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Nesterenko’s linear independence criterion for vectors

Stéphane Fischler

October 1, 2013

Abstract

In this paper we deduce a lower bound for the rank of a family of p vectors in
Rk (considered as a vector space over the rationals) from the existence of a sequence
of linear forms on Rp, with integer coefficients, which are small at k points. This
is a generalization to vectors of Nesterenko’s linear independence criterion (which
corresponds to k = 1), used by Ball-Rivoal to prove that infinitely many values of
Riemann zeta function at odd integers are irrational. The proof is based on geometry
of numbers, namely Minkowski’s theorem on convex bodies.

1 Introduction

The motivation for this paper comes from irrationality results on values of Riemann zeta
function ζ(s) =

∑∞
n=1

1
ns at odd integers s ≥ 3. The first result is due to Apéry [1]:

ζ(3) 6∈ Q. The next breakthrough in this topic is due to Rivoal [20] and Ball-Rivoal [2]:

dimQ SpanQ(1, ζ(3), ζ(5), ζ(7), . . . , ζ(a)) ≥
log a

1 + log 2
(1 + o(1)) (1.1)

as a → ∞, where a is an odd integer; notice this is a lower bound on the rank of this
family of real numbers, in R considered as a vector space over the rationals. Conjecturally
the left handside is equal to a+1

2
, but even the constant 1

1+log 2
in Eq. (1.1) has never

been improved. Actually, known refinements of Ball-Rivoal’s proof provide sharper lower
bounds only for fixed values of a: the improvement always lies inside the error term o(1)
as a→ ∞.

However, the following improvement of (1.1) is proved in [8]:

Theorem 1. Let ε > 0, and a be an odd integer sufficiently large with respect to ε. Then
letting N denote the integer part of 1−ε

1+log 2
log a, there exist odd integers σ1, . . . , σN between

3 and a such that:

• 1, ζ(σ1), . . . , ζ(σN) are linearly independent over the rationals;

• For any i 6= j, |σi − σj | > aε.
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In particular, if there are only N odd integers σ between 3 and a such that ζ(σ) is
irrational, then they have to be evenly distributed (see [8]).

The strategy for proving Theorem 1 is based on the following classical construction.
For non-negative integers β, b, n, r with β and b odd, 1 ≤ β ≤ b, and 2br < a, let

Jβ,n =
da+b−1
2n (2n)!a−2br

(β − 1)!

∞∑

k=1

dβ−1

dkβ−1

((k − 2rn)b2rn(k + 2n+ 1)b2rn
(k)a2n+1

)
, (1.2)

where the derivative is taken at k, Pochhammer’s symbol is defined by (α)p = α(α +
1) . . . (α+ p− 1), and d2n is the least common multiple of 1, 2, 3, . . . , 2n. It is not difficult
to prove that

Jβ,n = ℓ̃β,n+ℓ3,n

(
β + 1
β − 1

)
ζ(β+2)+ℓ5,n

(
β + 3
β − 1

)
ζ(β+4)+. . .+ℓa,n

(
β + a− 2
β − 1

)
ζ(β+a−1)

with integers ℓ̃β,n and ℓi,n; moreover Jβ,n tends to 0 as n→ ∞, for any β, provided the pa-
rameters satisfy suitable relations (and up to technicalities, see [8] for precise statements).
This can be seen as a sequence (Ln) of linear forms on R(a+b)/2, with integer coefficients,
that take small values Ln(ej) = J2j−1,n at k = b+1

2
points e1, . . . , ek ∈ R(a+b)/2. The key

point in the proof of Theorem 1 is then to apply the following result, to which the present
paper is devoted.

We let Rp be endowed with its canonical scalar product and the corresponding norm.

Theorem 2. Let 1 ≤ k ≤ p− 1, and e1, . . . , ek ∈ Rp.
Let τ1, . . . , τk > 0 be pairwise distinct real numbers.
Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 = Q

1+o(1)
n .

For any n ≥ 1, let Ln = ℓ1,nX1 + . . . + ℓp,nXp be a linear form on Rp, with integer
coefficients ℓi,n such that, as n→ ∞:

|Ln(ej)| = Q−τj+o(1)
n for any j ∈ {1, . . . , k} and max

1≤i≤p
|ℓi,n| ≤ Q1+o(1)

n .

Then:

(i) If F is a subspace of Rp defined over Q which contains e1, . . . , ek then

dimF ≥ k + τ1 + . . .+ τk.

In other words, letting C1, . . . , Cp ∈ Rk denote the columns of the matrix whose rows
are e1, . . . , ek ∈ Rp, we have

rkQ(C1, . . . , Cp) ≥ k + τ1 + . . .+ τk

in Rk seen as a Q-vector space.
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(ii) The vectors e1, . . . , ek are R-linearly independent in Rp, and the R-subspace they span
does not intersect Qp \ {(0, . . . , 0)}.

(iii) Let ε > 0, and Q be sufficiently large (in terms of ε). Let C(ε,Q) denote the set of
all vectors that can be written as λ1e1 + . . .+ λkek + u with:

{
λ1, . . . , λk ∈ R such that |λj| ≤ Qτj−ε for any j ∈ {1, . . . , k}
u ∈ (SpanR(e1, . . . , ek))

⊥ such that ‖u‖ ≤ Q−1−ε

Then C(ε,Q) ∩ Zp = {(0, . . . , 0)}.

If k = 1 this is exactly Nesterenko’s linear independence criterion [19] used in the proof
of Ball-Rivoal’s result (1.1).

In the conclusions, (ii) is an easy result, and (iii) is the main part (it is a quantitative
version of (ii)). We deduce (i) from (iii) using Minkowski’s convex body theorem, thereby
generalizing the proof given in [11] and [10] of Nesterenko’s linear independence criterion.
The equivalence between both statements of (i) comes from linear algebra; it is proved in
§3.1.

A result analogous to Theorem 2, but in which p linearly independent linear forms like
Ln appear in the assumption, is proved in §4.3. This linear independence criterion (in the
style of Siegel’s) is much easier to prove than Theorem 2. Both results can be thought of
as transference principles. In this respect it is worth pointing out that in Theorem 2 we
assume essentially that for any positive integer Q there is a linear form : indeed this is
Ln, where n is such that Qn ≤ Q < Qn+1 so that Q = Q

1+o(1)
n because Qn+1 = Q

1+o(1)
n .

The assumptions imply that this linear form belongs to some convex body, and conclusion
(iii) asserts that (up to Qε) the dual convex body does not contain any non-zero integer
point. Therefore it is reasonable to imagine that (iii) is an optimal conclusion up to Qε.
In general the lower bound k + τ1 + . . . + τk in (i) is optimal too (see [9] for a converse
statement, valid almost everywhere). In the special case p = 2, k = 1, and e1 = (1, ξ),
Theorem 2 (iii) yields an upper bound µ(ξ) ≤ 1 + 1

τ1
on the irrationality exponent of ξ,

and reduces essentially to Lemma 1 of [10]. A converse statement in this case is proved in
[10] (Theorem 1).

