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Abstract

This is the first in a series of two papers in which we derive a Γ-expansion for
a two-dimensional non-local Ginzburg-Landau energy with Coulomb repulsion, also
known as the Ohta-Kawasaki model in connection with diblock copolymer systems. In
that model, two phases appear, which interact via a nonlocal Coulomb type energy.
We focus on the regime where one of the phases has very small volume fraction, thus
creating small “droplets” of the minority phase in a “sea” of the majority phase. In
this paper we show that an appropriate setting for Γ-convergence in the considered
parameter regime is via weak convergence of the suitably normalized charge density in
the sense of measures. We prove that, after a suitable rescaling, the Ohta-Kawasaki
energy functional Γ-converges to a quadratic energy functional of the limit charge
density generated by the screened Coulomb kernel. A consequence of our results is
that minimizers (or almost minimizers) of the energy have droplets which are almost
all asymptotically round, have the same radius and are uniformly distributed in the
domain. The proof relies mainly on the analysis of the sharp interface version of
the energy, with the connection to the original diffuse interface model obtained via
matching upper and lower bounds for the energy. We thus also obtain a characterization
of the limit charge density for the energy minimizers in the diffuse interface model.

1 Introduction

In the studies of energy-driven pattern formation, one often encounters variational problems
with competing terms operating on different spatial scales [26,27,32,37,47,50,52]. Despite
the fundamental importance of these problems to a multitude of physical systems, their
detailed mathematical studies are fairly recent (see e.g. [8–12,20,29,45]). To a great extent
this fact is related to the emerging multiscale structure of the energy minimizing patterns
and the associated difficulty of their description [9,11,17,30,33]. In particular, the popular
approach of Γ-convergence [5] is rendered difficult due to the emergence of more than two
well-separated spatial scales in suitable asymptotic limits (see e.g. [9–12,17,30,33,46]).

These issues can be readily seen in the case of the Ohta-Kawasaki model, a canonical
mathematical model in the studies of energy-driven pattern forming systems. This model,
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originally proposed in [40] to describe different morphologies observed in diblock copolymer
melts (see e.g. [4]) is defined (up to a choice of scales) by the energy functional

E [u] =

∫
Ω

(
ε2

2
|∇u|2 +W (u)

)
dx+

1

2

∫
Ω

∫
Ω

(u(x)− ū)G0(x, y)(u(y)− ū) dx dy, (1.1)

where Ω is the domain occupied by the material, u : Ω→ R is the scalar order parameter,
W (u) is a symmetric double-well potential with minima at u = ±1, such as the usual
Ginzburg-Landau potential W (u) = 1

4(1 − u2)2, ε > 0 is a parameter characterizing in-
terfacial thickness, ū ∈ (−1, 1) is the background charge density, and G0 is the Neumann
Green’s function of the Laplacian, i.e., G0 solves

−∆G0(x, y) = δ(x− y)− 1

|Ω| ,
∫

Ω
G0(x, y) dx = 0, (1.2)

where ∆ is the Laplacian in x and δ(x) is the Dirac delta-function, with Neumann boundary
conditions. Note that u is also assumed to satisfy the “charge neutrality” condition

1

|Ω|

∫
Ω
u dx = ū. (1.3)

Let us point out that in addition to a number of polymer systems [16, 39, 49], this model
is also applicable to many other physical systems due to the fundamental nature of the
Coulombic non-local term in (1.1) [7,18,23,32,35,38]. Because of this Coulomb interaction,
we also like to think of u as a density of “charge”.

The Ohta-Kawasaki functional admits the following “sharp-interface” version:

E[u] =
ε

2

∫
Ω
|∇u| dx+

1

2

∫
Ω

∫
Ω

(u(x)− ū)G(x, y)(u(y)− ū) dx dy, (1.4)

where G(x, y) is the screened Green’s function of the Laplacian, i.e., it solves the Neumann
problem for the equation

−∆G+ κ2G = δ(x− y), (1.5)

where κ := 1/
√
W ′′(1) > 0. Note also that in contrast to the diffuse interface energy in

(1.1), for the sharp interface energy in (1.4) the charge neutrality constraint in (1.3) is no
longer imposed. This is due to the fact that in a minimizer of the diffuse interface energy,
the charge of the minority phase is expected to partially redistribute into the majority
phase to ensure screening of the induced non-local field (see a more detailed discussion in
the following section).

The two terms in the energy (1.4) are competing: the second term favors u to be
constant equal to its average ū, but since u is valued in {+1,−1} this means in effect that
it is advantageous for u to oscillate rapidly between the two phases u = +1 and u = −1;
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Fig. 1. A multi-droplet pattern: density plot of u in a local minimizer of E[u] with W (u) = 1
4 (1−u2)2 obtained

numerically for ū = −0.5, ε = 0.025, and Ω = [0, 11.5) × [0, 10), with periodic boundary conditions. Dark
regions correspond to u ≈ −1, and light regions correspond to u ≈ 1 (from [14])

to an expression in terms of the interfaces alone. In [13,14], such a reduction was per-
formed for E using formal asymptotic techniques (see also [30,35,40,41]) and leads to
the following reduced energy (for simplicity of notation, we choose the normalizations in
such a way that the parameter ε is, in fact, the domain wall energy, see Sec. 4 for details):

E[u] = ε

2

∫

Ω
|∇u| dx +

1
2

∫

Ω

∫

Ω
(u(x) − ū)G(x, y)(u(y) − ū) dx dy. (1.4)

Here the function u takes on values ±1 throughout Ω , and the kernel G is the screened
Coulomb kernel, i.e., it solves the Neumann problem for

− ∆G(x, y) + κ2G(x, y) = δ(x − y), (1.5)

with some κ > 0. The constant κ has the physical meaning of the inverse of the Debye
screening length [13,14]. Note that the sharp interface energy E with the unscreened
Coulomb kernel (i.e. with κ = 0) was derived by Ren and Wei as the Γ -limit of the
diffuse interface energy E under assumptions of weak non-local coupling (i.e., with an
extra factor of ε in front of the Coulomb kernel) and ū ∈ (−1, 1) independent of ε, as
ε → 0 [30] (see also [35,37]; note that this case is also equivalent to considering E on
the domain of size O(ε1/3)). At the same time, screening becomes important near the
transition between the uniform and the patterned states which occurs near |ū| = 1,
the case of interest in the present paper [13,14]. Note that in the presence of screening
the neutrality condition in (1.3) is relaxed.

In this paper, we rigorously establish the relation between the sharp interface energy
E and the diffuse interface energy E , and analyze the precise behavior of minimizers
of the sharp interface energy E for ε ' 1 in the vicinity of the transition from the
trivial minimizer to patterned states occurring near |ū| = 1. We note that despite the
apparent simplicity of the expression for E , the minimizers of E exhibit quite an intri-
cate dependence on the parameters for ε ' 1 and |ū| ( 1. Our analysis in this paper
will be restricted to the case d = 2. While a number of our results can be extended
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Fig. 2. The droplet patterns for K = 2 through 10.
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Fig. 3. The 100 ζk’s determined by numerically minimizing F on a unit disc.

a) b)

Figure 1: Two-dimensional multi-droplet patterns in systems with Coulombic repulsion:
a local minimizer of the Ohta-Kawasaki energy on a rectangle with periodic boundary
conditions; a local minimizer of the sum of two-point Coulombic potentials on a disk with
Neumann boundary conditions. Taken from [35,42].

the first term penalizes the perimeter of the interface between the two phases, and thus
opposes too much spreading and oscillation. The competition between these two selects
a length scale, which is a function of ε. In the diffuse interface version (1.1), the sharp
transitions between {u = +1} and {u = −1} are replaced by smooth transitions at the
scale ε > 0 as soon as ε� 1.

