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LARGE VORTICITY STABLE SOLUTIONS TO THE
GINZBURG-LANDAU EQUATIONS

ANDRES CONTRERAS AND SYLVIA SERFATY

Abstract. We construct local minimizers to the Ginzburg-Landau functional of supercon-
ductivity whose number of vortices N is prescribed and blows up as the parameter ε, inverse
of the Ginzburg-Landau parameter κ, tends to 0. We treat the case of N as large as |log ε|,
and a wide range of intensity of external magnetic field. The vortices of our solutions arrange
themselves with uniform density over a subregion of the domain bounded by a “free boundary”
determined via an obstacle problem, and asymptotically tend to minimize the “Coulombian
renormalized energy” W introduced in [14]. The method, inspired by [22], consists in min-
imizing the energy over a suitable subset of the functional space, and in showing that the
minimum is achieved in the interior of the subset. It also relies heavily on refined asymptotic
estimates for the Ginzburg-Landau energy obtained in [14].

1. Introduction

Let Ω ⊆ R2 be a bounded and smooth domain. We are interested in finding local minimizers
of the 2D Ginzburg-Landau functional of superconductivity

(1.1) Gε(u,A) :=
1

2

∫

Ω

|(∇− iA)u|2 + |∇ × A− hex|2 +
(1 − |u|2)2

2ε2
.

Here, the complex-valued function u is a pseudo wave function, the “order parameter” in
physics, that indicates the local state of the superconductor. The material is in the supercon-
ducting state in the regions where |u| ≈ 1, and in the normal state where |u| ≈ 0. The zeros of
the order parameter carrying a non-zero degree are called vortices. The parameter hex > 0 is
the intensity of the applied magnetic field, A is the induced magnetic potential, h := ∇×A is
the induced magnetic field, and finally ε is the inverse of the “Ginzburg-Landau parameter.”
For more background, we refer to standard physics textbooks, such as [24, 23], or to [19] and
references therein.

We are interested in the asymptotic regime ε → 0. This corresponds to the characteristic
lengthscale of the vortices going to 0.

The vortices of a critical point of (1.1) are conveniently studied via the vorticity measure

µ(u,A) := ∇× j(u,A) + ∇× A,

where j(u,A) := (iu,∇Au) denotes the superconducting current associated to a configuration
and ∇A = ∇ − iA. We also write jε := j(uε, Aε), for (uε, Aε) a pair depending on ε. In the
limit ε → 0, the vorticity measure is well approximated by a sum of Dirac masses at the
vortex centers, for a precise statement see the Jacobian estimate (1.7) below.

In what follows we write, for quantities Aε and Bε depending on ε, Aε . Bε when there is a
constant C independent of ε such that Aε ≤ CBε. We also write Aε ≪ Bε when limε→0

Aε

Bε
= 0.
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The asymptotic study of critical points of (1.1), as ε → 0 for external fields hex ≪ 1
ε2
, has

been carried out in a series of papers by Sandier and Serfaty, starting from [20, 21]; continuing
in [16, 17, 18]; the monograph [19], and more recently [14]. It was shown in [16] that for
hex = o (|log ε|) there is a critical value λ∗ of λ = limε→0

hex

|log ε| below which minimizers have

no vortices. It was further shown in [17] that if hex−λ∗|log ε| . log |log ε| then the number of
vortices of a minimizer remains bounded independent of ε. For log |log ε| ≪ hex−λ∗|log ε| ≪
|log ε|, minimizers have N vortices with 1 ≪ N ≪ hex as shown in [19], Chap. 9, while for
λ > λ∗ possibly = +∞, minimizers exhibit a number N proportional to hex of vortices with
uniform density in a subregion determined by an obstacle problem (see [18], [19] Chap. 7, and
[14]).

The behavior of critical points of (1.1) that are not necessarily minimizers of the energy,
was the object of study of [18]. In [18] the vorticity measures µ(uε, Aε) associated to critical
points (uε, Aε) of (1.1), normalized by the number of vortices, are shown to converge weakly
to a measure µ. The measure µ has the form µ := −∆h+h, where h is a “stationary function”
for a free boundary problem (see (1.2) below), and satisfies in some weak sense the relation
µ∇h = 0. This expresses that the average force acting on the vortices (∇h) vanishes where
the vortices are, i.e. on the support of µ, thus allowing them to be at equilibrium. This result
was later proved under less restrictive assumptions in [19], Chapter 13, and included cases not
previously covered.

It is then natural to ask the converse, that is, given a measure µ associated to a stationary
function h as above, can one find (uε, Aε) critical points of (1.1) such that µ(uε, Aε), suit-
ably normalized, converges weakly to µ? We will answer this question partially, by building
solutions to the Ginzburg-Landau equations which are local (but not global) minimizers of
the energy, and have a prescribed and divergent (as ε → 0) number of vortices N . The same
thing has already been accomplished for a bounded number of vortices in [22], and also in
[19], Chap. 11 for N slowly diverging as ε→ 0.

Note that the question of inverse problems, i.e. whether given a critical point of a limiting
energy, one can find corresponding critical points of the original problem, has been addressed
in a variety of contexts, and for Ginzburg-Landau in particular : see [8, 4] for the situation of a
finite number of vortices in 2D, and [1, 10, 11] for lines of vortices in 3D. Our approach, which
is not local inversion but rather local minimization, is more in the spirit of [10, 11] for vortex
lines in 3D. All previous results however, concerned only finite numbers of vortices. Another
related context where such a question is addressed is that of the Allen-Cahn equation, whose
limiting energy is the perimeter functional, for results there see [6, 7, 13].

The stable solutions found in [22] and [19] Chap. 11, are shown to exist for a wide range
of hex (they are in fact globally minimizing for only one value of hex): they exist for fields of
intensity up to ∼ 1

εα0
, where α0 <

1
2
, and also for fields almost as small as constant. They thus

form branches of solutions, each corresponding to a number N of vortices, with N bounded

with ε, or even unbounded, but subject to the restrictions N2 ≤ ηhex, hex ≤ Nε
−2η

N2+η , where
η > 0 is a small but fixed parameter. These restrictions imply in particular (cf. [19]) that

in any case N ≪ (|log ε|)
1

2 and if N → ∞, then hex ≪ 1
εα for any α > 0, thus leaving

open the question of existence of stable solutions with (|log ε|)
1

2 . N . hex vortices. We
address this question and prove for the first time that branches of local minimizers with N
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vortices continue to exist up to N = O(hex), with restrictions on N and hex specified below,
see (1.5)–(1.6).

The analysis in [22, 19] consisted, roughly, in minimizing the energy Gε “among configura-
tions with N vortices” and exploiting the quantization of N through a careful expansion of
the minimal energy of a configuration in terms of its vortices. This expansion came with an
error o(N2). However, the method followed there only tolerates an error of o (|log ε|) (hence at
least the condition N2 . |log ε|) which thus limited the range of applicability of the approach.
What we do here is to follow the same general idea of local minimization but this time over
a class which is defined so as to exploit the results and methods of [14] to get a more precise
energy expansion with an error of only o(N). In this way we can cover the range of N even
comparable to |log ε|, and fields as large as a power of 1

ε
.

1.1. Statement of main result. In order to state the main result of the article in more
accurate terms, we first proceed to introducing some auxiliary function.