The assumption that τ1, . . . , τk are pairwise distinct is very important in Theorem 2,
and it cannot be omitted. For instance, if τ1 = τ2 then Ln(e1− e2) could be very small: up
to replacing (e1, e2) with (e1 + e2, e1 − e2), this amounts to dropping the assumption that
the linear forms Ln are not too small at the points ej. Now this assumption is known to be
essential, already in the classical case of Nesterenko’s linear independence criterion (except
for proving the linear independence of three numbers, see Theorem 2 of [11]). Actually,
if τ1 = τ2 then Ln(e1 − e2) could even vanish, so the possibility that e1 = e2 cannot be
eliminated: even assertion (ii) may fail to hold.
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We shall prove Theorem 2 in a more general form, stated in §2, which allows the
sequences (|Ln(ej)|)n≥1 to oscillate (as in [7]), and takes into account divisors of the coef-
ficients ℓi,n (as in [11]); the former is used in [8] to prove Theorem 1. We also include a
refinement useful when Ln is not too large at some other point, which is new even in the
classical case of Nesterenko’s linear independence (with k = 1).

We hope that our results will have Diophantine applications besides those of [8]; we
mention some directions in §4.4, connected to polylogarithms or zeta values. Our criterion
could be used also for q-analogues, as in [11].

The structure of this text is as follows. In §2 we state our result in a very general form,
of which Theorem 2 is a special case. Section 3 is devoted to the proof; then we deduce
some corollaries in §§4.1 and 4.2. We prove an analogous result in the style of Siegel’s
linear independence criterion in §4.3, and conclude in §4.4 with Diophantine applications.

2 Statement of the criterion

The following generalization of Theorem 2 is our main result.

Theorem 3. Let 1 ≤ k ≤ p − 1, and e1, . . . , ek ∈ Rp. Let (v1, . . . , vp) denote a basis of
Rp. Let τ1, . . . , τk > 0, σ1 ≥ . . . ≥ σp > 0, ω1, . . . , ωk, ϕ1, . . . , ϕk be real numbers, with
τ1, . . . , τk pairwise distinct. Assume that there exist infinitely many integers n with the
following property: for any j ∈ {1, . . . , k}, nωj + ϕj 6≡

π
2
mod π.

Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 = Q
1+O(1/n)
n ;

if ω1 = . . . = ωk = 0, this assumption can be weakened to Qn+1 = Q
1+o(1)
n .

For any n ≥ 1, let Ln = ℓ1,nX1 + . . . + ℓp,nXp be a linear form on Rp, with integer
coefficients ℓi,n such that, as n→ ∞:

|Ln(ej)| = Q−τj+o(1)
n | cos(nωj + ϕj) + o(1)| for any j ∈ {1, . . . , k}, (2.1)

and
|Ln(vi)| ≤ Qσi+o(1)

n for any i ∈ {1, . . . , p}.

For all n ≥ 1 and i ∈ {1, . . . , p}, let δi,n be a positive divisor of ℓi,n such that:

(i) δi,n divides δi+1,n for any n ≥ 1 and any i ∈ {1, . . . , p− 1},

(ii)
δj,n
δi,n

divides
δj,n+1

δi,n+1
for any n ≥ 1 and any 0 ≤ i < j ≤ p, with δ0,n = 1,

(iii) δi,n = Q
di+o(1)
n as n → ∞ for any i ∈ {1, . . . , p}, with real numbers di such that

0 ≤ d1 ≤ . . . ≤ dp ≤ σp.

Then:
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(i) If F is a subspace of Rp defined over Q which contains e1, . . . , ek then s = dimF
satisfies s ≥ k + 1 and

σ1 + . . .+ σs−k ≥ τ1 + . . .+ τk + d1 + . . .+ ds. (2.2)

In other words, letting C1, . . . , Cp ∈ Rk denote the columns of the matrix whose rows
are e1, . . . , ek ∈ Rp, the rank s of the family (C1, . . . , Cp) in Rk seen as a Q-vector
space satisfies s ≥ k + 1 and Eq. (2.2).

(ii) The vectors e1, . . . , ek are R-linearly independent in Rp, and the R-subspace they span
does not intersect Qp \ {(0, . . . , 0)}.

(iii) Let ε > 0, and Q be sufficiently large (in terms of ε). Let C(ε,Q) denote the set of
all vectors that can be written as λ1e1 + . . .+ λkek + u with:





λ1, . . . , λk ∈ R such that |λj| ≤ Qτj−ε for any j ∈ {1, . . . , k}
u ∈ (SpanR(e1, . . . , ek))

⊥ such that u = µ1v1 + . . .+ µpvp with |µi| ≤ Q−σi−ε

for any i ∈ {1, . . . , p}.

Let Λ(Q) denote the set of all (x1, . . . , xp) ∈ Qp such that δi,Ψ(Q)xi ∈ Z for any
i ∈ {1, . . . , p}, where Ψ(Q) is the largest integer n such that Qn ≤ Q.

Then C(ε,Q) ∩ Λ(Q) = {(0, . . . , 0)}.

In the special case where σi = δi,n = 1 and di = ωj = ϕj = 0 for any i, j, n, and
(v1, . . . , vp) is the canonical basis of R

p, this is exactly Theorem 2 stated in the introduction.

Indeed Eq. (2.1) reads |Ln(ej)| = Q
−τj+o(1)
n in this case, and we have Ln(vi) = ℓi,n; moreover

Eq. (2.2) reads
dimF ≥ k + τ1 + . . .+ τk.

There is only a minor difference in (iii), where the norm of u is the Euclidean one in
Theorem 2, and the infinite one in Theorem 3; of course this is not significant.

The real numbers ωj and ϕj allow oscillating behaviors of the sequences (|Ln(ej)|)n≥1.
This is used in [8], where the saddle point method is applied. In the special case of Theorem
2 with k = 1, the corresponding generalization of Nesterenko’s linear independence criterion
has been proved in [7] when Qn = βn for some β > 1 (which is the most interesting case).

We generalize it here to any sequence (Qn) such that Qn+1 = Q
1+O(1/n)
n ; eventhough this

assumption is slightly more restrictive than the usual one Qn+1 = Q
1+o(1)
n , it is still general

enough to include sequences Qn = βn
d

with β > 1 and d > 0.

The divisors δi,n allow one to make use of divisibility properties of the coefficients ℓi,n:
for instance, in most constructions of linear forms in zeta values, ℓi,n is a multiple of
δi,n = dein for some ei ≥ 1, where dn = lcm(1, 2, . . . , n). These divisors are used in [8] to
prove a variant of Theorem 1. The first refinement of Nesterenko’s linear independence
criterion involving such divisors δi,n is Theorem 1 of [11], which is essentially the special
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case of Theorem 3 (i) where k = 1, σi = 1, ωj = ϕj = 0, and (v1, . . . , vp) is the canonical
basis of Rp; it is the main ingredient in the proof [11] that 1, ζ(3) and ζ(j) are Q-linearly
independent for some odd integer j between 5 and 139.