In one space dimension and in the particular case ū = 0 (symmetric phases) the behavior
of the energy can be understood from the work of Müller [33]: the minimizer u is periodic
and alternates between u = +1 and u = −1 at scale ε1/3 (for other one-dimensional results,
see also [43,55]). In higher dimensions the patterns of minimizers are much more complex
and are not well understood. The behavior depends on the volume fraction between the
phases, i.e. on the constant ū chosen, and also on the dimension. When ū < 0, we call
u = −1 the majority phase and u = +1 the minority phase, and conversely when ū > 0. In
two dimensions, numerical simulations lead to expecting round “droplets” of the minority
phase surrounded by a “sea” of the majority phase (see Fig. 1) for sufficient asymmetries
between the majority and the minority phases (i.e., for ū sufficiently far away from zero)
[34, 35, 40, 42]. The situation is less clear for ū close to zero, although it is commonly
believed that in this case the minimizers are one-dimensional stripe patterns [13,34,35,40].

In all cases, minimizers are intuitively expected to be periodic. However, at the moment
this seems to be very difficult to prove. The only general result in that direction to date
is that of Alberti, Choksi and Otto [1], which proves that the energy of minimizers of the
sharp interface energy from (1.4) with no screening (with κ = 0 and the neutrality condition
from (1.3)) is uniformly distributed in the limit where the size of the domain Ω goes to
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infinity (see also [8, 48]). Their results, however, do not provide any further information
about the structure of the energy-minimizing patterns. Note in passing that the question
of proving any periodicity of minimizers for multi-dimensional energies is unsolved even
for systems of point particles forming simple crystals (see e.g. [30, 46]), with a notable
exception of certain two-dimensional particle systems with short-range interactions which
somehow reduce to packing problems [41,51,53]. Naturally, the situation can be expected
to be more complicated for pattern forming systems in which the constitutive elements are
“soft” objects, such as, e.g., droplets of the minority phase in the matrix of the majority
phase in the Ohta-Kawasaki model.

Here we are going to focus on the two-dimensional case and the situation where one
phase is in strong majority with respect to the other, which is imposed by taking ū very close
to −1 as ε→ 0. Thus we can expect a distribution of small droplets of u = +1 surrounded
by a sea of u = −1. In this regime, Choksi and Peletier analyzed the asymptotic properties
of a suitably rescaled version of the sharp interface energy (1.4) with no screening in [14],
as well as (1.1) in [15]. They work in the setting of a fixed domain Ω, and in a regime where
the number of droplets remains finite as ε→ 0. They showed that the energy minimizing
patterns concentrate to a finite number of point masses, whose magnitudes and locations
are determined via a Γ-expansion of the energy [6]. We note that Γ-convergence of (1.1)
to the functional (1.4) with no screening and for fixed volume fractions was established by
Ren and Wei in [43], who also analyzed local minimizers of the sharp interface energy in
the strong asymmetry regime in two space dimensions [42].

All these works are in the finite domain Ω setting, while we are generally interested in
the large volume (macroscopic) limit, i.e., the regime when the number of droplets tends
to infinity. A rather comprehensive study of the behavior of the minimizers for the Ohta-
Kawasaki energy in macroscopically large domains was recently performed in [36], still in
the regime ū close to −1. There the two-dimensional Ohta-Kawasaki energy was considered
in the case when Ω is a unit square with periodic boundary conditions. The interesting
regime corresponds to the parameters ε� 1 and 1 + ū = O(ε2/3| ln ε|1/3)� 1. It is shown
in [36] that under these assumptions on the parameters and some technical assumptions
on W , (1.4) gives the correct asymptotic limit of the minimal energy in (1.1). Moreover,
it is shown that when δ̄ := ε−2/3| ln ε|−1/3(1 + ū) becomes greater than a certain critical
constant δ̄c, the minimizers of E in (1.4) consist of O(| ln ε|) simply connected, nearly
round droplets of radius ' 31/3ε1/3| ln ε|−1/3, and uniformly distributed throughout the
domain [36]. Thus, the following hierarchy of length scales is established in the considered
regime:

ε� ε1/3| ln ε|−1/3 � | ln ε|−1/2 � 1, (1.6)

where the scales above correspond to the width of the interface, the radius of the droplets,
the average distance between the droplets, and the screening length, respectively. The
multiscale nature of the energy minimizing pattern is readily apparent from (1.6).
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The analysis of [36] makes heavy use of the minimality condition for (1.4) and, in partic-
ular, the Euler-Lagrange equation associated with the energy. One is thus naturally led to
asking whether the qualitative properties of the minimizers established in [36] (roundness
of the droplets, identical radii, uniform distribution) carry over to, e.g., almost minimizers
of E, for which no Euler-Lagrange equation is available. More broadly, it is natural to ask
how robust the properties of the energy minimizing patterns are with respect to various
perturbations of the energy, for example, how the picture presented above is affected when
the charge density ū is spatially modulated. A natural way to approach these questions is
via Γ-convergence. However, for a multiscale problem such as the one we are considering
the proper setting for studying Γ-limits of the functionals in (1.1) or (1.4) is presently
lacking. The purpose of this paper is to formulate such a setting and extract the leading
order term in the Γ-expansion of the energy in (1.1). In our forthcoming paper [24], we
obtain the next order term in the Γ-expansion, using the method of “lower bounds for
2-scale energies” via Γ-convergence introduced in [46].

For simplicity, as in [36] we consider the energy defined on a torus (a flat square with
periodic boundary conditions). The main question for setting up the Γ-limit in the present
context is to choose a suitable metric for Γ-convergence. In this paper we show that the right
metric to consider is the weak convergence of measures for a suitably rescaled sequence of
characteristic functions associated with droplets (see the next section for precise definitions
and statements of theorems). Then, up to a rescaling, both the energy E from (1.1) and
E from (1.4) Γ-converge to a quadratic functional in terms of the limit measure, with the
quadratic term generated by the screened Coulomb kernel from (1.5) and the linear term
depending explicitly on δ̄ and κ.

We note that the obtained limit variational problem is strictly convex and its unique
minimizer is a measure with constant density across the domain Ω. In particular, this
implies equidistribution of mass and energy for the minimizers of the diffuse interface
energy E in (1.1) in the considered regime, which is a new result. In our companion paper
[24], we further address the mutual arrangement of the droplets in the energy minimizing
patterns, using the formalism developed recently for Ginzburg-Landau vortices [46]. In
fact, the problem under consideration, and its mathematical treatment (here as well as
in [24]), share several important features with the two-dimensional magnetic Ginzburg-
Landau model from the theory of superconductivity [45]. There the role of droplets is
played by the Ginzburg-Landau vortices, which in the appropriate limits also become
uniformly distributed throughout the domain [44]. We note, however, that the approach
developed in [44, 45] cannot be carried over directly to the problem under consideration,
since the vortices are more rigid than their droplet counterparts: the topological degrees of
the vortices are quantized and can only take integer values, while their counterparts here,
which are the droplet volumes, are not. Thus we also have to consider the possibility of
many very small droplets. Developing a control on the droplet volumes from above and
below is one of the key ingredient of the proofs presented below, and relies on the control of
their perimeter via the energy. Let us also mention yet another closely related system from
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the study of ferromagnetism, where the role of vortices is played by the slender needle-like
domains of opposite magnetization at the onset magnetization reversal [28].