An Obstacle Problem. Let N be a positive number (typically an integer representing the
number of vortices). Following [14], we denote by hε,N the minimizer of

(1.2)
1

2

∫

Ω

|∇h|2 + |h− hex|2 ,

over the set of functions h that are equal to hex on the boundary and such that
∫

Ω

|−∆h+ h| = 2πN.

As long as 2πN ≤ hex|Ω| (an assumption we will need to make), this minimizer hε,N exists
and it is the solution to an obstacle problem (see Lemma 5.1 and Appendix A in [14]). There
exists a coincidence set ωε,N ⊂ Ω and a number 0 < mε,N ≤ 1 (for us the normalized vortex
density) such that

(1.3) µε,N := −∆hε,N + hε,N = hexmε,N1ωε,N
and hexmε,N |ωε,N | = 2πN,

where 1 denotes the characteristic function of a set and | · | its area. If Ω is convex, then ωε,N
is also convex, by a result in [3]. To avoid technical difficulties, we will assume in the sequel
that Ω is convex. It is also checked in [14] that mε,N is bounded universally from below by a
positive constant m0 and that mε,N 7→ |ωε,N | is increasing. Without loss of generality we can
thus assume that

(1.4) lim
ε→0

mε,N =: m ≥ m0 > 0,

where N may also depend on ε.
As in [14] (cf. Lemma 5.2), the function hε,N will serve to “split” the energy Gε in a

convenient way. The vorticity of the solutions we construct will ressemble µε,N , which is a
constant over the subregion ωε,N , hence we will have a uniform density of vortices there, and
a vanishing one outside.
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Range of fields and vorticity studied. We consider fields and vortex numbers satisfying the
following conditions

(1.5) 1 ≪ N ≤ min

{
c
hex |Ω|

2π
,K log

1

ε
√
hex

}
,

for constants 0 < c < 1 and K > 0 independent of ε, and

(1.6) hex . ε−s0 for some s0 <
1

7
.

A few comments are in order. The first condition in (1.5) N ≤ chex|Ω|
2π

with c < 1, seems
like a natural one. It corresponds to the maximum number of vortices that a certain domain
can fit according the the applied field, at least it is the maximum permitted at the level of
the limiting obstacle problem. On the other hand, we do not believe the second condition
N ≤ K log 1

ε
√
hex

and (1.6) to be optimal, but rather to be technical assumptions. Optimal

conditions should rather be of the type N ≤ hex|Ω|
2π

and hex less than some superheating field
at which vortices lose their stability, probably of order 1/ε (but this is all a bit speculative).
In any case, we expect our condition (1.5) on N to be optimal when hex = |log ε| .

We also note that N ≤ K log 1
ε
√
hex

could equivalently be written N ≤ K|log ε| (changing K

if necessary). Let us also point out that (1.5) implies hex ≫ 1 and 0 < m0 ≤ m < 1 (see (1.3)),
and thus 1−mε,N is always bounded away from 0 for ε small enough, and hex(1−mε,N) ≫ 1.
We will make use of these facts repeatedly during the proofs.

Our main result is:

Theorem 1.1. Let Ω ⊆ R2 be a convex smooth bounded set. Assume that N = N(ε) a family
of positive integers and hex = hex(ε) satisfy conditions (1.5)–(1.6). Then, for ε small enough
(depending on the constants above), there exists a local minimizer (uε, Aε) of (1.1) such that
the following holds:

(i) There exists a measure νε of the form 2π
∑

i diδai
, with di ∈ Z and ai ∈ Ω, such that

(1.7) ‖µ(uε, Aε) − νε‖(C0,1
0

(Ω))∗ ≤ εα

for some α > 0, and we have

(1.8) νε(Ω) = 2πN,

i.e. the total vorticity of uε is N.
(ii) The asymptotics

(1.9) Gε(uε, Aε) = GN
ε + πN log

1

ε
√
hex

+NWm − 2πNhex(1 −mε,N) + o(N),

hold as ε→ 0, where Wm and GN
ε are constants explicited in (1.11) and (1.12) respec-

tively, and m is as in (1.4).
(iii) For any 1 < p < 2,

(1.10) ‖µ(uε, Aε) − µε,N‖W−1,p(Ω) ≤ Cp
√
N,

where Cp depends only on p.
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(iv) For 1 < p < 2, denoting by Pε the probability measure on Lploc(R
2,R2) which is the push-

forward of the normalized uniform measure on ωε,N by the map x 7→
√
hexjε(

√
hex(x+

·)), 1 we have that, up to subsequence, Pε converges weakly to a translation invariant
probability measure P on Lploc(R

2,R2) such that P -a.e. j ∈ Am and P -a.e. j minimizes
W over Am, where W and Am are defined just below.

As announced, this theorem proves the existence of locally minimizing solutions of Ginzburg-
Landau with N vortices. Moreover, their vortices tend to follow the average distribution
µε,N , and their superconducting currents, after blow-up at scale

√
hex, tend to minimize the

“Coulombian renormalized energy” W , introduced in [14], whose definition we recall below.

1.2. The renormalized energy W . For each m > 0, consider the class of currents j such
that div j = 0 and ∇×j =

∑
p∈P 2πδp−m for a discrete set P , and #(P∩BR)/R2 is bounded

for R > 1. We call this class Am.
For any family of sets {UR}R>0 in R2, χUR

will be a family of associated positive cut-off
functions satisfying

|∇χUR
| ≤ C, Supp(χUR

) ⊂ UR, χUR
(x) = 1 if d(x, (UR)c) ≥ 1,

where the constant C is independent of R. We specialize this to the family of balls BR of
radius R and center the origin.

Definition 1.2. W is defined, for j ∈ Am, by

W (j) = lim sup
R→∞

W (j, χBR
)

|BR|
,

where for any positive function χ, we denote

W (j, χ) = lim
η→0

(
1

2

∫

R2\∪p∈PB(p,η)

χ |j|2 + π log η
∑

p∈P
χ(p)

)
.

For properties of W , we refer to [14]. It is proven there in particular that minj∈Am
W is

achieved and finite. We also set γ

γ := lim
R→∞

[
1

2

∫
rf ′2 +

(1 − f 2)2r

2
+
f 2

r
dr − π lnR

]
, constant introduced in [2],

where f is such that f(r)eiθ is the unique (cf. [9]), up to a phase shift, degree one radial
solution of

−∆u+ (1 − |u|2)u = 0 in R
2.

We finally let

(1.11) Wm :=
2π

m
min
j∈Am

W + γ.

In [14], it is conjectured that the minimum of W over Am is achieved for currents corre-
sponding to a configuration of points in a perfect hexagonal lattice (of suitable volume). A
small hint to this is provided there by the fact that W is uniquely minimized, among perfect

1Here jε is extended by 0 outside Ω.
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lattices of fixed volume, by the hexagonal lattice. In superconductivity, the hexagonal lattice
also corresponds to the famous “Abrikosov lattice”, predicted from (1.1) and observed in ex-
periments. It was proven in [14] that global minimizers of the Ginzburg-Landau functional
(1.1) have currents which minimize W , after a suitable blow inside the free-boundary region
that contains the vorticity. If the conjecture about the minimum of W is true, then one
expects the vortices of global minimizers to arrange themselves in such an Abrikosov hexag-
onal lattice. From item (iv) of Theorem 1.1 the exact same thing is expected of the lo cally
minimizing solutions found here. The only qualitative difference with the global minimizers
is in the total number of vortices N , which manifests itself in a different µε,N hence a different
local density of vortices and a different location for the free-boundary that encloses them.