The real numbers σi allow one to take advantage of the fact that the linear forms Ln
might be smaller than ‖Ln‖ at some given points vi (eventhough Ln(vi) does not tend to
0 as n → ∞). For instance, if (v1, . . . , vp) is the canonical basis, this is useful when one
has a sharper upper bound on |ℓi,n| for some values of i than for others. This feature is
new even in the case of Nesterenko’s linear independence criterion (namely, with k = 1,
σi = δi,n = 1, and di = ωj = ϕj = 0). It would be interesting to deduce from this
refinement a Diophantine consequence. Actually it happens for linear forms in zeta values
that limn→∞ |ℓi,n|

1/n exists for any i and does depend on i. For instance, F. Amoroso and
T. Rivoal have noticed that in the expansion of

n!a−1

∞∑

k=1

(k − n)n
(k)an+1

as a linear combination of zeta values, the coefficients of odd and even zeta values don’t
have the same size (provided a is even).

It is very important in Theorem 3 that τ1, . . . , τk are pairwise distinct; however it is not
always necessary to compute their exact values. For instance, if min(τ1, . . . , τk) is greater
than or equal to some τ > 0, then Eq. (2.2) implies

σ1 + . . .+ σs−k ≥ kτ + d1 + . . .+ ds;

in the special case of Theorem 2 this lower bound reads dimF ≥ k(1 + τ). This remark is
already used (with k = 1) in [2], and also in the proof [8] of Theorem 1. We refer to §4.2
below for a related result.

At last, notice that if the assumptions of Theorem 3 hold with e1, . . . , ek, then they
hold also if we forget one of the ej ’s (say ek, with k ≥ 2). The same implication holds also
for parts (ii) and (iii) of the conclusion, since the convex body C(ε,Q) becomes smaller
when ek is omitted. However this implication does not hold for part (i); to fix this we
refine part (i) as follows.

Corollary 1. In the situation of Theorem 3, assume also that τ1 > . . . > τk. Then for any
subspace F of Rp defined over Q we have

s ≥ t+ 1 and σ1 + . . .+ σs−t ≥ τk+1−t + . . .+ τk + d1 + . . .+ ds, (2.3)

provided that s = dimF and t = dim(F ∩ SpanR(e1, . . . , ek)) are positive.
In other words, for any surjective R-linear map π : Rk → Rt with t ≥ 1, Eq. (2.3) holds

with
s = rkQ(π(C1), . . . , π(Cp))

where the rank is computed in Rt seen as a Q-vector space.
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Proof of Corollary 1: Let F be a subspace of Rp defined over Q; assume that s = dimF
and t = dim(F ∩ SpanR(e1, . . . , ek)) are positive. For any j ∈ {1, . . . , k} we let Dj =
dim(F ∩ SpanR(e1, . . . , ej)), so that 0 ≤ D1 ≤ . . . ≤ Dk = t and Dj ∈ {Dj−1, Dj−1 + 1}
for any j (with D0 = 0). Then there exist t integers 1 ≤ j1 < . . . < jt ≤ k such
that Dj = Dj−1 + 1 if, and only if, j is among the ji’s. For any i ∈ {1, . . . , t}, there
exists e′i ∈ F ∩ SpanR(e1, . . . , eji) such that e′i 6∈ SpanR(e1, . . . , eji−1). Then we have
e′i =

∑ji
j=1 λi,jej for real numbers λi,j such that λi,ji 6= 0. Since τ1 > . . . > τji , Eq. (2.1)

yields

|Ln(e
′
i)| = Q

−τji+o(1)
n | cos(nωji + ϕji) + o(1)|.

Therefore Theorem 3 applies to e′1, . . . , e
′
t with τj1 , . . . , τjt. Since τ1 > . . . > τk, the inequal-

ity (2.2) obtained in this way implies Eq. (2.3). This concludes the proof of Corollary 1,
except for the second part of the conclusion which will be proved at the end of §3.1 below.

3 Proof of the criterion

This section is devoted to proving Theorem 3, of which Theorem 2 stated in the intro-
duction is a special case (see §2). Reindexing e1, . . . , ek is necessary, we assume that
τ1 > . . . > τk > 0. This assumption will be used in §§3.3 and 3.6.

3.1 Rational rank of vectors

In this section, we give some details about the conclusions of our criterion, which allow us
to prove the equivalence of both conclusions of (i) in Theorems 2 and 3, and to conclude
the proof of Corollary 1.

In Nesterenko’s linear independence criterion, a lower bound is derived for the dimension
of the Q-subspace of R spanned by ξ0, . . . , ξr ∈ R, that is, for the Q-rank of ξ0, . . . , ξr in R

considered as a vector space over Q. This rank is equal to the dimension of the smallest
subspace of Rr+1, defined over the rationals, which contains the point (ξ0, . . . , ξr). We
generalize in Lemma 1 below this equality to our setting.

Recall that a subspace F of Rp is said to be defined over Q if it is the zero locus of
a family of linear forms with rational coefficients. This is equivalent to the existence of a
basis (or a generating family) of F , as a vector space over R, consisting in vectors of Qp

(see for instance §8 of [3]). Since the intersection of a family of subspaces of Rp defined
over Q is again defined over Q, there exists for any subset S ⊂ Rp a minimal subspace of
Rp, defined over Q, which contains S: this is the intersection of all subspaces of Rp, defined
over Q, which contain S.

LetM be a matrix with k ≥ 1 rows, p ≥ 1 columns, and real entries. Letting e1, . . . , ek ∈
Rp denote the rows of M , we can consider as above the smallest subspace of Rp, defined
over Q, which contains e1, . . . , ek. On the other hand, we denote by C1, . . . , Cp ∈ Rk

the columns of M and consider Rk as an infinite-dimensional vector space over Q. Then
SpanQ(C1, . . . , Cp) is the smallest Q-vector subspace of Rk containing C1, . . . , Cp; it consists
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in all linear combinations r1C1+. . .+rpCp with r1, . . . , rp ∈ Q. Its dimension (as a Q-vector
space) is the rank (over Q) of C1, . . . , Cp, denoted by rkQ(C1, . . . , Cp).

Lemma 1. Let M ∈ Matk,p(R) with k, p ≥ 1. Denote by e1, . . . , ek ∈ Rp denote the rows
of M , and by C1, . . . , Cp ∈ Rk its columns. Then rkQ(C1, . . . , Cp) is the dimension of the
smallest subspace of Rp, defined over Q, which contains e1, . . . , ek.

When k = 1, this lemma means that the Q-rank of ξ0, . . . , ξr is equal to the dimension
of the smallest subspace of Rr+1, defined over the rationals, which contains the point
(ξ0, . . . , ξr).

Proof of Lemma 1: Let G = (SpanR(e1, . . . , ek))
⊥, where Rp is equipped with the usual

scalar product. Let F denote the minimal subspace of Rp, defined over Q, which contains
e1, . . . , ek. Then F

⊥ is the maximal subspace of Rp, defined over Q, which is contained in
G = {e1, . . . , ek}

⊥. Therefore F⊥ = SpanR(G ∩ Qp) = (G ∩ Qp) ⊗Q R: any basis of the
Q-vector space G ∩ Qp is an R-basis of F⊥. Since G ∩ Qp = kerψ where ψ : Qp → Rk is
defined by ψ(r1, . . . , rp) = r1C1 + . . .+ rpCp, we have:

dimR F = p− dimR F
⊥ = p− dimQ(G ∩Qp) = rkQψ = rkQ(C1, . . . , Cp).

