mR.(1 + Cy/R.?)] then

“

Co
(7.18) — < o, REQ

3
2 <mo, K mr.(-ny Ciz:d(z,L) > vVmR:*} C K jmp. (14n0)
€

where Cj is the constant in Lemma 7.5, C; > 1 is to be determined later, and g is the
constant in Lemma 7.1. s
If X\ € K jmp.(1-y) and since j = jp, if d(z, L) > /mR.*, we deduce from (7.18) that
3

0xjr, = 055 in B(0,/mR.*), so that from the definition of d,, taking R. larger if necessary,

(719) VJ S Gg,m S [m,m],)\ S K\/ng(lan), dp(a)\O'mj, HAUmjL) < %,
where 1, comes from Lemma 7.2 applied on {o,,j : m € [m,m],j € G}, i.e. is such that

(7.20)  m € [m,m), j € Ge,j € LY (R*,R?) and dp(5,5') < m = dB(6,.j,00,51) < €

loc
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Step 2: Choice of q- and the rectangles. We choose an integer g. large enough so that

N. N.
21 — ;
(7 ) ClQe2 = Qs2 % Oénigi{\fs WK(Usz) <€
m<m<m

where C; > 1 is to be determined later. We apply Lemma 7.5 with R., ¢- and N, to obtain
for any n a collection KC,, of rectangles (we omit to mention the £ dependence) which cover
most of E’, and we also apply Lemma 7.6. We rewrite P” given by (7.9) as

(7.22) = > /

KEIC |KR5| \/m() KRE\F

Now we claim that if n is large enough and z € K/\/n, j € H., u € \/mo(x)Kg. \T'(j), then

0z @ 0o dpdP(z, j).

m ( a:)HM]

(7.23) ds (5,,6 0 Sy or0us O @ B8, Ji) < %,

where xj is the center of K/y/n and mp is the average of mg over K/y/m. Indeed, since
mo is C* we have |r — x| < C/v/n, |mo(z) — mg| < C//n thus if n is large enough, since
0,5 € G. we find

A (82 @ 8, 0,5 Orsc © S0, ) <
Moreover, since dp(j, J;) < 13, we deduce from (7.10) that

45 (82ic © Doy ,20rsc @ Fo0,0,) < &1
which together with the previous estimate proves (7.23).

Using (7.23) together with Lemmas 7.2, 7.1, and (7.7), we deduce from (7.9) and (7.22)
that dg(P, P"") < Ce(|log | + 1), where

p — Z / XH][ . Ozc @ 0oy 0,07; dpdP(z, 7)

- LT
K%:C pi K][ﬁKR ® Oy, 0, Ut
1<i<N¢

where

(7.25) pix =P <5ﬁ X H;‘) .

Step 3: Choice of subrectangles and current j,. We now replace p; g in the definition (7.24)
by

(7.26)

7‘K| n; Kk, Wwhere n; g = [qu,El|p' K]
1, K 7, K — 7, .
¢*| E'| K|
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We have, since P(\f x LV (R*R?)) = |K|/|E'],
.- ¢*1E'| 5 P2 2 2
(7.27) > nik < %] P \/ﬁ x [P (R%R?)) =q.

and

KR, | |K| ni K
=n;x —pii| <C : .
T 2B R

Summing with respect to i and K, using the facts that >, [K| < |E’[, (7.27), and the
fact that the cardinal of IC,, is 1B e find

dqZRZ>

|KR,| N, 1
niK —PiKk| < | — + =
1<i<Ne , Keky,

|E] R

We may always choose C large enough in (7.18) and (7.21) so that the right-hand side is

< 1o. Then Lemma 7.1 implies that dg(P, P®) < Ce(|log | + 1) is still true after replacing

pix by Sl i in (7.24), ie. where

n; K
(7.28) Z BMCELS / Opp ® 50mK9HJi dp.
Kekn, MK J/micKr,
1<7,<N5

Next, we divide each K € K, into a collection Lg of ¢.? identical subrectangles in the
obvious way and we partition Lk into collections Lr ;, 0 < ¢ < N, such that if £ > 1 then
L, contains n; g subrectangles. This is clearly possible from (7.27). If the inequality is
strict we put the extra subrectangles in L o, there will be ng g of them and then

Ne
(7.29) Z NeK = g2
k=0

We rewrite (7.28) as

1
(7.30) P(4)—— > — / Ozge ® Ocp, 0,7, Apt-
Kek, ME J\/miKr,
1<’L<N5
LEﬁKﬂ'

Now, for L € Lk, let L = \/W(I: — x;), where x; denotes the center of L. From
Lemma 7.5, a rectangle K € K,, has sidelengths between 2¢. R, and 2¢. R.(1+Co/R.?). There-
fore L is a rectangle centered at zero with sidelengths between 2,/mxR. and 2\/mygR.(1 +
Co/R:?), and (7.19) holds.