1.3. The local minimization method. The local minimization first relies on the same
energy splitting introduced in [14], which we now recall. For any A, set

A1 := A−∇⊥hε,N

where hε,N is the solution of the obstacle problem (1.2) above. Let us also define accordingly

Jε,N(u,A) :=
1

2

∫

Ω

|(∇− iA)u|2 + |∇ × A− µε,N |2 +
(1 − |u|2)2

2ε2
dx,

with µε,N as in (1.3), the configuration independent quantity

(1.12) GN
ε := ‖hε,N − hex‖2

H1(Ω) + 2πN(mε,N − 1)hex,

and finally the function ξ := hex − hε,N (implicitly depending on ε and N , note that it is
nonnegative in Ω and vanishes on ∂Ω). We denote

(1.13) ξmax = max
Ω

ξ = hex(1 −mε,N).

Lemma 1.3. For any (u,A), Gε(u,A) can be decomposed as:

(1.14) Gε(u,A) = GN
ε + Jε,N(u,A1) −

∫

Ω

ξ µ(u,A1) +
1

2

∫

Ω

(|u|2 − 1) |∇hε,N |2 .

Proof. This splitting formula was written with slightly different notation in [14]. Decomposi-
tion (1.14) follows easily from the relations:

|(∇− iA)u|2 = |(∇− iA1)u|2 + |u|2
∣∣∇⊥hε,N

∣∣2 − 2j(u,A1) · ∇⊥hε,N ,

and

|∇ × A− hex|2 = |∇ × A1 + ∆hε,N − hε,N + hε,N − hex|2

= |∇ × A1 − µε,N |2 + |hε,N − hex|2 + 2(∇× A1 − µε,N)(hε,N − hex).

�

The last term in the right-hand side of (1.14) will be proven later to be o(1) for the config-
urations of interest to us.

As explained above for the case of smaller values of N , we still seek our local minimizers
as configurations that minimize Gε among configurations with N vortices. The question is to
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define (following [22]) a suitable set corresponding to this heuristic idea. This is achieved here
by minimizing Gε over

(1.15)

Sβε,N :=

{
(u,A) ∈ H1(Ω,C) ×H1(Ω,R2) s.t. Jε,N(u,A1) ≤ πN log

1

ε
√
hex

+NWm + βN ;

∫

Ω

ξµ ≥ 2πNhex(1 −mε,N) − βN

}
,

where β is chosen to be a small enough positive constant. The idea of this class is that it
allows for at most N vortices when β is small, it leaves enough room for a particular test
function to be admissible (the precision with which we can compute its energy is o(N) while
the error allowed is & N), and it can easily be related to the Ginzburg-Landau energy Gε

via (1.14). As in [22, 19], the task is then, exploiting the quantization of N , to show that

minSβ
ε,N
Gε is achieved in the interior of Sβε,N , thus providing a local minimizer of Gε, and to

show it has the other desired properties. The class Sβε,N differs from those in [22, 19]. Indeed,
following these works it would be tempting to try minimizing over the set of configurations
(u,A) such that: ∣∣∣∣Jε,N(u,A1) −

(
πN log

1

ε
√
hex

+NWm

)∣∣∣∣ ≤ βN.

However, if Jε,N(u,A1) = πN log 1
ε
√
hex

+NWm − βN we cannot conclude that u has strictly

less than N vortices, which is crucial to assure that such a configuration on the boundary of
the set would have an energy that exceeds that of a local minimizer. If one replaces βN by
β log 1

ε
√
hex

a similar problem occurs; in this scenario one is able to prove that if (u,A) is in the

corresponding lower boundary then it has at most N − 1 vortices, but the −β log 1
ε
√
hex

in the

value of J(u,A1) makes the energy of the hypothetical configuration possibly drop below the
one in Proposition 3.1, rendering that approach doomed. To overcome this difficulty (and this
is a novelty of the paper) we proceed by bounding the total vorticity from below indirectly by

requiring the elements of Sβε,N to satisfy
∫

Ω

ξµ(u,A1) ≥ 2πhex(1 −mε,N)N − βN,

this implies there are at least N vortices as long as there are no vortices with negative degree
outside the free boundary ωε,N . This is proven to be the case in Proposition 4.1.

Finally, the question of treating the case of N larger than the order |log ε| remains open,
we believe it would require much more precise estimates on the energy than those provided
by [14] that we use here, and this seems out of reach for the moment.

The plan of the paper is as follows. In Section 2 we introduce notation and recall the
Jacobian estimate. In Section 3 we construct an explicit configuration with N vortices uni-
formly distributed according to µε,N and a superconducting current almost minimizing W ,
we check the test configuration belongs to the admissible class, and by computing its energy
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Gε, we obtain an almost optimal upper bound. In Section 4 we analyze general properties
of the elements of Sβε,N , in particular characterize their total vorticity as well as give lower
bounds for the different components of the splitting of Gε.We conclude with the proof of Theo-
rem 1.1 in Section 5, by showing minimizers do not lie on the boundary of the admissible class.

Acknowledgment: Both authors are supported by S.S’s EURYI award.

2. Preliminaries

We will mostly work in blown-up coordinates at the characteristic lengthscale 1/
√
hex. Let

(2.1) ε′ := ε
√
hex and x′ :=

√
hex x.

With this notation (1.5) becomes N ≤ K |log ε′| in the regime where |log ε′| ≪ hex. The
domains Ωε and (ωε,N)′ correspond to Ω and ωε,N in the blown-up coordinates x′.We transform
the rest of the variables in a natural fashion, that is

(2.2) u′(x′) = u(x), ξ′(x′) = ξ(x) and A′(x′) =
1√
hex

A(x),

for any magnetic potential A.
The blown up currents and measures are defined in terms of these quantities in a clear way,

also denoted with a prime.
We define, for U ⊂ Ωε, the sets:

(2.3) Û := {x ∈ Ωε/d(x, U) ≤ 1}

(2.4) Ǔ := {x ∈ U/d(x, ∂U) ≥ 1}
and

(2.5) Ũ := {x ∈ U/d(x, ∂U) ≥ 2}.
We now recall the basic concentration estimate relating the Jacobian and the total vorticity,

à la Jerrard-Soner [12].

Theorem 2.1. (cf. [14], Theorem 5) Assume Gε(uε, Aε) . (ε′)−s, where s < 1. Then there
exists a measure ν ′ε that depends only on uε (not on Aε) of the form νε = 2π

∑
i di δai

, for
di ∈ Z and ai ∈ Ωε, with

(2.6) ‖µ′ − ν ′ε‖(C0,1
0

(Ωε))∗
. (ε

√
hex)

1

2Gε(uε, Aε),

and there exists a constant C1 > 0 such that for any measurable set E ⊆ Ωε

(2.7) |ν ′ε| (E) ≤ C1

∫
Ê
eε

|log ε′| ,

where

(2.8) eε(u,A) := |∇Au|2 + |∇ × A|2 +
(1 − |u|2)2

2(ε′)2
.
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3. Local minimization class and energy upper bound

As mentioned, we follow the idea of [22], and Chapter 11 of [19], and seek for local minimizers

of Gε among configurations with “N vortices” by minimizing Gε over the class Sβε,N , cf. (1.15),
with β to be determined later. From now on we write (uε, Aε) an element in the Argmin of

Gε in Sβε,N . The fact that such a (uε, Aε) actually exists follows from classical arguments (a
proof can be adapted from [22] or Chapter 11 in [19]). The task is then to show a minimizer
cannot lie on the boundary.