This concludes the proof of Lemma 1.

Let us deduce from Lemma 1 the following generalization, and use it to prove the second
assertion of Corollary 1.

Lemma 2. Let M , e1, . . . , ek, C1, . . . , Cp be as in Lemma 1. Let π : Rk → Rt be a R-linear
map, with t ≥ 1. Then the rank of (π(C1), . . . , π(Cp)) in Rt (seen as a Q-vector space) is
equal to the dimension of the minimal subspace F of Rp, defined over Q, which contains
the image of ψ ◦tπ; here ψ is the R-linear map of the dual of Rk to Rp which maps the
canonical basis to (e1, . . . , ek).

Proof of Lemma 2: Let P be the matrix of π with respect to canonical bases, and M ′ =
PM . Applying Lemma 1 to M ′ gives directly the result.

Proof of the second assertion of Corollary 1: Let F denote the minimal subspace of Rp,
defined over Q, which contains the image of ψ ◦tπ; then Lemma 2 yields dimF = s. Now
rk(tπ) = rk(π) = t and ψ is injective because e1, . . . , ek are R-linearly independent (using
conclusion (ii) of Theorem 3), so that Im(ψ ◦tπ) has dimension t. Since this subspace is
contained in both F and SpanR(e1, . . . , ek) = Imψ, we have dim(F ∩SpanR(e1, . . . , ek)) ≥ t.
Now the first part of Corollary 1 (deduced in §2 from Theorem 3) shows that Eq. (2.3)
holds when t is replaced with this (possibly larger) dimension; therefore it holds with t.
This concludes the proof of the second assertion of Corollary 1.
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3.2 Reduction to the non-oscillatory case

In this subsection, we deduce the general case of Theorem 3 from the special case where
ω1 = . . . = ωk = 0; notice that in this case we have φj 6≡

π
2
mod π for any j ∈ {1, . . . , k},

so that Eq. (2.1) reads |Ln(ej)| = Q
−τj+o(1)
n . This special case will be proved in the

following subsections, under the assumption that Qn+1 = Q
1+o(1)
n (which is weaker than

the assumption Qn+1 = Q
1+O(1/n)
n we make when ω1, . . . , ωk may be non-zero).

Let ω1, . . . , ωk, ϕ1, . . . , ϕk, and (Qn) be as in Theorem 3, with Qn+1 = Q
1+O(1/n)
n .

Since there are infinitely many integers n such that, for any j ∈ {1, . . . , k}, nωj + ϕj 6≡
π
2
mod π, Proposition 1 of [7] provides ε, λ > 0 and an increasing function ψ : N → N

such that limn→∞
ψ(n)
n

= λ and, for any n and any j ∈ {1, . . . , k}, | cos(ψ(n)ωj + ϕj)| ≥ ε.

Let L′
n = Lψ(n) and Q′

n = Qψ(n) for any n ≥ 1. Then we have |L′
n(ej)| = Q′

n
−τj+o(1)

because | cos(ψ(n)ωj + ϕj)| = Q
o(1)
ψ(n). Let us check that Q′

n+1 = Q
′1+o(1)
n ; then the special

case of Theorem 3 will apply to the sequences (L′
n)n≥1 and (Q′

n)n≥1, with the same other
parameters: this will conclude the proof.

Since Qn+1 = Q
1+O(1/n)
n there exists M > 0 such that, for any n ≥ 1, Qn+1 ≤ Q

1+M/n
n ;

this implies
logQn+ℓ ≤ (1 +M/n)ℓ logQn

for any ℓ ≥ 0. Letting δn = ψ(n + 1)− ψ(n) ≥ 1, we have:

logQ′
n+1 = logQψ(n)+δn ≤ (1 +M/ψ(n))δn logQψ(n) ≤ exp(Mδn/ψ(n)) logQψ(n)

= (1 + o(1)) logQ′
n

since 1 + x ≤ ex and δn = o(n) since ψ(n) = λn + o(n). This concludes the reduction to

the case where ω1 = . . . = ωk = 0 and Qn+1 = Q
1+o(1)
n .

3.3 Proof of (ii)

Let us come now to the easiest part of Theorem 3, namely (ii). We shall prove simul-
taneously that e1, . . . , ek are linearly independent in Rp, and that F ∩ Qp = {(0, . . . , 0)}
where F = SpanR(e1, . . . , ek). With this aim in mind, we assume (by contradiction) that
there exist real numbers λ1, . . . , λk, not all zero, such that

∑k
j=1 λjej ∈ Qp; multiplying all

λj by a common denominator of the coordinates, we may assume
∑k

j=1 λjej ∈ Zp. Then

κn = Ln(
∑k

j=1 λjej) =
∑k

j=1 λjLn(ej) is an integer for any n ≥ 1. Now if n is sufficiently

large then |κn| ≤
∑k

j=1 |λj| |Ln(ej)| < 1, so that κn = 0. Let j0 denote the largest inte-
ger j such that λj 6= 0. Then for any n sufficiently large, the fact that κn = 0 implies
|λj0Ln(ej0)| = |

∑j0−1
j=1 λjLn(ej)| so that

|λj0| ≤

j0−1∑

j=1

|λj|
|Ln(ej)|

|Ln(ej0)|
≤

j0−1∑

j=1

|λj|Q
τj0−τj+o(1)
n

9



as n → ∞. Now the right handside tends to 0 as n → ∞ because we have assumed that
τ1 > . . . > τk, so that λj0 = 0: this contradicts the definition of λj0.

Therefore such real numbers λ1, . . . , λk cannot exist, and this concludes the proof of (ii).

3.4 Proof that (ii) and (iii) imply (i)

Before proceeding in §§3.5 and 3.6 to the proof of (iii), which is the main part, we deduce
(i) from (ii) and (iii). Recall that the second statement of (i) is equivalent to the first one
(which we shall prove now) thanks to Lemma 1 proved in §3.1.

Let F be a subspace of Rp, defined overQ, which contains e1, . . . , ek. Letting s = dimF ,
we have s > k using (ii). Assertion (iii) yields, for any ε > 0 and any Q sufficiently large
(in terms of ε), a subset C(ε,Q) and a lattice Λ(Q) such that C(ε,Q)∩Λ(Q) = {(0, . . . , 0)}.
Now C(ε,Q) ∩ F is a convex body, compact and symmetric with respect to the origin, in
the Euclidean space F . On the other hand, Λ(Q)∩F is a lattice in F because F is defined
over Q. Therefore Minkowski’s convex body theorem (see for instance Chapter III of [5])
implies that C(ε,Q) ∩ F has volume less than 2s det(Λ(Q) ∩ F ). Letting

α = τ1 + . . .+ τk − σ1 − . . .− σs−k − sε,

this volume is greater than or equal to Qα, up to a multiplicative constant which depends
only on F , e1, . . . , ek, v1, . . . , vp (using the inequalities σ1 ≥ . . . ≥ σp). On the other
hand, since d1 ≤ . . . ≤ dp we have det(Λ(Q) ∩ F ) ≤ cQβ+o(1) where β = −d1 − . . . − ds
and c is a constant depending only on F . Since Q can be chosen arbitrarily large, the
above-mentioned consequence of Minkowski’s theorem yields α ≤ β. Now ε can be any
positive real number, so that we obtain

τ1 + . . .+ τk + d1 + . . .+ ds ≤ σ1 + . . .+ σs−k,

thereby concluding the proof of (i).