This, and the results of Lemma 7.6, allow us to apply Proposition 7.4 on L to any J;,
1 <i < N.. Note that |L| € N follows from the fact that

~ K 1
o= mlEl = f g2 = L5 [ g
K Ge 9= JK
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and (7.5). In this way, we define currents .J; ;, which satisfy (7.4) and (7.19). We claim that,
as a consequence of the latter, we have
(7.31)

1
'=Jiron L = d ][ Oz @90, ,d,/(S ® 9, sdu | < Ce.
J i, L B( K, T Om g Oudi 14 mK’KRs‘ . T Om e Ond 1

This goes as follows: (i) Using Lemma 7.1 and (7.7),(7.18), we find that integrating on
VmEKq_pr. \ T'(J;) instead of \/mx Kpg, and L induces an error of Ce. (ii) From (7.19),
and (7.20) applied to 6,,.J; and 0,,j' we have dg(dg, ;,9s,;/) < € and thus in view of Lemma 7.3
we may replace 0,J; by 6,7 in the integral with an error of Cellog €| at most. (iii) Using
(7.18), (7.7) and Lemma 7.1 again, we may integrate back on \/mgKpg. and L rather than
on K(1_p)r. \ I'(Ji), with an additional error of Ce. this proves (7.31).

Combining (7.31) with (7.30) and dg(P, P™Y) < Ce(|log €| + 1), using Lemma 7.3 we find
dg(P, P®)) < Ce(|log €| + 1), where

(732)
- Z /5IK®5‘7m 9szd'u_

KeKk, | | Kek,
1<1<NE 1<i<Ne

LeLy; Lelk;

/L/m 01 © 0y i, P

where the last equality follows by changing variables to A = p/v/m -, and where Ji .1, denotes
an arbitrarily chosen element of L10 C(RZ ]RQ) such that JZ 1 = Ji 1, on L, the constant C being
independent of this choice.

If we choose an arbitrary Jy in A; and let the sum in (7.32) range over 0 < ¢ < N, instead
of 1 <i < N. we obtain a measure P(®) such that, by (7.21),

> N|K’ <o,

Kekn ¢c?

6 _
PO~ PO < o

hence using Lemma 7.1 we have dg(P®), P(9)) < ¢ and then dg(P, P(®)) < Ce(|log €| + 1).

We now define the vector field jint : R2 — R? by letting Jt(2) = Oy din(x — x5) on
L= x; + L/ /m, for every K € K,,, 0 < i < N, and Le Ly ;. Then, for every L € L ; we
have ji" (2 + ) = oy Ji.r, on L, therefore we may choose J; , = O g i (xf + ) in (7.32)
and then then we may summarize the above by writing

(7.33) dp(P, P < Ce(|log | + 1), i @ Og, jine AN
KeIC
Note that since J; ;, = 0 outside L, we also have
(7.34) jint — Z Omc Jip (- — 7)), curlji =27 Z (0p —mK),
Keky, Kekn
1<i<Ne PEAK

ZzEﬁK’i

where Ak is a finite subset of the interior of K. The second equation is satisfied in the sense
of distributions on R2.

Step 4: Treating the boundary. Let E' := E'\ Ugex, K. We let t € [0, £/n] denote arclength
on JFE' — where / is the length of F — and s denote the distance to OE’, so that (t,s)
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is a O! coordinate system on {x € E’ : d(x,(E')°) < cy/n}, if ¢ > 0 is small enough,
since the boundary of E is C!' by (1.13). We let C; denote the curvilinear rectangle of
points with coordinates in [0,t] x [0, CR.], where R. = q.R. and C is large enough so that
E' c {z € E': d(z,0E') < CR.}, and define m(t) = Je,nir™mo’. Since the distance of
Ukex, K to a given z € OF' is between R. and CoR. from Lemma 7.5 and since myg’ is
bounded above and below by (1.15), the derivative of ¢t — m(t) is between R./C and CR.
for some C' > 0 large enough.