Our paper is organized as follows. In Sec. 2, we introduce the considered scaling
regime and state our main results; in Sec. 3 we prove the Γ-convergence result in the
sharp interface setting; in Sec. 4 we prove the results on the characterization of almost
minimizers of sharp interface energy; and in Sec. 5 we treat the Γ-limit for the case of the
diffuse interface energy.

Some notations. We use the notation (uε) ∈ A to denote sequences of functions uε ∈ A
as ε = εn → 0, where A is an admissible class. We also use the notation µ ∈ M(Ω)
to denote a positive finite Radon measure dµ on the domain Ω. With a slight abuse of
notation, we will often speak of µ as the “density” on Ω. The symbols H1(Ω), BV (Ω),
C(Ω) and H−1(Ω) denote the usual Sobolev space, space of functions of bounded variation,
space of continuous functions, and the dual of H1(Ω), respectively.

2 Statement of results

Throughout the rest of the paper the domain Ω is assumed to be a flat two-dimensional
torus of side length `, i.e., when Ω = T2

` = [0, `)2, with periodic boundary conditions.
Given the parameters κ > 0, δ̄ > 0 and ` > 0, for every ε > 0 we define

ūε := −1 + ε2/3| ln ε|1/3δ̄. (2.1)

Then the sharp interface version of the Ohta-Kawasaki energy (cf. (1.4)) can be written as

Eε[u] =
ε

2

∫
T2
`

|∇u| dx+
1

2

∫
T2
`

(u− ūε)(−∆ + κ2)−1(u− ūε) dx, (2.2)

for all u ∈ A, where

A := BV (T2
` ; {−1, 1}). (2.3)

We wish to understand the asymptotic properties of the energy Eε in (2.2) as ε→ 0 when
all other parameters are fixed. We then relate our conclusions based on the study of this
energy to its diffuse interface version, which under the same scaling assumptions takes the
form

Eε[u] =

∫
T2
`

(
ε2

2
|∇u|2 +W (u) +

1

2
(u− ūε)(−∆)−1(u− ūε)

)
dx, (2.4)

for all u ∈ Aε, where

Aε :=

{
u ∈ H1(T2

` ) :
1

`2

∫
T2
`

u dx = ūε

}
. (2.5)

6



We note that at the level of the energy minimizers the relation between the two functionals
was established in [36].

The energy Eε may alternatively be written in terms of the level sets of u. Indeed,
the set Ω+ := {u = +1} is a set of finite perimeter (for precise definitions, see e.g. [3]),
and when |∂Ω+| is sufficiently small, the set Ω+ may be uniquely decomposed into an at
most countable union of connected components Ω+

i , where the boundaries ∂Ω+
i of each

connected component are Jordan curves which are essentially disjoint (after an extension
to the whole of R2 and up to negligible sets, see e.g. [2, Corollary 1 and Theorem 8]). In
the context of Γ-convergence the sets Ω+

i may be viewed as a suitable generalization of the
droplets introduced earlier in the studies of energy minimizing patterns [36]. Note, however,
that the sets Ω+

i lack the regularity properties of the energy minimizers in [36] and may
in general be fairly ill-behaved (in particular, they do not have to be simply connected).
Nevertheless, they are fundamental for the description of the low energy states associated
with Eε and, in particular, will be shown to be close, in some average sense, to disks of
prescribed radii for almost minimizers of energy.

In terms of the droplets, from the above discussion we have

u = −1 + 2
∑
i

χΩ+
i
, (2.6)

where χΩ+
i

are the characteristic functions of Ω+
i . Inserting this into (2.2), expressing the

result via G that solves

−∆G(x) + κ2G(x) = δ(x) in T2
` , (2.7)

expanding all the terms and using the fact that
∫
T2
`
G(x)dx = κ−2, we arrive at (see

also [36])

Eε[u] =
`2(1 + ūε)2

2κ2

+
∑
i

{
ε|∂Ω+

i | − 2κ−2(1 + ūε)|Ω+
i |
}

+ 2
∑
i,j

∫
Ω+
i

∫
Ω+
j

G(x− y) dx dy, (2.8)

where we took into account the translational symmetry of the problem in T2
` . Moreover,

since the optimal configurations for Ω+
i are expected to consist of droplets of size of order

ε1/3| ln ε|−1/3 (see (1.6) and the discussion around), it is convenient to introduce the rescaled
area and perimeter of each droplet:

Ai := ε−2/3| ln ε|2/3|Ω+
i |, Pi := ε−1/3| ln ε|1/3|∂Ω+

i |. (2.9)

Similarly, let us introduce the suitably rescaled measure dµ associated with the droplets:

dµ(x) := ε−2/3| ln ε|−1/3
∑
i

χΩ+
i

(x)dx =
1

2
ε−2/3| ln ε|−1/3(1 + u) dx. (2.10)
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Then the energy Eε[u] may be rewritten as

Eε[u] = ε4/3| ln ε|2/3
(
δ̄2`2

2κ2
+ Ēε[u]

)
, (2.11)

where

Ēε[u] :=
1

| ln ε|
∑
i

(
Pi −

2δ̄

κ2
Aεi

)
+ 2

∫
T2
`

∫
T2
`

G(x− y)dµ(x)dµ(y). (2.12)

Observe that for the nontrivial minimizers we know from [36] that Ēε = O(1), Ai = O(1)
and Pi = O(1) (and even more precisely Ai ' 32/3π and Pi ' 2 · 31/3π), the number of
droplets is N = O(| ln ε|), and µ closely approximates the sum of Dirac masses at the
droplet centers with weights of order | ln ε|−1. Observe also that if (uε) ∈ A is such that
lim supε→0 Ē

ε[uε] < +∞, we have

lim sup
ε→0

1

| ln ε|
∑
i

P εi < +∞, lim sup
ε→0

1

| ln ε|
∑
i

Aεi < +∞, (2.13)

where {Aεi}, {P εi } and µε are associated with uε. Indeed, by (2.9) and (2.10) we have

1

| ln ε|
∑
i

Aεi =

∫
T2
`

dµε, (2.14)

and thus, from (2.12) we obtain

Ēε[u] ≥ −2δ̄

κ2

∫
T2
`

dµε + 2

∫
T2
`

∫
T2
`

G(x− y)dµε(x)dµε(y)

≥ −2δ̄

κ2

∫
T2
`

dµε +
2

κ2`2

(∫
T2
`

dµε

)2

, (2.15)

where we used the well-known fact that for any u ∈ L2(T2
` ) we have

∫
T2
`

∫
T2
`

G(x− y)u(x)u(y)dx dy ≥
(

1

`2

∫
T2
`

G(x) dx

)(∫
T2
`

u(x) dx

)2

, (2.16)

which is readily obtained by Fourier transform. Then it follows that∫
T2
`

dµε ≤ δ̄`2 + κ`
∣∣∣max(0, Eε[uε])

∣∣∣1/2, (2.17)

implying both statements in (2.13).
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We now state our Γ-convergence result, which is obtained for configurations (uε) that
obey the optimal energy scaling, i.e. when Ēε[uε] remains bounded as ε → 0. The result
is obtained with the help of the framework established in [44], where an analogous result
for the Ginzburg-Landau functional of superconductivity was obtained. What we show
is that the limit functional E0 depends only on the limit density µ of the droplets (more
precisely, on a general positive measure dµ). In passing to the limit the second term in
(2.12) remains unchanged, while the first term is converted into a term proportional to
the integral of the measure. The proportionality constant is non-trivially determined by
the optimal droplet profile that will be discussed later on. We give the statement of the
result in terms of the original screened sharp interface energy Eε, which is defined in terms
of u ∈ A. In the proof, we work instead with the equivalent energy Ēε, which is defined
through {Aεi}, {P εi } and µε (cf. (2.11) and (2.12)).