We first show that the classes Sβε,N are non-empty and provide a priori estimates on the
energy of a minimizer in those classes.

Proposition 3.1. The classes Sβε,N are non-empty. Furthermore, if (uε, Aε) is a minimizer

of Gε over Sβε,N , then, as ε→ 0,

(3.1) Gε(uε, Aε) ≤ GN
ε + πN |log ε′| +NWm − 2πNhex(1 −mε,N) + o(N).

Proof. The proof relies on computing the energy of a carefully built test configuration (ûε, Âε).
The construction is carried out in Theorem 6 in [14] where the argument makes use of the fact
that in their case N corresponds to the number of vortices of a global minimizer. We show
here that that the construction still works for N satisfying (1.5) and also make explicit why

the test configuration belongs to Sβε,N , an issue not present in the global minimization setting
of [14].

In Theorem 6 of [14], a test configuration (ûε, Âε) is built in the following way.

Step 1:

For M > 0, consider a discrete set of points Pε, such that ∪p∈Pε
B(p,Mε) ⊂ ωε,N and such

that |Pε| = N. A current ̂ε is built that satisfies

(3.2) lim sup
η→0

1

mε,Nhex |ωε,N |

(
1

2

∫

Ω\S

p∈Pε
B

“

p,η(mε,Nhex)−
1
2

”

|̂ε|2 + πN log η

)
≤ min

A1

W + oε(1).

The current ̂ε is constructed under the assumption that Ω is convex (Proposition 4.2 and
Corollary 7.4 in [14]). In addition it is necessary that the coincidence set ωε,N be well contained
inside Ω. More precisely one must guarantee

(3.3) dist (ωε,N ,Ω
c) & (mε,Nhex)

− 1

2

In [14] an explicit lower bound for dist (ωε,N ,Ω
c) was proven in the case where N is the

number of vortices corresponding to global minimizers of Gε. In our case we recall that (1.5)
implies m < 1 and therefore

√
1 −mε,N is bounded from below by a positive number. From

Appendix A in [14], we know that

(3.4) ‖∇hε,N‖∞ . hex
√

1 −mε,N .
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Then since hε,N is equal to mε,N hex on ωε,N and to hex on the boundary, ξ = hex − hε,N and
(1.13), one has:

dist (ωε,N ,Ω
c) &

ξmax

‖∇hε,N‖L∞

&
√

1 −mε,N .

On the other hand, mε,N ≥ m0 > 0, 1 −mε,N is bounded below, and hex ≫ 1, therefore

√
1 −mε,N &

1√
mε,N hex

,

which proves (3.3) in our case.

Step 2:

The functions ûε and Âε are then built satisfying

(3.5) |ûε| = 1 on Ω \ ∪p∈Pε
B(p,Mε).

(3.6) Âε := Â1,ε + ∇⊥hε,N ,

where Â1,ε is chosen to satisfy ∇× Â1,ε = µε,N and

(3.7)
1

2

∫

B(p,Mε)

∣∣∣∇
dA1,ε
ûε

∣∣∣
2

+
(1 − |ûε|2)2

2ε2
= π logM + γ + oM(1) + oε(1),

for all p ∈ Pε, where oM(1) is a quantity that goes to zero as M → ∞, uniformly with respect
to ε.

(3.8)
1

2

∫

B
“

p,η(mε,N hex)−
1
2

”

\B(p,Mε)

∣∣∣∇
dA1,ε
ûε

∣∣∣
2

+
(1 − |ûε|2)2

2ε2
≤ π log

(
η√

mε,N hexMε

)
+O(η).

(3.9)

∫

Ω

µ(ûε, Â1,ε) =

∫

Ω

µε,N = 2πN, and µ(ûε, Â1,ε) ≡ 0 on (ωε,N)c.

From this it easily follows that (ûε, Âε) ∈ Sβε,N . Indeed

Jε,N(ûε, Â1,ε) =
1

2

∫

Ω

∣∣∣∇
dA1,ε
ûε

∣∣∣
2

+
∣∣∣∇× Â1,ε − µε,N

∣∣∣
2

+
(1 − |ûε|2)2

2ε2

=
1

2

∫

Ω

∣∣∣∇
dA1,ε
ûε

∣∣∣
2

+
(1 − |ûε|2)2

2ε2
.

Above, the second term disappears because of (3.6).
The identity |∇Au|2 = |∇ |u||2 + |u|2 |j|2 implies, together with (3.5) that

∣∣∣∇
dA1,ε
ûε

∣∣∣
2

= |̂ε|2 on Ω \ ∪p∈Pε
B(p,Mε).
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Therefore, combining (3.2), (3.7) and (3.8), one gets

Jε,N(ûε, Â1,ε) ≤ πN |log ε| + 2πN min
A1

W + πN log
1√

mε,N hex
+N (γ + oε(1) + oM(1) + O(η)) .

Next, passing to a subsequence, one can let M → ∞ as ε → 0, so that the above becomes,
after taking η → 0 :

(3.10) Jε,N(ûε, Â1,ε) ≤ πN |log ε| + 2πN min
A1

W + πN log
1√

mε,N hex
+Nγ + o(N).

By assumption mε,N → m, therefore N |logmε,N | = N |logm|+o(N). According to (1.17) and
(1.18) of [14], by scaling, one has

min
A1

W =
1

m
min
Am

W +
1

4
logm,

Thus, by definition of Wm and ε′, (3.10) is equal to

(3.11) Jε,N(ûε, Â1,ε) ≤ πN |log ε′| +NWm + o(N).

This shows that (ûε, Â1,ε) satisfies the upper bound in the definition of Sβε,N . To see it also
satisfies the lower bound, we see by (3.9) that

∫

Ω

ξµ(ûε, Â1,ε) =

∫

ωε,N

ξµ(ûε, Â1,ε) = ξmax

∫

ωε,N

µ(ûε, Â1,ε)

= ξmax

∫

Ω

µ(ûε, Â1,ε) = ξmax

∫

Ω

µε,N = 2πNhex(1 −mε,N).(3.12)

By (3.11) and (3.12) we obtain that (ûε, Âε) ∈ Sβε,N .
To conclude, from the splitting formula (1.14), we see that

Gε(ûε, Âε) = GN
ε + Jε,N(ûε, Â1,ε) −

∫

Ω

ξµ(ûε, Â1,ε) +
1

2

∫

Ω

(|ûε|2 − 1) |∇hε,N |2 .