3.5 A matrix lemma

We state and prove in this section the main tool in the proof of Theorem 2, namely
Lemma 3. This result might be of independent interest; its proof relies on estimating the
determinant and cofactors.

Lemma 3. Let A be a k × k matrix with real positive entries ai,j, 1 ≤ i, j ≤ k, such that

ai′,jai,j′ ≤
1

(k + 1)!
ai,jai′,j′ for any i, j, i′, j′ such that i < i′ and j < j′. (3.1)

Then A is an invertible matrix, and letting A−1 = [bi,j]1≤i,j≤k we have

|bj,i| ≤
(
1 +

1

k
+

1

k2

)
a−1
i,j for any i, j ∈ {1, . . . , k}.

10



Lemma 3 is optimal up to the value of the constant 1+ 1
k
+ 1

k2
: it would be false with a

constant less than 1/k instead (this is immediately seen by computing a diagonal coefficient
of AA−1, which is equal to 1). We did not try to improve on the constant 1 + 1

k
+ 1

k2
, but

anyway it could easily be made smaller by replacing 1
(k+1)!

in (3.1) with a smaller constant.

In the proof of Lemma 3 we shall use the following lemma.

Lemma 4. Under the assumptions of Lemma 3, for any σ ∈ Sk we have

k∏

j=1

aσ(j),j ≤ ησ

k∏

j=1

aj,j (3.2)

where ησ = 1
(k+1)!

for σ 6= Id, and ηId = 1.

Proof of Lemma 4: For σ 6= Id let κσ denote the largest integer j ∈ {1, . . . , k} such that
σ(j) 6= j; put also κId = 0. We are going to prove Eq. (3.2) by induction on κσ. If
κσ ≤ 1 then σ = Id, so that Eq. (3.2) holds trivially. Let σ ∈ Sk be such that κσ ≥ 2,
and assume that Eq. (3.2) holds for any σ′ such that κσ′ < κσ. We have σ(j) = j
for any j ∈ {κσ + 1, . . . , k}, and σ(κσ) < κσ. Let j0 = σ−1(κσ); then j0 < κσ. Let
σ′ = σ ◦ τj0,κσ where τj0,κσ is the transposition that exchanges j0 and κσ. Then σ′(j) = j
for any j ∈ {κσ, . . . , k} so that κσ′ < κσ and Eq. (3.2) holds for σ′. Since σ′(j) = σ(j) for
j 6∈ {j0, κσ}, σ

′(j0) = σ(κσ) and σ
′(κσ) = κσ, this implies (using the fact that ησ′ ≤ 1)

aσ(κσ),j0aκσ,κσ
∏

1≤j≤k
j 6∈{j0,κσ}

aσ(j),j ≤

k∏

j=1

aj,j.

On the other hand, Eq. (3.1) implies

aκσ,j0aσ(κσ),κσ ≤
1

(k + 1)!
aσ(κσ),j0aκσ,κσ

because σ(κσ) < κσ and j0 < κσ. Multiplying out the previous two inequalities yields
Eq. (3.2) for σ, since σ(j0) = κσ. This concludes the proof of Lemma 4.

Proof of Lemma 3: Letting ∆ = | detA | we have, using Lemma 4:

∆ ≥
k∏

j=1

aj,j −
∑

σ∈Sk
σ 6=Id

k∏

j=1

aσ(j),j ≥
(
1−

1

k + 1

) k∏

j=1

aj,j > 0 (3.3)

so that A is invertible. Given i, j ∈ {1, . . . , k} we have |bj,i| =
∆i,j

∆
where ∆i,j is the absolute

value of the determinant of the matrix obtained from A by deleting the i-th row and the
j-th column. Using Lemma 4 again we have

∆i,j ≤
∑

σ∈Sk
σ(j)=i

∏

1≤j′≤k

j′ 6=j

aσ(j′),j′ ≤
( ∑

σ∈Sk
σ(j)=i

ησ

)
a−1
i,j

k∏

j′=1

aj′,j′. (3.4)

11



Now we have ησ = 1 for at most one σ, and ησ = 1
(k+1)!

for all other permutations σ among

the (k − 1)! such that σ(j) = i, so that

∑

σ∈Sk
σ(j)=i

ησ ≤ 1 +
(k − 1)!

(k + 1)!
=
k + 1 + 1

k

k + 1
.

Combining this upper bound with Eqns. (3.3) and (3.4) yields

|bj,i| =
∆i,j

∆
≤
k + 1 + 1

k

k
a−1
i,j ,

thereby completing the proof of Lemma 3.

3.6 Proof of (iii)

We are now in position to prove the remaining part of Theorem 2, namely (iii). We assume

τ1 > . . . > τk > 0 and ω1 = . . . = ωk = 0 (see §3.2), so that |Ln(ej)| = Q
−τj+o(1)
n .

Before giving details, let us make a few comments on our strategy.
Recall that Nesterenko’s linear independence criterion is much easier to prove if the

linear forms Ln, Ln+1, . . . , Ln+p−1 are linearly independent (see §2.3 of [11] or the references
to Siegel’s criterion in §4.3 below). Of course this is not always the case, but Lemma 3
enables us to make a step in this direction. Actually letting F = SpanR(e1, . . . , ek), we
consider the restrictions Ln|F of the linear forms to F ; recall that dimF = k thanks to
(ii) proved in §3.3. It is not true in general that Ln|F , Ln+1|F , . . . , Ln+k−1|F are linearly
independent linear forms on F : for instance, the equality Ln = Ln+1 might hold for any
even integer n (because of the error terms o(1) in the assumptions of Theorem 3). To make
this statement correct, we introduce a function ϕ : N∗ → N∗ such that ϕ(n) ≥ n + 1 for
any n ≥ 1. The integer ϕ(n) plays the role of n + 1, that is: applying ϕ corresponds to
“taking the next integer”. The idea is that ϕ(n) will be large enough (in comparison to
n) to avoid obvious counter-examples as above coming from error terms. In more precise
terms, ϕ(n) will be defined by the property Qϕ(n)−1 ≤ Q1+ε1

n < Qϕ(n) (where ε1 is a small
positive real number); in this way, the error terms o(1) in the assumptions of Theorem 3
will not be a problem any more.