Theorem 1. (Γ-convergence of Eε) Fix δ̄ > 0, κ > 0 and ` > 0, and let Eε be defined
by (2.2) with ūε given by (2.1). Then, as ε→ 0 we have that

ε−4/3| ln ε|−2/3Eε
Γ→ E0[µ] :=

δ̄2`2

2κ2
+

(
32/3 − 2δ̄

κ2

)∫
T2
`

dµ+ 2

∫
T2
`

∫
T2
`

G(x− y)dµ(x)dµ(y),

where µ ∈M(T2
` ) ∩H−1(T2

` ). More precisely, we have

i) (Lower Bound) Let (uε) ∈ A be such that

lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] < +∞, (2.18)

let

dµε(x) := 1
2ε
−2/3| ln ε|−1/3(1 + uε(x))dx, (2.19)

and let vε satisfy
−∆vε + κ2vε = µε in T2

` . (2.20)

Then, up to extraction of a subsequence, we have

µε ⇀ µ in (C(T2
` ))
∗, vε ⇀ v in H1(T2

` ),

as ε→ 0, where µ ∈M(T2
` ) ∩H−1(T2

` ) and v ∈ H1(T2
` ) satisfy

−∆v + κ2v = µ in T2
` . (2.21)

Moreover, we have
lim inf
ε→0

ε−4/3| ln ε|−2/3Eε[uε] ≥ E0[µ].
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ii) (Upper Bound) Conversely, given µ ∈ M(T2
` ) ∩ H−1(T2

` ) and v ∈ H1(T2
` ) solving

(2.21), there exist (uε) ∈ A such that for the corresponding µε, vε as in (2.19) and
(2.20) we have

µε ⇀ µ in (C(T2
` ))
∗, vε ⇀ v in H1(T2

` ),

as ε→ 0, and
lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] ≤ E0[µ].

We note that the limit energy E0 obtained in Theorem 1 may be viewed as the ho-
mogenized (or mean field) version of the non-local part of the energy in the definition of
Eε associated with the limit charge density µ of the droplets, plus a term associated with
the self-energy of the droplets. The functional E0 is strictly convex, so there exists a
unique minimizer µ̄ ∈ M(T2

` ) ∩ H−1(T2
` ) of E0, which is easily seen to be either µ̄ = 0

for δ̄ ≤ 1
232/3κ2 or µ̄ = 1

2(δ̄ − 1
232/3κ2) otherwise. The latter can also be seen immediately

from Remark 2.1 below, which gives a local characterization of the limit energy E0.

Remark 2.1. The potential v from (2.21) can also be expressed as v(x) =
∫
T2
`
G(x −

y) dµ(y). The limit energy E0 in Theorem 1 becomes local when written in terms of that
limit potential v:

E0[µ] =
δ̄2`2

2κ2
+
(

32/3κ2 − 2δ̄
)∫

T2
`

v dx+ 2

∫
T2
`

(
|∇v|2 + κ2v2

)
dx. (2.22)

Also, by the usual properties of Γ-convergence [5], the optimal density µ̄ above is
exhibited by the minimizers of Eε in the limit ε→ 0, in agreement with [36, Theorem 2.2]:

Corollary 2.2. For given δ̄ > 0, κ > 0 and ` > 0, let ūε be given by (2.1) and let (uε) ∈ A
be minimizers of Eε. Then, if µε is given by (2.19), as ε→ 0 we have

µε ⇀

{
0
1
2(δ̄ − δ̄c)

in (C(T2
` ))
∗, ε−4/3| ln ε|−2/3`−2 minEε →

{
δ̄2

2κ2

δ̄c
2κ2

(2δ̄ − δ̄c),
(2.23)

when δ̄ ≤ δ̄c or δ̄ > δ̄c, respectively, with δ̄c := 1
232/3κ2.

In particular, since the minimal energy scales with the area of T2
` , it is an extensive quantity.

We next give the definition of almost minimizers with prescribed limit density, for
which a number of further results may be obtained. These can be viewed, e.g., as almost
minimizers of Eε in the presence of an external potential. We note that in view of strict
convexity of E0, minimizing E0[µ] −

∫
T2
`
ϕ(x)dµ(x) for a given ϕ ∈ H1(T2

` ) one obtains

a one-to-one correspondence between the minimizing density µ and the potential ϕ. It

10



then makes sense to talk about almost minimizers of the energy Eε with prescribed limit
density µ by viewing them as almost minimizers of Eε −

∫
T2
`
ϕdµε. Also, observe that

almost minimizers with the particular prescribed density µ̄ from Corollary 2.2 are simply
almost minimizers of Eε. Below we give a precise definition.

Definition 2.3. For given δ̄ > 0, κ > 0, ` > 0 and a given µ ∈ M(T2
` ) ∩ H−1(T2

` ), we
will call every recovery sequence (uε) ∈ A in Theorem 1(ii) almost minimizers of Eε with
prescribed limit density µ.

For almost minimizers with prescribed limit density, we show that in the limit ε → 0
most of the droplets, with the exception of possibly many tiny droplets comprising a van-
ishing fraction of the total droplet area, converge to disks of radius r = 31/3ε1/3| ln ε|−1/3.
More precisely, we have the following result.

Theorem 2. Let (uε) ∈ A be a sequence of almost minimizers of Eε with prescribed limit
density µ. For every γ ∈ (0, 1) define the set Iεγ := {i ∈ N : 32/3πγ ≤ Aεi ≤ 32/3πγ−1}.
Then

lim
ε→0

1

| ln ε|
∑
i

(
P εi −

√
4πAεi

)
= 0, (2.24)

lim
ε→0

1

| ln ε|
∑
i∈Iεγ

(
Aεi − 32/3π

)2
= 0, (2.25)

lim
ε→0

1

| ln ε|
∑
i 6∈Iεγ

Aεi = 0, (2.26)

where {Aεi} and {P εi } are given by (2.9) with u = uε.

Note that we may use the isoperimetric deficit terms present in (2.24) to control the
Fraenkel asymmetry of the droplets. The Fraenkel asymmetry measures the deviation of
the set E from the ball of the same area that best approximates E and is defined for any
Borel set E ⊂ R2 by

α(E) = min
|E4B|
|E| , (2.27)

where the minimum is taken over all balls B ⊂ R2 with |B| = |E|, and 4 denotes the
symmetric difference between sets. Note that the following sharp quantitative isoperimetric
inequality holds for α(E) [21]:

per(E)−
√

4π|E| ≥ Cα(E)
√
|E|, (2.28)

with some universal constant C > 0. As a direct consequence of Theorem 2 and (2.14), we
then have the following result.

11



Corollary 2.4. Under the assumptions of Theorem 2, when
∫
T2
`
dµ > 0 we have

lim
ε→0

32/3π|Iεγ |
| ln ε| =

∫
T2
`

dµ, lim
ε→0

1

|Iεγ |
∑
i∈Iεγ

α(Ω+
i ) = 0, (2.29)

where |Iεγ | denotes the cardinality of Iεγ.

This result generalizes the one in [36], where it was found that in the case of the minimizers
all the droplets are uniformly close to disks of the optimal radius r = 31/3ε1/3| ln ε|−1/3.
What we showed here is that this result holds for almost all droplets in the case of almost
minimizers, in the sense that in the limit almost all the mass concentrates in the droplets
of optimal area and vanishing isoperimetric deficit. We note that the density µ is also
the limit of the number density of the droplets, up to a normalization constant, once the
droplets of vanishing area have been discarded.