The last term is identically zero because |∇hε,N | = 0 on ωε,N , while |ûε| = 1 on (ωε,N)c by
(3.5). Hence, by (3.11) and (3.12) again, we see that

Gε(ûε, Âε) ≤ GN
ε + πN |log ε′| +NWm − 2πNhex(1 −mε,N) + o(N),

and the proposition is proved. �

In the next section, the lower bound component of Theorem 1.1 requires a very precise
approximation of the vorticity measure by νε. We also need a better control on the rightmost
term in the splitting formula (1.14).

Lemma 3.2. Let (uε, Aε) be a minimizing pair on Sβε,N . Assume N and hex satisfy (1.5) and
(1.6). Then there exists an α > 0 such that

(3.13) ‖µ′ − ν ′ε‖(C0,1
0

(Ωε))∗
= o(εα)
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and

(3.14)

∫

Ω

(1 − |uε|2) |∇hε,N |2 = o(1).

Proof. Let us assume first hex ≫ |log ε| . It is easy to see that in this case GN
ε . h2

ex, while
the rest of the positive terms in (3.1) are o(h2

ex). Therefore

Gε(uε, Aε) . h2
ex.

From (2.6) and (1.6) we can deduce

(3.15) ‖µ′ − ν ′ε‖(C0,1
0

(Ωε))∗
. ε

1

2h
1

4
ex · h2

ex . ε
1

2
− 9

4
s0 ,

The fact that this is o(εα) for some α > 0 follows from (1.6). Thus, we have proved (3.13),
and (1.7) also follows. For the second assertion, Cauchy-Schwarz yields
∣∣∣∣
∫

Ω

(|uε|2 − 1) |∇hε,N |2
∣∣∣∣ ≤

(∫

Ω

(1 − |uε|2)2

) 1

2

‖∇hε,N‖2
∞ |Ω|

1

2 .
√
ε2Gε(uε, Aε)‖∇hε,N‖2

∞

Using (3.4) and the bound h2
ex & Gε(uε, Aε), the above leads to

∫
(1 − |uε|2) |∇hε,N |2 . εh3

ex ≤ ε(1−3s0) = o(1),

by (1.6).
The case hex . |log ε| can be dealt with similarly.

�

4. Further Properties of minimizers and lower bound for Gε(uε, Aε)

The next proposition, which is the crucial part of the proof, shows that the elements of Sβε,N
have N vortices and also that the upper bound in (3.1) is sharp.

We recall that Ωε and ω′
ε,N correspond to Ω and ωε,N in the blown up coordinates. At

this point, it is convenient to introduce the notion of “vorticity adapted” family of functions.
To that end, for a function ψε, let ωψε :=

{
x ∈ Ωε s.t. ψε(x) = 1

2
|log ε′|

}
. We will restrict to

considering families {ψε}ε>0 such that

(4.1) ‖∇ψε‖∞ = o(|log ε′|).
Now, define the class:

VA :=

{
{ψε}ε>0 such that ψε : Ωε → R, ψε satisfies (4.1), ωψε ⊃ ω′

ε,N ;

0 ≤ ψε(x) <
1

2
|log ε′| if x ∈ Ωε \ ωψε ;ψε = 0 on ∂Ωε

}

Abusing notation, we sometimes call ψε a vorticity adapted function when {ψε}ε>0 is a vorticity
adapted family. This notion will help us in making use of a family of estimates available in
[14] in a transparent way. The proof in [14] of such estimates, is presented for a particular
vorticity adapted function, while here we use the estimates in their full generality. Ultimately,
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these estimates, together with the quantization of the vorticity measure, will prove that Sβε,N
consists only of functions with N essential vortices.

In what follows, a + or − superscript denotes the positive resp. negative part of a function
or measure.

Proposition 4.1. Let N and hex be sequences satisfying (1.5) and (1.6). Assume (uε, Aε) ∈
Sβε,N where β > 0 is small enough but fixed independent of ε. Then, for ε small, we have:

(i) There are no vortices with negative associated degree outside the free boundary, i.e.:

νε = ν+
ε on (ωε,N)c.

(ii) The total vorticity is N, in other words:

νε(Ω) = 2πN.

(iii) ∫

Ω

ξµ(uε, Aε1) ≤ 2πNhex(1 −mε,N) + o(1).

(iv)
Jε,N(uε, Aε1) ≥ πN |log ε′| +NWm + o(N).

Proof. Recall that (uε, Aε) ∈ Sβε,N means that

(4.2) Jε,N(uε, Aε1) ≤ πN |log ε′| +NWm + βN,

and

(4.3)

∫

Ω

ξµ(uε, Aε1) ≥ 2πNhex(1 −mε,N) − βN.

The proof relies on lower bounds on quantities of the form

(4.4) Jε,N(uε, Aε1) −
∫

Ω

ψε(
√
hex ·)µ(uε, Aε1),

where {ψε}ε>0 ∈ VA. More precisely, in Steps 3-6 below we derive assertions (i)-(iv) with
the aid of sufficiently good lower bounds on (4.4) that are available for pairs (uε, Aε) such
that their superconducting current j is divergence free. We first show that we can reduce to
this case by proving (4.6) below for a Aε0 such that j(uε, Aε0) is divergence free.

Step 1: First we claim we may assume that (uε, Aε) satisfies

(4.5) div j(uε, Aε) = 0.

This assumption is justified by the following: we claim there is a Aε0 such that div j(uε, Aε0) = 0
and

Jε,N(uε, Aε1) −
∫

Ω

ψε(
√
hex ·)µ(uε, Aε1) ≥ Jε,N(uε, Aε0,1) −

∫

Ω

ψε(
√
hex ·)µ(uε, Aε0,1) + o(1),

(4.6)

holds for any {ψε}ε>0 ∈ VA. Indeed, lettingAε0 be such thatGε(u
ε, Aε0) = minA∈H1(Ω,R2)Gε(u

ε, A)
(such a minimizer is easily seen to exist), by minimality (uε, Aε0) satisfies the second Ginzburg-
Landau equations, that is −∇⊥(∇× Aε0) = (iuε,∇Aε

0
uε), whence j(uε, Aε0) is divergence free.
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By definition of Aε0, we have

(4.7) Gε(u
ε, Aε0) ≤ Gε(u

ε, Aε) . max{h2
ex, hex |log ε′|},

which follows from the decomposition (1.14) together with GN
ε . max{h2

ex, hex |log ε′|} and

the definition of Sβε,N . As in the proof of Lemma 3.2 this upper bound implies
∫

Ω

(1 − |uε|2) |∇hε,N |2 = o(1).

We can use the splitting formula (1.14) to conclude:

GN
ε + Jε,N(uε, Aε1) −

∫

Ω

ξµ(uε, Aε1) ≥ GN
ε + Jε,N(uε, Aε0,1) −

∫

Ω

ξµ(uε, Aε0,1) + o(1).

From this, we can assert that

Jε,N(uε, Aε1) −
∫

Ω

ψ(
√
hex ·)µ(uε, Aε1) ≥ Jε,N(uε, Aε0,1) −

∫

Ω

ψε(
√
hex ·)µ(uε, Aε0,1)

−
∫

Ω

(
ψε(
√
hex ·) − ξ

) (
µ(uε, Aε1) − µ(uε, Aε0,1)

)
+ o(1).