We let

(7.35) ke = [eg }

and choose 0 = tg,...,tx, = {y/n to be such that

m(t) = | (e

We note that indeed tx, = ¢y/n : Since the integral of my’ on each square K € K,, is an
integer as well as the integral on E’, we have [, mo’ € N and therefore m(¢,/n) € N.
m(ly/n)

From the above remark about the derivative of t — m(t), we deduce that i belongs

to the interval [R./C, CR.] for some C > 0 and then it is easy to deduce that if /n is large
enough compared to R. then

n; = m(tH_l) — m(tl) € [E52/C, CREQ] , tiy1—t € [R;/C, Cﬁg]

This means that the sidelengths of the curvilinear rectangle Cy,, , \ Cy, are comparable to R.,
and that the number of points n; to put there in is of order REZ.

We may then include each of the sets K; := E' N (Cty \ Cy) in a ball By with radius
in [R./C,CR.] and we may also choose a set of n; points A; which are at distance at least
1/C from each other and the complement of K;. Let j; = —V+H, where H solves —AH =
2m(3_pen, 0p —mu) in By and 9, H - 7 =0 on 0B;, where

n

m; = 71[{ .
(K|
Then we have curl j; = 27T(ZpEAz dp —my) in By and j; - 7 = 0 on 0B; and we claim that for
any ¢ > 1,
(736) W(jla ]-Bl) S CE'} ”leLq(Bl\Kl) S C&,(p

where the constants do not depend on n, but do depend on ¢ through R.. This is proved
by noting that these quantities are finite, and that a compactness argument shows that the
bound is uniform for any choice of points which are at distance at least 1/C from each other
and the complement of some K; C B, using for instance the explicit formulas for W in
[LR]. Note that because the sets {K;} and the rectangles { K} are disjoint, have measure
between REQ /C and C’REQ and diameter between R, /C and CR., we know that their overlap
is bounded by a constant C' independent of ¢, n.

Step 5: Rectification of the weight. We rectify the weights mg, m;: For K € IC,, we let Hg
solve —AHg = 2m(mo’ — mg) on K and 9,Hx = 0 on OK. Similarly we let H; solve the
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same equation with B; replacing K and m; replacing mg. By elliptic regularity, we deduce for
any q > 1 that ||VHgl|ze(k) (vesp. |VHi|lpa(p,)) is bounded by Cycllmo” — m || p(x) (resp.
Cyellmo’—myl| oo p,)-) Since mg is C! we have [Vmyg'| < C/+/n, therefore [[mo' —m|| oo 5y <
CR./+/n, while [mo" —my||1o(p,) < C. We deduce that

Coe
(7.37) I\VHg||ra < \/’ﬁ’ \VH|| s < Cye.
We let
(7.38) iK = 3
and

ke ke
(7.39) jn=j+ > —VrHg+> -ViH = Y jx—ViHx+)Y 5 - VH,
Kekn i=1 Keky, =1

Ay = UrecAr U, Ay
where jx and Hg are set to 0 outside K and similarly for j;, H; outside B;. Then curlj =
27 (3 en, Op —mo’) in R2. This completes the construction of j,.

7.4 Estimating the energy
Step 1: Energy estimate. We have

]KalK Z W UmK ’LL( L) IN/)

0<i<N.
Lelk;

From (7.4) we find, letting L = \/m (L — x;), using (7.29) and |L| = |K|/q?, that

N.
(740) Wik, 1k) = Y, W(omgJir, 1f_ .) S IK| (Z nsz(ngJiHcs).
0<i<N. i—o &
iEEK’i

We estimate the integral of |j,|? on R? \ Upen, B(p,n). From (7.39), this integral involves
on the one hand the square terms

(7.41) Z/ Ul VEH P+ Z/ jx — VT Hgl?,

Keky

where K, = K \ Upea, B(p,n) and similarly for (B5;),, and on the other hand the rectangle
terms

/ (k =V HE) - (g =V Hg) + Y 4 )
KK e, Y KKy 1<l#i<ke Kekn
KK 1<i<F.