The result that almost all droplets in almost minimizers with prescribed limit density
have asymptotically the same size, even if the limit density is not constant in T2

` appears
to be quite surprising. In fact, this observation is consistent with the expectation that
quantum mechanical charged particle systems form Wigner crystals at low particle den-
sities [25, 32, 54]. Let us point out that the Ohta-Kawasaki energy Eε bares a number of
similarities with the classical Thomas-Fermi-Dirac-Von Weizsäcker model arising in the
context of density functional theory of quantum systems (see e.g. [30–32]).

We now turn to relating the results obtained so far for the screened sharp interface
energy Eε to the original diffuse interface energy Eε. On the level of the minimal energy,
the asymptotic equivalence of the energies in the considered regime, namely, that for every
δ > 0

(1− δ) minEε ≤ min Eε ≤ (1− δ) minEε (2.30)

for ε � 1 was established in [36, Theorem 2.3]. The main idea of the proof in [36] is
for a given function uε ∈ Aε to establish an approximate lower bound for Eε[uε] in terms
of (1 − δ)Eε[ũε] for some ũε ∈ A, with δ > 0 which can be chosen arbitrarily small for
ε � 1. The matching approximate upper bound is then obtained by a suitable lifting of
the minimizer uε ∈ A of Eε into Aε.

Here we show that the procedure outlined above may also be applied to almost mini-
mizers of E0 in a suitably modified version of Definition 2.3 involving Eε. We note right
away, however, that it is not possible to simply replace Eε with Eε in Definition 2.3. The
reason for this is the presence of the mass constraint in the definition of the admissible class
Aε for Eε. This implies, for example, that any sequence of almost minimizers (uε) ∈ Aε
of Eε must satisfy `−2

∫
T2
`
dµε = 1

2 δ̄, while, according to Corollary 2.2, for sequences of

almost minimizers (uε) ∈ A of Eε we have `−2
∫
T2
`
dµε → µ̄ 6= 1

2 δ̄. This phenomenon is

intimately related to the effect of screening of the Coulombic field from the droplets by the

12
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Figure 2: A qualitative form of the u-profile for a single droplet from the Euler-Lagrange
equation associated with E . The horizontal line shows the level corresponding to ū. Charge
is transferred from the region where u < ū (depletion shown in green) to the region where
u > ū (excess shown in orange).

compensating charges that move into their vicinity [35]. For a single radially symmetric
droplet the solution of the Euler-Lagrange equation associated with Eε will have the form
shown in Fig. 2.

In order to be able to extract the limit behavior of the energy, we need to take into
consideration the redistribution of charge discussed above and define almost minimizers
with prescribed limit density that belong to Aε and for which the screening charges are re-
moved from the consideration of convergence to the limit density. Hence, given a candidate
function uε ∈ Aε, we define a new function

uε0(x) :=

{
+1, uε(x) > 0,

−1, uε(x) ≤ 0,
(2.31)

whose jump set coincides with the zero level set of uε. This introduces a nonlinear filter-
ing operation that eliminates the effect of the small deviations of uε from ±1 in almost
minimizers on the limit density (compare also with [28]). The density is now defined as

dµε0 := 1
2ε
−2/3| ln ε|−1/3(1 + uε0(x))dx. (2.32)

We can follow the ideas of [36] to establish an analog of Theorem 1 for the diffuse
interface energy. To avoid many technical assumptions, we formulate the result for a
specific choice of W . A general result may easily be reconstructed. Also, we make a
technical assumption to avoid dealing with the case lim supε→0 ‖uε‖L∞(T2

` )
> 1, when spiky

configurations in which |uε| significantly exceeds 1 in regions of vanishing size may appear.
We note that this condition is satisfied by the minimizers of Eε [36, Proposition 4.1].
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Theorem 3. (Γ-convergence of Eε) Fix δ̄ > 0 and ` > 0, and let Eε be defined by (2.4)
with W (u) = 9

32(1− u2)2 and ūε given by (2.1). Then, as ε→ 0 we have that

ε−4/3| ln ε|−2/3Eε Γ→ E0[µ] :=
δ̄2`2

2κ2
+

(
32/3 − 2δ̄

κ2

)∫
T2
`

dµ+ 2

∫
T2
`

∫
T2
`

G(x− y)dµ(x)dµ(y),

where µ ∈M(T2
` ) ∩H−1(T2

` ) and κ = 2
3 . More precisely, we have

i) (Lower Bound) Let (uε) ∈ Aε be such that lim supε→0 ‖uε‖L∞(T2
` )
≤ 1 and

lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] < +∞, (2.33)

and let µε0(x) be defined by (2.31) and (2.32).

Then, up to extraction of subsequences, we have

µε0 ⇀ µ in (C(T2
` ))
∗,

as ε→ 0, where µ ∈M(T2
` )∩H−1(T2

` ). Moreover, we have lim supε→0 ‖uε‖L∞(T2
` )

= 1
and

lim inf
ε→0

ε−4/3| ln ε|−2/3Eε[uε] ≥ E0[µ].

ii) (Upper Bound) Conversely, given µ ∈M(T2
` ) ∩H−1(T2

` ), there exist (uε) ∈ Aε such
that lim supε→0 ‖uε‖L∞(T2

` )
= 1 and for µε0 defined by (2.31) and (2.32) we have

µε0 ⇀ µ in (C(T2
` ))
∗,

as ε→ 0, and
lim sup
ε→0

ε−4/3| ln ε|−2/3Eε[uε] ≤ E0[µ].

Based on the result of Theorem 3, we have the following analog of Corollary 2.2 for the
diffuse interface energy Eε.
Corollary 2.5. For given δ̄ > 0 and ` > 0, let ūε be given by (2.1) and let (uε) ∈ Aε be
minimizers of Eε defined in (2.4) with W (u) = 9

32(1−u2)2. Then, if uε0 and µε0 are defined
via (2.31) and (2.32), respectively, as ε→ 0 we have

µε0 ⇀

{
0
1
2(δ̄ − δ̄c)

in (C(T2
` ))
∗, ε−4/3| ln ε|−2/3`−2 min Eε →

{
δ̄2

2κ2
,

δ̄c
2κ2

(2δ̄ − δ̄c),
(2.34)

when δ̄ ≤ δ̄c or δ̄ > δ̄c, respectively, with δ̄c := 1
232/3κ2 and κ = 2

3 .

Remark 2.6. The choice of the zero level set of uε in the definition of the truncated version
uε0 of uε in (2.31) was arbitrary. We could equivalently use the level set {uε = c} for any
c ∈ (−1, 1) fixed.
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3 Proof of Theorem 1

Throughout all the proofs below, the values of Aεi and P εi are always the rescaled areas
and perimeters, defined in (2.9), of the connected components Ω+

i of Ω+ = {u = +1} for a
given u = uε, as in Sec. 2. The presentation is clarified by working with the rescaled energy
Ēε defined by (2.12) rather than Eε directly. We begin by proving Part i) of Theorem 1,
the lower bound.

3.1 Proof of lower bound, Theorem 1 i)

Step 1: Estimate of Ēε in terms of Aεi and P εi .