If the field hex is not too large, the Jacobian estimate (2.6) implies that the last term is o(1).
To see this, recall that the measure νε in (2.6) does not depend on Aε and therefore:

∣∣∣∣
∫

Ω

(
ψ(
√
hex ·) − ξ

) (
µ(uε, Aε0,1) − µ(uε, Aε1)

)∣∣∣∣

≤
∣∣∣∣
∫

Ω

(
ψ(
√
hex ·) − ξ

) (
µ(uε, Aε0,1) − dνε

)∣∣∣∣+
∣∣∣∣
∫

Ω

(
ψ(
√
hex ·) − ξ

)
(dνε − µ(uε, Aε1))

∣∣∣∣

.
∥∥∥ψ(

√
hex ·) − ξ

∥∥∥
∞
· max

{∥∥νε − µ(uε, Aε0,1)
∥∥
(C0,1

0
(Ω))

∗ , ‖νε − µ(uε, Aε1)‖(C0,1
0

(Ω))
∗

}

. (‖ξ‖∞ + ‖∇ψ‖∞) ·
(√

ε′Gε(u
ε, Aε)

)
. (hex + h

1

2
ex|log ε|) ε 1

2 h
1

4
ex h

2
ex = o(1),

thanks to (1.6) and (4.7). This proves the claim.

Step 2: Lower bound with vorticity adapted functions. We switch to blown-up coor-
dinates in order to appeal to the proof of Proposition 6.1 in [14]. Recalling that the Jacobian
estimate allows us to approximate µ′ by ν ′ε, we can replace bounding below (4.4) by bounding
below

J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψε dν
′
ε.

But it was proved in [14] that there exists a measure g′ε depending only on ((uε)′, (Aε)′)
such that for any vorticity adapted function ψε, and for some constant C1 > 0,
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J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψε dν
′
ε ≥ 1

6

∫

Ωε

(
1 − 2ψε

|log ε′|

)
eε +

1

C1

(g′ε)
+
(
(ω̃′

ε,N)c
)

+g′ε

(
(ω̃′

ε,N)c
)

+ o(
∣∣ω′

ε,N

∣∣),(4.8)

where eε is as in (2.8).
The argument can be found in (6.28)–(6.35) of [14] where ζ ′ε can be replaced by ψε; indeed

it can be readily checked that the only fact about ζ ′ε that was used in the proof was that it
was vorticity adapted. Note that here we also use the fact that div j(uε, Aε) = 0, obtained
in Step 1.

We also record the followings facts from [14, 15]

1. There exists a family of disjoint balls {Bi}i∈I of bounded total radius such that the
support of ν ′ε is contained in ∪i∈IBi, a universal constant C2 and functions {gBi

ε } such
that if ν ′ε(Bi) < 0

(4.9)

∫

Bi

gBi
ε ≥ 1

8
(|log ε′| − C2) |νε(Bi)| ≥

1

16
|log ε′| |νε(Bi)|

(The family {Bi}i∈I is built in [15], where (4.9) is proved in Proposition 3.2)

2. There exists a universal constant C3 such that

(4.10) (g′ε)
+ ≥ 3

4


 ∑

{i, ν′ε(Bi)<0}

(
gBi
ε − C3

)
1Bi




where both sides are understood as measures. (This is a consequence of the definition
of g′ε in [14], combined with (3.22) in [15] and (4.9)).

3. Let Pε be the probability measure on Lploc(R
2,R2) which is the push-forward of the

normalized uniform measure on ωε,N by the map x 7→
√
hexjε(

√
hex(x + ·)). Let x′ε ∈

ω′
ε,N where d(x′ε, (ωε,N)c) → +∞. By the definition of g′ε, one can see as in the proof

of Proposition 6.1 in [14] that if

∀R > 0, lim sup
ε→0

−
∫

B(x′ε,R)

dg′ε(x
′
ε + ·) < +∞

then assumption (4.5) together with mε,N → m implies that j((uε)′, (Aε1)
′)(x′ε + ·)

converges in Lploc(R
2,R2) for any p < 2 to some j ∈ Am. Thus, since the field hex is

not too large (cf. (1.6)), Proposition 6.3 in [14] tells us that Pε converges weakly to a
translation invariant probability measure P on Lploc(R

2,R2) such that P -a.e. j ∈ Am

and furthermore (recalling the definitions (1.11) and (2.5))

(4.11) g′ε(ω̃
′
ε,N) ≥ N

(
2π

m

∫
W (j) dP (j) + γ + o(1)

)
+ o(

∣∣ω′
ε,N

∣∣) ≥ NWm + o(N),
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since, in view of (1.3)

∣∣ω′
ε,N

∣∣ = |ωε,N |hex =
2πN

mε,N

≤ 2πN

m0

= O(N).(4.12)

Using (4.8) together with (4.11)–(4.12), we have thus found that for any ψε ∈ VA,

(4.13) J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψε dν
′
ε ≥

1

6

∫

Ωε

(
1 − 2ψε

|log ε′|

)
eε +NWm + o(N).

Step 3: All vortices of uε are contained in a neighborhood of ω′
ε,N .

We will quite often need to use the fact that for any measurable set A,

(4.14) ν ′ε(A) ∈ 2πZ, while
∣∣(ν ′ε)+(A)

∣∣ ,
∣∣(ν ′ε)−(A)

∣∣ , |ν ′ε| (A) ∈ 2πN.

In what remains, α is set to be the constant

α :=
|log ε′|

2hex(1 −mε,N)
.

Note that α depends on ε and N but we omit to indicate this dependence. Also, from here
on, all the primed quantities denote the blown up versions of the unprimed ones, according to
the transformations (2.1) – (2.2). We begin by noticing that αξ′ ∈ VA. Indeed, since hex ≫ 1,
and m = limε→0mε,N < 1 one can readily see, using (3.4) and the fact that hex(1−mε,N) ≫ 1,
that

(4.15)

‖∇(αξ′)‖∞ = O
( |log ε′|
hex(1 −mε,N)

)
· ‖∇ξ‖∞ · 1√

hex
= O

(
|log ε′|

(hex)
3

2 (1 −mε,N)

)
· ‖∇hε,N‖∞

. O
(

|log ε′|
(hex)

3

2 (1 −mε,N)

)
hex
√

1 −mε,N . O
(

|log ε′|√
hex(1 −mε,N)

)
= o(|log ε′|).

By (4.2), (4.3) and definition of α, we find that

(4.16) J ′
ε,N((uε)′, (Aε1)

′) − α

∫

Ωε

ξ′µ′((uε)′, (Aε1)
′)

≤ πN |log ε′| +NWm + βN − α(2πNhex(1 −mε,N) − βN)

= (1 + α)βN +NWm.