We estimate the latter as follows: Since the rectangles in K, do not overlap, the first sum is
equal to zero. A nonzero rectangle term must involve some Bj, and moreover a given B; can
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only be present in a number of terms bounded independently of n,e because the overlap of
the balls B; and the rectangles K is bounded. Thus from (7.35) we have at most C'v/n/R.
nonzero rectangle terms. Moreover, since the K;’s are disjoint, and disjoint from the K’s,
in a rectangle term involving B; N K the integral can be taken over K \ Kj, and in a term
involving B; N B; it can be taken over (B;N B; \ K;) U (B; N B\ K)).

In any case we use Hoélder’s inequality and the bound ||j; — VJ_HZHLQ(Bl\KL) < C.q for
some ¢q > 2, which follows from (7.36), (7.37), together with the bound

11 —VLHlHLq’(Bl ik — vt HKHLq y < Ceqs

which follows from (7.40), (7.36) using Lemma 4.7 in [SS1], to conclude that each rectangle
term is bounded by C. and then that their sum is O(y/n), meaning a quantity bounded by a
constant depending on ¢ times /n.

The limit as 7 — 0 of the terms in (7.41) is estimated as above by expanding the squares
and using Holder’s inequality with (7.37), (7.36), (7.40), together with the bound (7.35) to
show that

L2 Loy 12
%§52<§:/n i =V H|"+ E:t/ ljk — VT Hi|” + m#A, bgi)

Keko
< Z W(jk,1k)+ O(v/n).
Keky,

In view of the bound O(y/n) for the rectangle terms and (7.40) we find using (7.29) that

. ni K
(7.42) Wi dee) € 3 KI5 W (0, ) + One -+ O,
Keky, ¢
0<i<Ng

Step 2: We proceed to estimating W (jn, 1g2). We have, using (7.26), (7.25), (7.21), then the
fact that my’ — mx < CR./v/n on K, then (7.11) with (1.33), then (7.11) and finally (7.1),
that

Ko N~ s (K
Z Wic(OmeJi) < [E'1Y P —= x HI ) W(om,cJi) + |Kle
; qe* —~ \Vn

~ ) C
< |E/’ Z/ XHZ Jmo’(r)Ji) dP(SC,]) + |K‘ <\/ﬁ + 5)

< |E’]Z/ " W (O gt (2)d) AP (2, 5) + | K] <5%+Cs>
(7.43) |E’]/ W) Pl + K (%%—05).

Here we have used the fact that Wy is bounded below by some (negative) constant, a fact
proved in [SS1] that we use below several times.
We proceed by estimating ng x. From (7.26) we deduce that

Ne ,|

2 2| v
WIF 5 ( K I (K] (K
; 1) > P|—=xH.)| > —P|—=xH.S
Dot 2 B () = S (1 - (7))

i=1
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and then it follows from (7.29) that

Ne 2| v
Fl~( K
nO,KZQEQ_Zni,K < N: + QS‘I’{’ |P( XH€C> .
=1

Summing over K € K,,, using the fact that
(7.44) |E"\ Uk, K| < Ce/n

and then (7.21), (7.6), we find that

K ~ 1
> %nO:KWK(O-mKJO) <CIE'||P(EXHS)+—=+4¢) <Cn Ce +e].
Kek *° vn Vn

Summing (7.43) with respect to K € K,, and adding the above estimate we find, in view
of (7.44), (7.42) and (7.6), that

C
(7.45) W (jin, 1g2) < n|E]| Wk (j)dP(z,j) + Cn <5 + 5) :
ExLE vn
Step 3: Energy bound for (x1,...,x,). From (7.45), the constructed currents {j,} and points

{A}n satisfy curl j, = 27 (ZpGAn dp — m0’> in R? with #A,, = n and

(7.46) limsupw < \E|/WK(j)dP(a:,j) + Ce.