First, for a fixed γ ∈ (0, 1) we define a truncated rescaled droplet area:

Ãεi :=

{
Aεi , if Aεi < 32/3πγ−1

(32/3πγ−1)1/2|Aεi |1/2 if Aεi ≥ 32/3πγ−1,
(3.1)

and the isoperimetric deficit

Iεdef :=
1

| ln ε|
∑
i

(
P εi −

√
4πAεi

)
≥ 0, (3.2)

which will be used throughout the proof. The purpose of defining the truncated droplet
area in (3.1) will become clear later. We will make repeated use of the basic fact that the
diameter of an indecomposable set of finite perimeter in the plane is essentially controlled
by its perimeter (i.e., modulo a set of measure zero):

ess diam ω ≤ 1

2
|∂ω| ∀ω ⊂ R2, 0 < |ω| <∞. (3.3)

The proof follows, e.g., from [2, Theorem 7 and Lemma 4] by noting that in view of [2,
Proposition 6(ii)] it is sufficient to consider only simple sets [2, Definition 3].

We start by writing µε =
∑

i µ
ε
i , with

dµεi (x) := ε−2/3| ln ε|−1/3χΩ+
i

(x)dx, (3.4)

where Ω+
i are the connected components of Ω+ = {uε = +1}, and the index ε was omit-

ted from Ω+
i to avoid cumbersome notation. For small enough ε this is justified by the

discussion of Sec. 2, in view of the fact that for some C > 0 we have

|∂Ω+| ≤ ε−1Eε[uε] ≤ Cε1/3| ln ε|2/3, (3.5)
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so |∂Ω+
i | � ` whenever ε� 1. In particular, we can apply (3.3) to Ω+

i on T2
` to obtain

ess diam Ω+
i ≤

1

2
|∂Ω+

i |, (3.6)

when ε is sufficiently small.
For a fixed ρ > 0 we introduce the “far field truncation” Gρ ∈ C∞(T2

` ) of the Green’s
function G:

Gρ(x− y) := G(x− y)φρ(|x− y|) ∀(x, y) ∈ T2
` × T2

` , (3.7)

where φρ ∈ C∞(R) is a monotonically increasing cutoff function such that φρ(t) = 0 for
all t < 1

2ρ and φρ(t) = 1 for all t > ρ. Then, for sufficiently small ε we have |∂Ω+
i | ≤ ρ in

view of (3.5), and from (2.12) we obtain

Ēε[uε] ≥Iεdef +
1

| ln ε|

(∑
i

√
4πAεi −

2δ̄

κ2
Aεi

)

+ 2
∑
i

∫∫
G(x− y)dµεi (x)dµεi (y) (3.8)

+ 2

∫∫
Gρ(x− y)dµε(x)dµε(y),

where we used (3.6) and the positivity of G (cf. e.g. [36]), and here and everywhere below
we omit T2

` ×T2
` as the domain of integration for double integrals to simplify the notation.

We recall that the Green’s function for −∆ + κ2 on T2
` can be written as G(x − y) =

− 1
2π ln |x − y| + O(|x − y|) [36]. With the help of this fact, together with (3.5) and (3.6),

for ε sufficiently small we have the following estimate for the self-interaction energy:

Ēεself := 2
∑
i

∫∫
G(x− y)dµεi (x)dµεi (y)

≥ − 1

π

∑
i

∫∫
(ln |x− y|+ C) dµεi (x)dµεi (y). (3.9)

= − 1

π| ln ε|2
∑
i

∫
Ω

+
i

∫
Ω

+
i

(
ln(|ε1/3| ln ε|2/3|x− y|) + C

)
dx̄ dȳ,

for some C > 0 independent of ε, where in equation (3.9) we have rescaled coordinates

x̄ = ε−1/3| ln ε|1/3x, ȳ = ε−1/3| ln ε|1/3 and introduced the rescaled versions Ω
+
i of Ω+

i .
Expanding the logarithm in (3.9) and using (2.13) and (3.6), we obtain that Ēεself can be
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bounded from below as follows:

Ēεself ≥
1

| ln ε|
∑
i

|Aεi |2
(

1

3π
− C

(
ln | ln ε|
| ln ε|

)
− 1

π|Aεi |2| ln ε|

∫
Ω

+
i

∫
Ω

+
i

ln |x− y| dx dy
)

≥ 1

| ln ε|
∑
i

|Aεi |2
(

1

3π
− C

(
ln | ln ε|
| ln ε|

)
− 1

π| ln ε| lnP
ε
i

)
(3.10)

≥ 1

| ln ε|
∑
i

|Aεi |2
(

1

3π
− C

(
ln | ln ε|
| ln ε|

))
,

for some C > 0 independent of ε (which changes from line to line).
Now observe that the term in parentheses appearing in the right-hand side of (3.10)

is positive for ε sufficiently small. Using this and the fact that Aεi ≥ Ãεi , from (3.10) we
obtain

Ēεself ≥
1

| ln ε|
∑
i

|Ãεi |2
(

1

3π
− C

(
ln | ln ε|
| ln ε|

))
, (3.11)

where C > 0 is a constant independent of ε. It is also clear from the definition of Ãεi that
there exists a constant c > 0 such that

|Ãεi |2 ≤ cAεi . (3.12)

Combining this inequality with (3.11) and choosing any δ > 0, for ε small enough we have

δ > Cc ln | ln ε|
| ln ε|2 and, therefore, from (3.8) we obtain

Ēε[uε] ≥Iεdef +
1

| ln ε|
∑
i

(√
4πAεi −

(
2δ̄

κ2
+ δ

)
Aεi +

1

3π
|Ãεi |2

)
+ 2

∫∫
Gρ(x− y)dµε(x)dµε(y). (3.13)

Step 2: Optimization over Aεi .

Focusing on the second term in the right-hand side of (3.13), we define

f(x) :=
2
√
π√
x

+
1

3π
x, (3.14)

and observe that f is strictly convex and attains its minimum of 32/3 at x = 32/3π, with

f ′′(x) =
3
√
π

2x5/2
. (3.15)
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We claim that we can bound the second term in the right-hand side of (3.13) from below
by the sum I + II + III of the following three terms:

I =
1

| ln ε|

(
32/3 − 2δ̄

κ2
− δ
)∑

i

Aεi +
1

| ln ε|
∑

Aεi>32/3πγ−1

32/3(3−1γ−1 − 1)Aεi , (3.16)

II =
1

| ln ε|
γ5/2

4π2 · 32/3

∑
Aεi<32/3πγ

Aεi (A
ε
i − 32/3π)2, (3.17)

III =
1

| ln ε|
γ7/2

4π

∑
32/3πγ≤Aεi≤32/3πγ−1

(Aεi − 32/3π)2. (3.18)

Before proving this, observe that defining

M ε := Ēε[uε]− 1

| ln ε|

(
32/3 − 2δ̄

κ2
− δ
)∑

i

Aεi − 2

∫∫
Gρ(x− y)dµε(x)dµε(y), (3.19)

we have from (3.13) and (3.16)–(3.18) that if Iεγ is as in Theorem 2, then

M ε ≥ c1

| ln ε|
∑
i/∈Iεγ

Aεi +
c2

| ln ε|
∑
i∈Iεγ

(Aεi − 32/3π)2 + Iεdef ≥ 0 ∀γ ∈ (0, 1
3), (3.20)

for some constants c1, c2 > 0 depending only on γ.
We now argue in favor of the lower bound based on (3.16)–(3.18). First observe that

by (3.1) we have for all Aεi ≥ 32/3πγ−1:

√
4πAεi +

1

3π
|Ãεi |2 −

(
2δ̄

κ2
+ δ

)
Aεi ≥

(
32/3 − 2δ̄

κ2
− δ
)
Aεi + 32/3(3−1γ−1 − 1)Aεi . (3.21)

When Aεi < 32/3πγ−1, which corresponds to both (3.17) and (3.18), we utilize convexity of
f and (3.15):

√
4πAεi +

1

3π
|Ãεi |2 −

(
2δ̄

κ2
+ δ

)
Aεi = Aεi

(
2
√
π√
Aεi

+
1

3π
Aεi −

2δ̄

κ2
− δ
)

= Aεi

(
f(Aεi )−

2δ̄

κ2
− δ
)

(3.22)

≥
(

32/3 − 2δ̄

κ2
− δ
)
Aεi +

1

2
Aεif

′′
(

32/3πγ−1
)

(Aεi − 32/3π)2,

where the last line follows from the second order Taylor formula for f(x) about x = 32/3π
and the fact that f ′′(x) is decreasing. Combining (3.19), (3.21) and (3.22) yields M ε ≥
I + II + III.
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Now using (3.19) and (3.20) with γ sufficiently small, we deduce that

Ēε[uε] ≥ 1

| ln ε|

(
32/3 − 2δ̄

κ2
− δ
)∑

i

Aεi + 2

∫∫
Gρ(x− y)dµε(x)dµε(y). (3.23)

Step 3: Passage to the limit.