Conversely, the bound (4.13) applied to ψε = αξ′ together with (4.16) will allow us to rule
out the presence of vortices with negative degrees where ξ′ is small. In turn, we shall see that
this implies an upper bound on the total vorticity νε(Ωε).
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As announced, we apply (4.13) to ψε = αξ′ which is indeed vorticity adapted, combining
with the Jacobian estimate (2.6), (4.16) and (4.13) we obtain that

(1 + α)βN +NWm ≥ J ′
ε,N((uε)′, (Aε1)

′) − α

∫

Ωε

ξ′µ′((uε)′, (Aε1)
′)

≥ J ′
ε,N((uε)′, (Aε1)

′) − α

∫

Ωε

ξ′ dν ′ε + O
(
‖∇(αξ′)‖∞ ‖µ′ − ν ′ε‖(C0,1

0
(Ωε))

∗

)

≥ 1

6

∫

Ωε

(
1 − 2αξ′

|log ε′|

)
eε +NWm + o(N) + O

(
|log ε′| ε 1

2 h
1

4
exGε(u

ε, Aε)
)
.(4.17)

The last term is o(1) because Gε(u
ε, Aε) . max{h2

ex, hex |log ε′|} and hex satisfies (1.6). Thus,
we obtain

(4.18)
1

6

∫

Ωε

(
1 − 2αξ′

|log ε′|

)
eε ≤ β(1 + α)N + o(N).

For any Z > 0 small, we introduce the following neighborhood of ∂Ω:

UZ :=



x

′/ξ′(x′) ≤


1 −

6C1

(
K +

c|Ω|(1−mε,N )

2π

)
Z

π


hex(1 −mε,N)



 ,

where C1 and K are the constants in (2.7) and (1.5) respectively. From the definition of α, it
follows that

1 − 2αξ′

|log ε′| ≥
6C1

(
K +

c|Ω|(1−mε,N )

2π

)
β

π
1Uβ .

Using this together with (2.7), we obtain (cf. (2.4))

∫

Ωε

(
1 − 2αξ′

|log ε′|

)
eε ≥

6C1

(
K +

c|Ω|(1−mε,N )

2π

)
β

π

∫

Uβ

eε

≥
6
(
K +

c|Ω|(1−mε,N )

2π

)
β

π
|ν ′ε| (Ǔβ) |log ε′| .(4.19)

On the other hand, by (1.5), N ≤ K |log ε′| and αN
|log ε′| ≤

c|Ω|
2π(1−mε,N )

, so combining (4.18)

and (4.19), we get |ν′ε|(Ǔβ)
π

≤ 1 + o
(

N
|log ε′|

)
< 2 (for ε small enough), which implies

(4.20) |ν ′ε| (Ǔβ) = 0,

in light of (4.14).

Step 4: There are no vortices with negative degree outside ω′
ε,N
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We turn to the proof of item (i). We invoke (4.8) applied to αξ′ and (4.11)–(4.12) again to
get

J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

αξ′ dν ′ε ≥
1

C1

(g′ε)
+((ω̃′

ε,N)
c
) +NWm + o(N),

which, arguing as in (4.17) yields

(4.21) (1 + α)βN + o(N) ≥ 1

C1

(g′ε)
+((ω̃′

ε,N)
c
).

Recall that from (1.5) we have αβN . β |log ε′|
(

N
hex

)
. β |log ε′| hence (1 + α)βN + o(N) .

β|log ε′| + o(|log ε′|).
On the other hand, from (4.9) and (4.10) one can bound (g′ε)

+((ω̃′
ε,N)c) from below by

(letting C denote a generic positive constant)

(g′ε)
+((ω̃′

ε,N)c) ≥ C|log ε′|
∣∣∣ν−ε ((ω̃′

ε,N)c)
∣∣∣− C3

2π

∑

i∈I
|Bi| & |log ε′|

∣∣∣ν−ε ((ω̃′
ε,N)

c
)
∣∣∣ .

Going back to (4.21), this implies β + o(1) ≥ C
∣∣∣ν−ε

(
(ω̃′

ε,N)
c
)∣∣∣ , where C is a positive

constant independent of β and ε. Since |ν−ε | ∈ 2πN, we may choose β small so that for any ε
small enough, it imposes

(4.22)
∣∣∣(ν ′ε)−

(
(ω̃′

ε,N)c
)∣∣∣ = 0.

Since (ω̃′
ε,N)

c
contains (ω′

ε,N)c, we have thus proved item (i).

Step 5: The total vorticity of uε is N

We proceed, once more, applying (4.13) only this time to a vorticity adapted function ψε
such that ωψε ⊇ Ωε \ Uβ. Such a function exists. Indeed, by (4.15), for x ∈ ∂(Ωε\Uβ)
we have |αξ′(x)| ≤ o(|log ε′|)d(x, ∂Ωε) while αξ′(x) = 1

2
(1 − O(1)β)|log ε′|. It follows that

d(∂(Ωε\Uβ), ∂Ωε) ≫ 1 as ε→ 0 (if β is a small enough constant), and thus d(∂(Ω̂ε\Uβ), ∂Ωε) ≫
1. One can therefore build a family of functions ψε which are equal to 1

2
|log ε′| in Ω̂ε\Uβ =

Ωε\Ǔβ, which vanish on ∂Ωε and satisfy ‖∇ψε‖∞ = o(|log ε′|), i.e. belongs to VA.
Applying (4.13) to that family yields

J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψε dν
′
ε ≥ NWm + o(N).

We can then appeal to (3.13) again to obtain

J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψεµ
′((uε)′, (Aε1)

′)

≥ J ′
ε,N((uε)′, (Aε1)

′) −
∫

Ωε

ψβε dν
′
ε + O(‖∇ψε‖∞ εα) ≥ NWm + o(N).
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Since (uε, Aε) ∈ Sβε,N , we must have

πN |log ε′| + βN ≥ J ′
ε,N((uε)′, (Aε1)

′) −NWm ≥
∫

Ωε

ψε dν
′
ε + o(N).(4.23)

Now, by (4.20) and definition of ψε

(4.24)

∫

Ωε

ψε dν
′
ε =

∫

Ωε\Ǔβ

ψε dν
′
ε =

∫

Ωε\Ǔβ

1

2
|log ε′| dν ′ε =

1

2
|log ε′| ν ′ε(Ωε \ Ǔβ).

Plugging this into (4.23) leads us to

N +
β

π

N

|log ε′| ≥
1

2π
ν ′ε(Ωε \ Ǔβ) + o

(
N

|log ε′|

)
.

Since N is taken satisfying (1.5), if β is chosen small enough, the above implies that for ε
small enough,

(4.25) N ≥ ν ′ε(Ωε \ Ǔβ)

2π
=
ν ′ε(Ωε)

2π
,

because of (4.14) and (4.20). We now show that there is actually equality in (4.25). To that
end we first prove ∫

Ωε

ξ′µ((uε)′, (Aε1)
′) ≤ νε(Ωε)ξ

′
max + o(1).

This is not immediately clear since ξ is not constant and νε is not necessarily equal to ν+
ε .

However, from (1.6) and (2.6), we have
∫
ξ′µ((uε)′, (Aε1)

′) =

∫

Ωε

ξ′ dν ′ε + O(ε
1

2 h
1

4
+2

ex |∇ξ′|∞) =

∫

gω′
ε,N

ξ′ dν ′ε +

∫ c

gω′
ε,N

)

ξ′ dν ′ε + o(εα).

On the other hand, from (4.22),

∫ c

( gω′
ε,N

)

ξ′ dν ′ε =

∫ c

( gω′
ε,N

)

ξ′ d(ν ′ε)
+ ≤ ξmax(ν

′
ε)

+((ω̃′
ε,N)c).