With this definition, we shall prove that for any n sufficiently large, the linear forms
Ln|F , Lϕ(n)|F , Lϕ2(n)|F , . . . , Lϕk−1(n)|F on F are linearly independent (where ϕi = ϕ◦ . . .◦ϕ),
so that they make up a basis of the dual vector space F ⋆. In the proof of Theorem 3 we
shall need the following quantitative version of this property: in writing the linear form e⋆j
(defined by e⋆j (λ1e1+ . . .+λkek) = λj) as a linear combination of 1

Ln(ej)
Ln|F ,

1
Lϕ(n)(ej)

Lϕ(n)|F ,

. . . , 1
Lϕk−1(n)(ej)

Lϕk−1(n)|F , the coefficients that appear are bounded independently from n

(actually they are between −3 and 3): see Eq. (3.8) below. This will follow from Lemma 3
applied to the matrix An = [|Lϕi−1(n)(ej)|]1≤i,j≤k. The point in applying this lemma is that

12



sharp upper and lower bounds on |Lϕi−1(n)(ej)| are available; the assumption τ1 > . . . > τk
plays also a central role here.

Now let us prove (iii).
Let ε > 0. We choose ε1 > 0 sufficiently small, so that

((1 + ε1)
k−1 − 1)max(1, τ1, σ1) < ε/4. (3.5)

If k = 1 there is no assumption on ε1, because it does not really appear in the proof:
Lemma 3 is a triviality in this case, and the proof of (iii) reduces essentially to that of
[11].

For any n ≥ 1, we define ϕ(n) by Qϕ(n)−1 ≤ Q1+ε1
n < Qϕ(n), because the sequence (Qn)

is increasing and we may assume Qn ≥ 1 for any n. Then we have ϕ(n) ≥ n + 1. This

implies limn→+∞ ϕ(n) = +∞, so that Qϕ(n) = Q
1+o(1)
ϕ(n)−1 (because we assume Qn+1 = Q

1+o(1)
n )

and
Qϕ(n) = Q1+ε1+o(1)

n ; (3.6)

here o(1) denotes any sequence that tends to 0 as n → ∞. Moreover the assumption

|Ln(ej)| = Q
−τj+o(1)
n implies |Ln(ej)| > 0 for any j, n with n sufficiently large. We have

also for any n sufficiently large and any j ∈ {1, . . . , k}:

|Lϕ(n)(ej)| = Q
−τj+o(1)

ϕ(n) = Q−τj(1+ε1)+o(1)
n < |Ln(ej)|. (3.7)

For i ∈ {0, . . . , k−1} let ϕi = ϕ◦ . . .◦ϕ denote the map ϕ composed i times with itself
(so that ϕ0(n) = n and ϕ1(n) = ϕ(n)). Put

An =
[
|Lϕi−1(n)(ej)|

]

1≤i,j≤k

and denote by ai,j the entries of An (omitting for simplicity the dependence on n). Let
us check the assumption (3.1) of Lemma 3, provided n is sufficiently large. Let i, j, i′, j′ ∈
{1, . . . , k} be such that i < i′ and j < j′ ; we put n′ = ϕi−1(n) and n

′′ = ϕi′−1(n), so that
n′′ ≥ ϕ(n′). Using Eq. (3.6) and the assumption τj > τj′ we obtain

ai′,jai,j′

ai,jai′,j′
=

∣∣∣
Ln′′(ej)Ln′(ej′)

Ln′(ej)Ln′′(ej′)

∣∣∣ =
Q
τj′−τj+o(1)

n′′

Q
τj′−τj+o(1)

n′

≤
(Qϕ(n′)

Qn′

)τj′−τj+o(1)
= Q

ε1(τj′−τj)+o(1)

n′ ≤
1

(k + 1)!

if n is sufficiently large, so that Lemma 3 applies. Given M =
∑k

j=1 λjej with λ1, . . . , λk ∈

R, we have Lϕi−1(n)(M) =
∑k

j=1 ai,jλ
′
j where we let λ′j = λj if Lϕi−1(n)(ej) > 0, and λ′j =

−λj otherwise. Therefore Lemma 3 yields, for any j ∈ {1, . . . , k} and any n sufficiently
large:

|λj| = |λ′j| =
∣∣∣

k∑

i=1

bj,iLϕi−1(n)(M)
∣∣∣ ≤

(
1 +

1

k
+

1

k2

) k∑

i=1

|Lϕi−1(n)(M)|

|Lϕi−1(n)(ej)|
. (3.8)
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This upper bound on |λj| in terms of the |Lϕi−1(n)(M)| is the main tool we shall use now
in the proof.

Let Q be sufficiently large in terms of ε, and assume that C(ε,Q) ∩ Λ(Q) contains a
non-zero point P . Then we have

P = λ1e1 + . . .+ λkek + u = (x1, . . . , xp) 6= (0, . . . , 0)

with λ1, . . . , λk ∈ R, u = µ1v1 + . . . + µpvp ∈ (SpanR(e1, . . . , ek))
⊥, |λj| ≤ Qτj−ε for any

j ∈ {1, . . . , k}, |µi| ≤ Q−σi−ε for any i ∈ {1, . . . , p}, and δi,nxi ∈ Z for any i, where
n = Ψ(Q) is the largest integer such that Qn ≤ Q. In particular we have Qn ≤ Q < Qn+1

so that Q = Q
1+o(1)
n , and n tends to ∞ as Q→ ∞: if un = o(1), that is un → 0 as n→ ∞,

then un tends also to 0 as Q→ ∞.

Let ℓ denote the least integer such that

for any j ∈ {1, . . . , k}, we have |λjLℓ(ej)| ≤
δp,ℓ

3kδp,n
. (3.9)

Since |λj| ≤ Qτj−ε and n is sufficiently large, this upper bound holds for n so that this
integer exists and we have ℓ ≤ n.

The integer ℓ depends on Q and on the choice of a non-zero point P ∈ C(ε,Q)∩Λ(Q).
Let us prove that ℓ→ ∞ as Q→ ∞, uniformly with respect to the choice of P . Let ℓ0 ≥ 1,
and denote by Kℓ0 the set of all points P ′ = λ′1e1 + . . .+ λ′kek + u′ with

|λ′j| min
1≤ℓ′≤ℓ0

|Lℓ′(ej)| ≤
1

3k
for any j ∈ {1, . . . , k},

where u′ ∈ (Span(e1, . . . , ek))
⊥ can be written as u′ = µ′

1v1 + . . .+ µ′
pvp with |µ′

i| ≤ Q−σi−ε

for any i ∈ {1, . . . , p}. By definition of ℓ and Kℓ0, if ℓ ≤ ℓ0 then δp,n
δp,ℓ

P ∈ Kℓ0 . Moreover

the point δp,n
δp,ℓ

P belongs also to Λ(Qℓ0) since

δi,ℓ0

(δp,n
δp,ℓ

xi

)
=

(δi,ℓ0
δi,ℓ

)(δp,n/δi,n
δp,ℓ/δi,ℓ

)(
δi,nxi

)
∈ Z

for any i ∈ {1, . . . , p}, by assumption on the divisors δt,n. Therefore (assuming ℓ ≤ ℓ0)

the point δp,n
δp,ℓ

P belongs to Kℓ0 ∩ Λ(Qℓ0), which is a finite set because Kℓ0 is compact and

Λ(Qℓ0) is discrete. Now the function χ : Kℓ0 ∩ Λ(Qℓ0) → R defined by χ(P ′) = ‖π⊥(P
′)‖,

where π⊥ is the orthogonal projection on (Span(e1, . . . , ek))
⊥, has a least positive value χ0.