We may in fact conclude from (2.12), (2.13), (2.18) and (2.20), that

lim sup
ε→0

∫
T2
l

|∇vε|2 + κ2|vε|2 < +∞, (3.24)

while (µε) is bounded in the sense of measures from (2.13) and (2.14).
Consequently, up to a subsequence

vε ⇀ v in H1(T2
` ), (3.25)

µε
∗
⇀ µ in C(T2

` ), (3.26)

where

−∆v + κ2v = µ (3.27)

holds in the distributional sense. Now passing to the limit in (3.23) and recalling (2.14),
we obtain

lim inf
ε→0

Ēε[uε] ≥
(

32/3 − 2δ̄

κ2
− δ
)∫

dµ+ 2

∫∫
Gρ(x− y)dµ(x)dµ(y), (3.28)

using continuity of Gρ. An application of the monotone convergence theorem then yields

lim inf
ε→0

Ēε[uε] ≥
(

32/3 − 2δ̄

κ2

)∫
dµ+ 2

∫∫
G(x− y)dµ(x)dµ(y), (3.29)

upon sending ρ→ 0 and then δ → 0. �

We now argue in favor of the corresponding upper bound in Theorem 1. The construc-
tion resembles quite closely that of the vortex construction in [44] for the two dimensional
Ginzburg-Landau functional and indeed we borrow several ideas from that proof and oc-
casionally refer the reader to that paper for details.
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3.2 Proof of the Upper Bound, Theorem 1 ii)

As in the proof of the lower bound, we set dµεi (x) as in (3.4), so that µε =
∑
µεi . Using the

approximation argument of Proposition II.2 in [44] we may assume that the limit measure
µ satisfies

dµ(x) = g(x)dx, c ≤ g ≤ C, (3.30)

for some C > c > 0.

Step 1: Construction of the configuration.

We claim that for ε sufficiently small it is possible to place a total of N(ε) disjoint spherical
droplets, where

N(ε) =
1

32/3

| ln ε|
π

µ(T2
` ) + o(| ln ε|), (3.31)

with centers {ai} in T2
` and radius

r = 31/3ε1/3| ln ε|−1/3, (3.32)

and satisfying for all i 6= j

d(ε) := min |ai − aj | ≥
C√
N(ε)

, (3.33)

for some constant C > 0 depending only on µ. Indeed, given µ satisfying (3.30), for ε
sufficiently small we can partition T2

` into disjoint squares {Ki} of side length δε > 0
(hereafter simply denoted δ) satisfying

| ln ε|−1/2 � δ � 1. (3.34)

In each Ki we place

NKi(ε) =

⌊
1

32/3

| ln ε|
π

µ(Ki)

⌋
(3.35)

points ai (here m = bxc denotes the smallest integer m ≤ x) satisfying (3.33) and in
addition

dist (ai, ∂Ki) ≥
C√
N(ε)

, N(ε) :=
∑
i

NKi . (3.36)

As argued in [44], our ability to do this follows from the estimate:

cδ2 ≤ µ(Ki) ≤ Cδ2, (3.37)

20



which follows from (3.30) together with (3.34). We finally define our configuration uε by
setting the connected components Ω+

i of Ω+ = {uε = +1} to be balls of radius r from
(3.32) centered at ai, i.e. Ω+

i := Br(ai). We set uε = −1 in the complement of these balls.
With these choices we have

Ēε[uε] =
2π · 31/3N(ε)

| ln ε| − 2π · 32/3N(ε)δ̄

| ln ε|κ2
+ 2

∫∫
G(x− y)dµε(x)dµε(y)

=
2

31/3
µ(T2

` )−
2δ̄

κ2
µ(T2

` ) + 2

∫∫
G(x− y)dµε(x)dµε(y) + o(1). (3.38)

The main point of the rest of the proof is to show that the integral term in (3.38) converges
to
∫∫

G(x−y)dµ(x)dµ(y)+3−1/3
∫
dµ, with the non-trivial last term coming from the self-

interaction of the droplets. To prove that these are the only contributions to the limit
energy, we need to use the fact that the droplets cannot concentrate too much as ε→ 0.

Step 2: Convergence of the configurations.

Defining µε as before, it is clear from the construction that

µε ⇀ µ in (C(T2
` ))
∗. (3.39)

Fix ρ > 0 sufficiently small (depending only on κ and `) and consider Gρ(x− y) defined as
in (3.7). By continuity of Gρ in T2

` we have

lim
ε→0

∫∫
Gρ(x− y)dµε(x)dµε(y) =

∫∫
Gρ(x− y)dµ(x)dµ(y). (3.40)

Now, let Iρ be the collection of indices (i, j) such that 0 < |ai − aj | < ρ. Then for small
enough ε we can write∫∫ (

G(x− y)−Gρ(x− y)
)
dµε(x)dµε(y)

≤
N(ε)∑
i=1

∫∫
G(x− y)dµεi (x)dµεi (y) +

∑
(i,j)∈Iρ

∫∫
G(x− y)dµεi (x)dµεj(y) (3.41)

≤ 1

6π| ln ε|

N(ε)∑
i=1

|Aεi |2 +
C ln | ln ε|
| ln ε| +

C ′

| ln ε|2
∑

(i,j)∈Iρ
AεiA

ε
j

∣∣∣ln dist (Ω+
i ,Ω

+
j )
∣∣∣ ,

for some C,C ′ > 0 independent of ε or ρ, where Aεi = 32/3π and we expanded the Green’s
function as in (3.9) in the proof of the lower bound. Now, for k = 1, 2, . . . ,Kρ(ε), with
Kρ(ε) := bρ/d(ε)c, let Ikρ ⊂ Iρ be disjoint sets consisting of all indices (i, j) such that
kd(ε) ≤ |ai − aj | < (k + 1)d(ε). Since by the result on optimal packing density of disks in
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the plane [19] we have |Ikρ | ≤ ckN(ε) for some universal c > 0 (here again |Ikρ | denotes the

cardinality of Ikρ ), in view of (3.31) it holds that

1

| ln ε|2
∑

(i,j)∈Iρ
AεiA

ε
j

∣∣∣ln dist (Ω+
i ,Ω

+
j )
∣∣∣ ≤ CN(ε)

| ln ε|2
Kρ(ε)∑
k=1

k| ln(kd(ε))|

≤ 2CN(ε)

| ln ε|2d2(ε)

∫ ρ

d(ε)
t| ln t|dt ≤ C ′

( | ln d(ε)|
| ln ε| + ρ2| ln ρ|

)
≤ 2C ′ρ2| ln ρ|, (3.42)

for some C,C ′ > 0 independent of ε or ρ, when ε and ρ are sufficiently small. Therefore,
from (3.32) and (3.41) we obtain

lim sup
ε→0

∫∫ (
G(x− y)−Gρ(x− y)