Also, ∫

( gω′
ε,N

)

ξ′ dν ′ε = ξmaxν
′
ε(ω̃ε,N

′)

because ξ′ = ξmax on (ω̃′
ε,N). Collecting these estimates we are led to

(4.26)

∫

Ωε

ξ′µ′((uε)′, (Aε1)
′) ≤ ξmax

(
ν ′ε(ω̃

′
ε,N) + (ν ′ε)

+((ω̃′
ε,N)c)

)
+ o(1) = ξmaxν

′
ε(Ωε) + o(1)

where the last equality follows from (4.22). Consequently ν ′ε(Ωε) > 2π(N − 1), for otherwise
we would have (cf. (1.13))

∫

Ωε

ξ′µ′((uε)′, (Aε1)
′) ≤ 2π(N − 1)ξmax + o(1) = 2π(N − 1)hex(1 −mε,N) + o(1)



20 ANDRES CONTRERAS AND SYLVIA SERFATY

and the right-hand side is strictly smaller than 2πNhex(1−mε,N)− βN, if β is small enough,

by virtue of (1.5). This contradicts (uε, Aε1) ∈ Sβε,N . Therefore, ν ′ε(Ωε) ≥ 2πN (recall ν ′ε(Ωε) ∈
2πZ.) Thus, with (4.25), we have proved item (ii).

Step 6: Proof of (iii) and (iv)

Item (iii) follows readily from (4.26) since we already know that ν ′ε(Ωε) = 2πN. For item
(iv), note that from (4.20), (4.23) and (4.24) we deduce

J ′
ε,N((uε)′, (Aε1)

′) ≥
∫

Ωε

ψε dν
′
ε +NWm + o(N)

=
1

2
|log ε′| ν ′ε(Ωε \ Ǔβ) +NWm + o(N) = πN |log ε′| +NWm + o(N).

The proposition is proved. �

5. Conclusion

In this section we finish the proof of our main result.

Proof of Theorem 1.1

As mentioned earlier, a minimizer in Sβε,N exists, so to show it actually corresponds to a

local minimizer, it only remains to prove (uε, Aε) /∈ ∂Sβε,N .

We decompose ∂Sβε,N = (∂Sβε,N)+
⋃

(∂Sβε,N)− where

(∂Sβε,N)+ :=
{
(u,A) ∈ H1 ×H1 such that: Jε,N(u,A1) = πN |log ε′| +NWm + βN

}

and

(∂Sβε,N)− :=
{
(u,A) ∈ H1 ×H1 such that:

∫

Ω

ξµ(u,A1) = 2πNhex(1 −mε,N) − βN
}
.

Since (uε, Aε) is a minimizer in Sβε,N , we may apply Lemma 3.2 and Proposition 4.1. By (1.14)
and (3.14), we have

(5.1) Gε(uε, Aε) = GN
ε + Jε,N(uε, A1,ε) −

∫

Ω

ξµ(uε, A1,ε) + o(1).

If (uε, Aε) ∈ (∂Sβε,N)+ then by (iii) in Proposition 4.1, we have

Gε(uε, Aε) ≥ GN
ε + πN |log ε′| +NWm + βN − 2πNhex(1 −mε,N) + o(N).

If instead, (uε, Aε) ∈ (∂Sβε,N)−, invoking (iv) in Proposition 4.1 yields

Gε(uε, Aε) ≥ GN
ε + πN |log ε′| +NWm − (2πNhex(1 −mε,N) − βN) + o(N).

In either case there is a contradiction with the upper bound (3.1), so necessarily (uε, Aε) /∈
∂Sβε,N , whence (uε, Aε) is a local minimizer.



LARGE VORTICITY STABLE SOLUTIONS TO THE GINZBURG-LANDAU EQUATIONS 21

From (5.1), (iii) and (iv) in Proposition 4.1, we must have

(5.2) Gε(uε, Aε) ≥ GN
ε + πN |log ε′| +NWm − 2πNhex(1 −mε,N) + o(N).

Thus, the asymptotic expansion (1.9) follows from (5.2) and (3.1). (1.7), (1.8) were proved in
Lemma 3.2 and Proposition 4.1 respectively.

We prove item (iii). It essentially follows the proof of (1.34) in [14]. First, arguing as in
item 2 of Proposition 6.1 in [14], replacing F ′

ε with J ′
ε,N −α

∫
Ωε
ξ′µ′, we can sandwich the term∫

Ω
|∇ × A1,ε − µε,N |2 in Jε(uε, A1,ε) between the upper and lower bound of (4.17) and hence

control it by O(N), i.e.

(5.3) ‖∇ × A1,ε − µε,N‖L2 .
√
N

Using the same item of Proposition 6.1 in [14] also allows to control, for 1 < p < 2,
∫

Ωε

|j(u′ε, A′
1,ε)|p ≤ Cp

(
J ′
ε,N(u′ε, A

′
1,ε) − α

∫

Ωε

ξ′µ′ + |ω′
ε,N |
)

≤ C(N + |ω′
ε,N |).

Rescaling we find that for any 1 < p < 2,

(5.4) ‖j(uε, A1,ε)‖Lp(Ω) . h
1

2
− 1

p
ex

(
N1/p + |ω′

ε,N |1/p
)

. h
1

2
− 1

p
ex N1/p . N

1

2

thanks to (4.12), then (1.5) giving N . hex. On the other hand, by direct calculation we have

µ(uε, Aε) − µ(uε, A1,ε) = ∇× ((1 − |uε|2)∇⊥hε,N)

from (1.6)and (3.4)
∥∥(1 − |uε|2) |∇hε,N |

∥∥
L2 .

√
ε2Gε · |∇hε,N |∞ . ε max{h2

ex, hex |log ε′|} = o(1),

from which one obtains

(5.5) ‖µ(uε, A1,ε) − µ(uε, Aε)‖W−1,p = o(1).

We may now write, using the triangle inequality

‖µ(uε, Aε) − µε,N‖W−1,p ≤ ‖µ(u,Aε) − µ(uε, A1,ε)‖W−1,p + ‖µε,N −∇× A1,ε‖W−1,p

+ ‖µ(uε, A1,ε) −∇× A1,ε‖W−1,p . N

where we have used (5.3) (together with an embedding inequality), (5.5) and the fact that
µ(uε, A1,ε)−∇×A1,ε = ∇×j(uε, A1,ε) combined with (5.4). Consequently, item (iii) is proved.

We turn to the proof of (iv). Since αξ′ ∈ VA, (4.8), (4.11) and (1.9) allow us to assert

NWm + o(N) ≥ N

(
2π

m

∫
W (j) dP (j) + γ + o(1)

)

which in turns translates into

Wm ≥ 2π

m

∫
W (j) dP (j) + γ.

To conclude, since P -a.e. j ∈ Am (as given by [14]) this implies P -a.e. j minimizes W over
Am. The result follows.

�
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Acad. Sci. Paris, Ser. I 323 (1996), no 6, 593–598.
[10] J.A. Montero, P. Sternberg, W. Ziemer, Local minimizers with vortices in the Ginzburg-Landau system

in three dimensions, Comm. Pure Appl. Math. 57 (2004), 99–125.
[11] R. Jerrard, J.A. Montero, P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic

field in three dimensions, Comm. Math. Phys. 249 (2004), no. 3, 549–577.
[12] R. L. Jerrard, H. M. Soner, The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differential

Equations 14 (2002), no. 2, 151–191.
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