We have χ( δp,n
δp,ℓ

P ) 6= 0 because P 6∈ Qp ∩ Span(e1, . . . , ek) = {(0, . . . , 0)} (using assertion

(ii) proved in §3.3), so that

χ0 ≤ χ
(δp,n
δp,ℓ

P
)
=
δp,n
δp,ℓ

‖u‖ ≤ Qdp+o(1)
n Q−σp−ε = Qdp−σp−ε+o(1)
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since δp,ℓ ≥ 1 and σp ≤ . . . ≤ σ1. This inequality implies that Q is not too large in terms of
ℓ0 and ε (because we assume dp ≤ σp). This concludes the proof that ℓ→ ∞ as Q→ ∞. In
what follows, a sequence denoted by o(1) will tend to 0 as n, ℓ or Q tends to ∞; therefore
in any case, it tends to 0 as Q→ ∞. Moreover, we may assume ℓ to be arbitrarily large.

We come back now to the point P ∈ C(ε,Q) ∩ Λ(Q) chosen above. Since u = µ1v1 +
. . .+ µpvp with |µh| ≤ Q−σh−ε for any h, we have for any i ∈ {1, . . . , k}:

|Lϕi−1(ℓ)(u)| ≤

p∑

h=1

|µh||Lϕi−1(ℓ)(vh)| ≤

p∑

h=1

Q−σh−εQ
σh+o(1)
ϕi−1(ℓ)

≤

p∑

h=1

Q−σh−ε+o(1)
n Q

σh(1+ε1)
i−1+o(1)

ℓ using Eq. (3.6)

≤

p∑

h=1

(Qℓ

Qn

)σh
Q−ε+o(1)
n Q

ε/4+o(1)
ℓ using Eq. (3.5) and the inequality σh ≤ σ1

≤
(Qℓ

Qn

)dp
Q−ε/2 <

1

3

δp,ℓ
δp,n

since σh ≥ σp ≥ dp and ℓ ≤ n. (3.10)

On the other hand, Eqns. (3.9) and (3.7) yield for any i ∈ {1, . . . , k}:

|Lϕi−1(ℓ)(

k∑

j=1

λjej)| ≤

k∑

j=1

|Lϕi−1(ℓ)(ej)|

|Lℓ(ej)|

δp,ℓ
3kδp,n

≤
δp,ℓ
3δp,n

,

since ℓ is sufficiently large. Combining this inequality with Eq. (3.10) we obtain for the
point P = λ1e1 + . . .+ λkek + u:

|Lϕi−1(ℓ)(P )| ≤
δp,ℓ
3δp,n

+
δp,ℓ
3δp,n

<
δp,ℓ
δp,n

. (3.11)

Now we have Lϕi−1(ℓ) = ℓ1,ϕi−1(ℓ)X1+. . .+ℓp,ϕi−1(ℓ)Xp where ℓj,ϕi−1(ℓ) is a multiple of δj,ϕi−1(ℓ),
and therefore of δj,ℓ since ϕi−1(ℓ) ≥ ℓ. Moreover δj,nxj ∈ Z so that

δp,n
δp,ℓ

ℓj,ϕi−1(ℓ)xj =
(δp,n/δj,n
δp,ℓ/δj,ℓ

)(ℓj,ϕi−1(ℓ)

δj,ℓ

)
(δj,nxj) ∈ Z

since ℓ ≤ n, by assumption on the divisors δt,n. Therefore we have Lϕi−1(ℓ)(P ) ∈
δp,ℓ
δp,n

Z, and

the upper bound (3.11) implies that this rational number is zero for any i ∈ {1, . . . , k}.
Using Eq. (3.10) this yields the following upper bound on |Lϕi−1(ℓ)(M)| (where we let

M =
∑k

j=1 λjej):

|Lϕi−1(ℓ)(M)| = |Lϕi−1(ℓ)(u)| ≤
(Qℓ

Qn

)dp
Q−ε/2.
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Combining this upper bound with Eq. (3.8) yields, for any j ∈ {1, . . . , k}:

|λjLℓ−1(ej)| ≤
(
1 +

1

k
+

1

k2

) k∑

i=1

(Qℓ

Qn

)dp
Q−ε/2Q

τj+o(1)

ϕi−1(ℓ)
Q

−τj+o(1)
ℓ−1

≤ Q
dp+τj((1+ε1)i−1−1)+o(1)
ℓ Q−dp

n Q−ε/2 using Eq. (3.6)

≤ Q
dp+ε/4+o(1)
ℓ Q−dp

n Q−ε/2 using the assumption τj ≤ τ1 and Eq. (3.5)

≤
(Qℓ

Qn

)dp
Q−ε/4+o(1) ≤

δp,ℓ
3kδp,n

since Qℓ ≤ Qn = Q1+o(1) and
δp,ℓ
δp,n

=
Q
dp+o(1)
ℓ

Q
dp+o(1)
n

.

This contradicts the minimality of ℓ in Eq. (3.9), thereby concluding the proof of (iii).

4 Consequences and related results

In this section we state and prove consequences of our main result (§§4.1 and 4.2), and
mention Diophantine applications (§4.4). We also prove in §4.3 an analogous result, in the
spirit of Siegel’s linear independence criterion.

Throughout this section we restrict to the setting of Theorem 2, omitting for simplicity
the refinements of Theorem 3 (eventhough they could have been adapted here).

4.1 Distance to integers

In this section we state corollaries of our criterion dealing with linear forms which are close
to integers (rather than close to 0), as in Khintchine-Groshev’s theorem for instance. In
particular we deduce from Theorem 3 a result (namely Corollary 3 below) analogous to
Nesterenko’s linear independence criterion but which applies to sequences of simultaneous
approximations of real numbers with the same denominator. This result is related to type
II Padé approximation problems, in the same way as Nesterenko’s criterion is related to
type I problems. In this respect, Theorem 3 makes a bridge between the latter and the
former: it is related to Padé approximation problems intermediate between type I and
type II (see for instance [22]).

To begin with, let us state Theorem 2 in a dual way, namely in terms of C1, . . . , Cp ∈ Rk

rather than e1, . . . , ek ∈ Rp.

Theorem 4. Let C1, . . . , Cp ∈ Rk, with k, p ≥ 1.
Let τ1, . . . , τk and (Qn)n≥1 be as in Theorem 2.
For any n ≥ 1, let ℓ1,n, . . . , ℓp,n ∈ Z be such that, as n→ ∞:

max
1≤i≤p

|ℓi,n| ≤ Q1+o(1)
n and ℓ1,nC1 + . . .+ ℓp,nCp =




±Q
−τ1+o(1)
n

...

±Q
−τk+o(1)
n


 (4.1)

where the ± signs can be independent from one another. Then:
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(i) The rank of the family of vectors C1, . . . , Cp in Rk, considered as a Q-vector space,
is greater than or equal to k + τ1 + . . .+ τk.