)
dµε(x)dµε(y) ≤ 2−1 · 3−1/3 + o(ρ). (3.43)

Finally combining (3.43) with (3.38) and (3.40), upon sending ε → 0, then ρ → 0 and
applying the monotone convergence theorem we have

lim
ε→0

Ēε[uε] ≤
(

32/3 − 2δ̄

κ2

)∫
dµ+ 2

∫∫
G(x− y)dµ(x)dµ(y), (3.44)

as required. The fact that vε ⇀ v follows from (3.39) and the uniform bounds just demon-
strated on the terms involving the Green’s function in (3.38), from which it follows that
(2.21) is satisfied distributionally. �

4 Proof of Theorem 2

In the proof of Sec. 3, we have in fact established Theorem 2, which is clear by (3.20).
Indeed, we have for a sequence of almost minimizers (uε):

lim
ε→0

Eε[uε]− E0[µ] = 0. (4.1)

Observing that M ε defined in (3.19) does not contribute to E0[µ], we have established that
M ε → 0 as ε → 0 for any γ < 1

3 and, as a consequence, we obtain (2.24)–(2.26) for, say,
γ = 1

6 . Then it is easy to see from the definition of Iεγ that the statement of the Theorem,
in fact, holds for any γ ∈ (0, 1). �

5 Proof of Theorem 3

We now turn to the proof of Theorem 3 extending the result of Theorem 1 for the sharp
interface energy Eε to the diffuse interface energy Eε. The proof proceeds by a refinement
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of the ideas of [36, Sec. 4] to establish matching upper and lower bounds for Eε in terms
of Eε for sequences with bounded energy.

Step 1: Approximate lower bound.

In the following, it is convenient to rewrite the energy (2.4) in an equivalen form

Eε[uε] =

∫
T2
`

(
ε2

2
|∇uε|2 +W (uε) +

1

2
|∇vε|2

)
dx, −∆vε = uε − ūε,

∫
T2
`

vεdx = 0.

(5.1)

Fix any δ ∈ (0, 1) and consider a sequence (uε) ∈ Aε such that lim supε→0 ‖uε‖L∞(T2
` )
≤ 1

and Eε[uε] ≤ Cε4/3| ln ε|2/3 for some C > 0 independent of ε. Then we claim that

lim sup
ε→0

‖uε‖L∞(T2
` )

= 1, lim
ε→0
‖vε‖L∞(T2

` )
= 0. (5.2)

Indeed, for the first statement we have from the definition of Eε in (2.4) that

|Ωδ
0| ≤ Cε4/3| ln ε|2/3δ−2, Ωδ

0 := {−1 + δ ≤ uε ≤ 1− δ}, (5.3)

for some C > 0 independent of ε. Hence, in particular, lim supε→0 ‖uε‖L∞(T2
` )
≥ 1, proving

the first statement of (5.2). To prove the second statement in (5.2), we note that by
standard elliptic theory [22] we have ‖vε‖W 2,p(T2

` )
≤ C ′ for any p > 2 and some C ′ > 0

independent of ε and, hence, by Sobolev imbedding ‖∇vε‖L∞(T2
` )
≤ C ′′ for some C ′′ > 0

independent of ε as well. Therefore, applying Poincaré’s inequality, we obtain

Cε4/3| ln ε|2/3 ≥ Eε[uε] ≥ C ′
∫
T2
`

|vε|2dx ≥ C ′′‖vε‖4L∞(T2
` )
, (5.4)

for some C ′, C ′′ > 0 independent of ε, yielding the claim.
In view of (5.2), for small enough ε we have ‖uε‖L∞(T2

` )
≤ 1 + δ3 and ‖vε‖L∞(T2

` )
≤ δ3,

and by the assumption on energy we may further assume that Eε[uε] ≤ δ12. Therefore,
by [36, Proposition 4.2] there exists a function ũε0 ∈ A such that

Eε[uε] ≥ (1− δ1/2)Eε[ũε0]. (5.5)

In particular, (ũε0) satisfy the assumptions of Theorem 1, and, therefore, upon extraction
of subsequences we have µ̃ε0 ⇀ µ ∈M(T2

` ) ∩H−1(T2
` ) in (C(T2

` ))
∗, where

dµ̃ε0(x) := 1
2ε
−2/3| ln ε|−1/3(1 + ũε0(x))dx. (5.6)

Furthermore, recalling that by construction the jump set of ũε0 coincides with the level set
{uε = c} for some c ∈ (−1 + δ, 1− δ), see the proof of [36, Lemma 4.1], from (5.3) we have

‖ũε0 − uε0‖L1(T2
` )
≤ Cε4/3| ln ε|2/3δ−2, (5.7)
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where uε0 is given by (2.31), for some C > 0 independent of ε (recall that the jump set of
uε0 is the zero level set {uε = 0}). Comparing (5.7) with (5.6), we then see that µε0 ⇀ µ in
(C(T2

` ))
∗ as well. The result of part (i) of Theorem 3 then follows by arbitrariness of δ > 0

via a diagonal process.

Step 2: Approximate upper bound.

We now construct the approximate upper bounds for a suitable lifting of the recovery
sequences in the proof of Theorem 1(ii) to Aε. Let (ũε0) ∈ A be a recovery sequence
constructed in Sec. 3.2. This sequence consists of circular droplets of the optimal radius
r = 31/3ε1/3| ln ε|−1/3 � ε1/2 and mutual distance d ≥ C| ln ε|−1/2 � ε1/2, for some C > 0
independent of ε. In addition, since

Eε[ũε0] =
ε

2

∫
T2
`

|∇ũε0| dx+
1

2

∫
T2
`

(
|∇ṽε|2 + κ2|ṽε|2

)
dx ≤ Cε4/3| ln ε|2/3, (5.8)

where ṽε(x) =
∫
T2
`
G(x − y)(ũε0(y) − ūε)dy, for some C > 0 independent of ε, by the

argument of (5.4) one can see that limε→0 ‖ṽε‖L∞(T2
` )

= 0. Therefore, for any δ ∈ (0, 1)

and ε > 0 sufficiently small we have ‖ṽε‖L∞(T2
` )
≤ δ and Eε[ũε0] ≤ δ5/2. So we can

apply [36, Proposition 4.3] to obtain a function uε ∈ Aε such that

Eε[uε] ≤ (1 + δ1/2)Eε[ũε0]. (5.9)

Furthermore, by the construction of uε (see [36, Eqs. (4.31)–(4.33)]) and arbitrariness of
δ > 0, we also have lim supε→0 ‖uε‖L∞(T2

` )
= 1, and

‖ũε0 − uε0‖L1(T2
` )
≤ Cε4/3| ln ε|2/3, (5.10)

for some C > 0 independent of ε, where uε0 is given by (2.31), and we used (5.8). Hence
µε0 ⇀ µ = limε→0 µ̃

ε
0 in (C(T2

` ))
∗. The result of part (ii) of Theorem 3 again follows by

arbitrariness of δ > 0 via a diagonal process.

Remark 5.1. It is possible to chose δ = εα for α > 0 sufficiently small in the arguments
of the proof of Theorem 3. Therefore, given a sequence of almost minimizers (uε) ∈ Aε of
Eε and the corresponding sequence (uε0) ∈ A of almost minimizers of Eε, one has

ε−4/3| ln ε|−2/3Eε[uε] = ε−4/3| ln ε|−2/3Eε[uε0] +O(εα), (5.11)

for some α� 1, as ε→ 0.
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