Now let {x;}; = {p/v/n}pen, be the points in A, in the initial scale, and let v, = ", 04,.
Since A, C E’ by construction, we have Supp(v,) C F and thus [{dv = 0. Moreover,
defining H!, by (1.19), we have that —AH/, = curl j, and we may thus write j, = —V*+H/, —
V fn for some function f,. But j, = 0 outside of E, by construction, while H] decays fast at
infinity by its definition (1.19) and the fact that the right-hand side of (1.19) has integral 0.
Letting U, = Upen, B(p,n), we first have

/ W—/ unwfn\?:—z/ <jn+an>-an+/ V£l
BR\Un BR\Un BR\Un BR\U’!I

Since j, € Lj . for any ¢ < 2 and since f, € Wli’cq(RQ) for all g, the last two terms on
the right-hand side converge as n — 0 to the integrals over Br. Also integrating by parts,
using the Jacobian structure and the decay of f, and j,, we have [ Br (Jn+Vfn) -V, =

fBR ~V1tH! -Vf, = 0as R — +oo. Therefore, letting n — 0 then R — +o0 in the above
yields
Wi La) = W(-VAH, 1) = [ V4P 2 0

Together with (7.46), we deduce in view of (2.1) that

1 E
(7.47)  limsup — (wn(xl, o) — 2 (o) + glog n) < 2l / Wk (j)dP(x,j) + Ce.
T

n—oo N
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Step 4: FExistence of A,. We claim that if n is large enough and if j € LfOC(Rz,RQ) is such
that

(7.48) dp(j(Vnz + ), i (Vnz + ) < m/2
for any z € E \ F for some set F' satisfying |F| < no|E|, then
(7.49) dg (]{E 0z ® 09 .5 dx,]i 0z @ 59ﬁxjinm dx) < Ce(|log €] +1).

This would follow immediately from Lemmas 7.1, 7.2 and 7.3 if 6/, 4t helonged to some
compact set independent of x ¢ F and n. In our case we note that if x belongs to some

L € Lk ;, where K € K, and 0 <4 < NN, then

j;lnt(w + ) = UmKJi,L(' +x — xi).
Moreover, since J; € H., from (7.14) it follows that if z — z; ¢ T'(J;)/\/mx then j' =
OmgJi(- + o —x;) € G.. If in addition, dist(x, L) > noR., then we deduce from (7.19) that
dp (jiM(z +),5") <m/2and dp (j(z + ), ') < m. Lemma 7.2 then yields dB(9jint (z4.),0j1) <

e and dp(0;(y+.),dj) < € thus

dB((Sj’}Lnt(x+,), 5~($+,)) < 2e.

In view of Lemma 7.3 we find

1 1
dp / 0, ®0p — idr, — 0, ® 6 it dr | < Ce(llog el +1),
<’E’ g VB g T e ) (Jlog | +1)

where F is the union of F and of the union with respect to 0 < i < N, K € K, and Le LK
of % (z; +T(J;)//mK), of ﬁ{x e L : dist(z,dL) < noR.}, and of E \ U;Cn%. It turns
out that |F | < Cno if n is large enough, C' being of course independent of ¢, and thus using
Lemma 7.1 we deduce (7.49). The claim is proved.

To prove the existence of the set A,, we note that the currents J; used in constructing
4int depend on ¢ but are independent on n. Then they are truncated to obtain Ji k where
the sidelengths of L are in [R./C,CR,], i.e. in an interval independent of n. It follows at
once that there exists § > 0 such that the points in L may be perturbed by an amount ¢ so
that for every 4, K and Le L ; the perturbed Ji[jL is at a distance at most 7, /4 of J; g, for
every n. Then in view of (7.44) and (7.37) it follows that for n large enough the resulting 55
will satisfy (7.48) for = far enough from OF’, i.e. outside a set of proportion relative to |E'|
tending to 0 as n — co. We deduce that jh satisfies (7.49), hence if n is large enough

dp(Pjr, P) < Ce([log €] + 1).

The same reasoning implies that if we let {z1,...,z,} be the points in A,, in original coordi-
nates, then perturbing the points in A,, by an amount ¢ > 0 small enough, i.e. perturbing the
x;’s by an amount §/4/n at most we obtain points y; such that wy,(y;) < wy(z;) + €. Since
the ordering of the points is irrelevant, we let .S,, denote the set of permutations of 1...n and
define
An ={(y1,---,yn) : 30 € Splzi — Yo(5)| < 0.
Then, given n > 0, from the previous discussion and choosing € > 0 small enough we have
for any n and any (y1,...,yn) € A, that (4.1) is satisfied and the existence of j, such that
curl j,, = 27 (32, 6, — mq’) and such that {P;, },, satisfies (4.2).
This concludes the proof of Proposition 4.1.
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