(ii) For any non-zero linear form χ : Rk → R there exists i ∈ {1, . . . , p} such that
χ(Ci) 6∈ Q.

(iii) Let ε > 0, and Q be sufficiently large in terms of ε. Let λ1, . . . , λk ∈ R, not all zero,
be such that |λj| ≤ Qτj−ε for any j ∈ {1, . . . , k}. Then denoting by χ the linear map
Rk → R defined by χ(x1, . . . , xk) = λ1x1 + . . .+ λkxk, we have

dist
(
(χ(C1), . . . , χ(Cp)),Z

p \ {(0, . . . , 0)}
)
≥ Q−1−ε

where dist(y,Zp\{(0, . . . , 0)}) is the minimal distance of y ∈ Rp to a non-zero integer
point.

This result is just a translation of Theorem 2. Indeed let us consider the matrix
M ∈ Matk,p(R) of which C1, . . . , Cp are the columns. We denote by e1, . . . , ek ∈ Rp the
rows ofM . Then assumption (4.1) means that the linear form Ln = ℓ1,nX1+ . . .+ℓp,nXp on
Rp is small at the points e1, . . . , ek. It is not difficult to see that (ii) and (iii) in Theorem
4 are respectively equivalent to (ii) and (iii) in Theorem 2, because (χ(C1), . . . , χ(Cp)) =
λ1e1 + . . .+ λkek. We remark also that assuming k ≤ p− 1 in Theorem 2 is not necessary;
it has not been used in the proof. This upper bound follows from (ii), so that it is actually
a consequence of the other assumptions.

Let us focus now on an important special case of Theorem 4, related to Padé approx-
imation: when C1, . . . , Ck is the canonical basis of Rk. This happens in all practical
situations mentioned in §4.4 below: indeed Padé approximation provides linear combina-
tions of Ck+1, . . . , Cp which are very close to Zk. In this case, in (ii) the interesting point
is when the linear form χ(x1, . . . , xk) = λ1x1 + . . .+ λkxk has rational coefficients λj ; then
we have χ(Ci) 6∈ Q for some i ∈ {k + 1, . . . , p}. An analogous remark holds for (iii); both
are more easily stated as follows, in terms of e1,. . . , ek. We denote by ‖·‖ any fixed norm
on Rp−k.

Corollary 2. Under the assumptions of Theorem 2, suppose that for any j ∈ {1, . . . , k}
we have ej = (0, . . . , 0, 1, 0, . . . , 0, e′j) with e

′
j ∈ Rp−k, where the 1 is in j-th position.

Then no non-trivial Q-linear combination of e′1, . . . , e
′
k belongs to Qp−k. In addition, let

ε > 0, and Q be sufficiently large in terms of ε. Let λ1, . . . , λk ∈ Z, not all zero, be such
that |λj| ≤ Qτj−ε for any j ∈ {1, . . . , k}. Then for any S ∈ Zp−k we have

‖λ1e
′
1 + . . .+ λke

′
k − S‖ ≥ Q−1−ε.

This corollary is a measure of linear independence of the vectors e′1, . . . , e
′
k and those

of the canonical basis of Zp−k. It can be weakened by assuming |λj| ≤ Qτ−ε for any
j ∈ {1, . . . , k}, where τ = min(τ1, . . . , τk) (as in Theorem 5 below). Then a measure of
non-discreteness (in the sense of [13]) is obtained for the lattice Ze′1 + . . . + Ze′k + Zp−k,
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which has rank p. In the examples (4.2), (4.3) and (4.4) considered in §4.4 below, the
matrix with columns Ck+1, . . . , Cp is symmetric (with p = 2k), so that this lattice is
exactly ZC1 + . . .+ ZCp (using the fact that C1, . . . , Ck is the canonical basis of Rk).

This case k = p/2 lies “in the middle” between k = 1, which corresponds to type I
Padé approximation and Nesterenko’s original criterion, and k = p− 1, which corresponds
to type II Padé approximation. In the latter case, Corollary 2 yields the following result
by letting ξj = −e′j .

Corollary 3. Let k ≥ 1, and ξ1, . . . , ξk ∈ R.
Let τ1, . . . , τk > 0 be pairwise distinct real numbers.
Let (Qn)n≥1 be an increasing sequence of positive integers, such that Qn+1 = Q

1+o(1)
n .

For any n ≥ 1, let ℓ1,n, . . . , ℓk,n, ℓk+1,n ∈ Z be such that

max
1≤i≤k+1

|ℓi,n| ≤ Q1+o(1)
n

and
|ℓk+1,nξj − ℓj,n| = Q−τj+o(1)

n for any j ∈ {1, . . . , k}.

Then:

(i) The numbers 1, ξ1, . . . , ξk are Q-linearly independent.

(ii) Let ε > 0, and Q be sufficiently large (in terms of ε). Then for any (a0, a1, . . . , ak) ∈
Zk+1 \ {(0, . . . , 0)} with |aj | ≤ Qτj−ε for any j ∈ {1, . . . , k}, we have:

|a0 + a1ξ1 + . . .+ akξk| ≥ Q−1−ε.

We have not found this statement in the literature; see however [6] (p. 98), [14] (Lemma
2.1) or [15] (Lemma 6.1) for related results, which are probably closer to Siegel’s criterion
than to Nesterenko’s (see §4.3 below).

4.2 Upper bound on a Diophantine exponent

Given a subspace F of Rp, and a non-zero point P ∈ Rp, we denote by Dist(P, F ) the
projective distance of P to F , seen in Pp(R). Several definitions may be given, all of them

equivalent up to multiplicative constants (see for instance [21]); we choose Dist(P, F ) = ‖u‖
‖P‖

where u is the orthogonal projection of P on F⊥ (that is, P can be written as u+ f with
u ∈ F⊥ and f ∈ F ), and ‖·‖ is the Euclidean norm on Rp.

The following result is a consequence of Theorem 2.

Theorem 5. Under the assumptions of Theorem 2, let τ = min(τ1, . . . , τk) and F =
SpanR(e1, . . . , ek). Then for any ε > 0 and any P ∈ Zp \ {(0, . . . , 0)} we have:

Dist(P, F ) ≥ ‖P‖−1− 1
τ
−ε

provided ‖P‖ is sufficiently large in terms of ε.
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It is important to notice that Theorem 5 is not optimal, since it involves only min(τ1, . . . , τk).
It is specially interesting when τ1, . . . , τk are close to one another.

The interest of Theorem 5 is that it can be written as an upper bound on a Diophantine
exponent which measures the approximation of F by points of Zp (see [21], [17], [4]).

Proof of Theorem 5: Using assertion (ii) of Theorem 2, we see that (e1, . . . , ek) is a basis
of F . Since F is finite-dimensional, all norms on F are equivalent: there exists κ > 0 such
that, for any f = λ1e1 + . . .+ λkek ∈ F (with λj ∈ R), we have max |λj| ≤ κ‖f‖.

Let ε > 0 be such that ε < τ . Let Q0 be such that assertion (iii) of Theorem 2 holds for
any Q ≥ Q0; we assume that ‖P‖ ≥ Qτ−ε

0 /κ. Letting Q = (κ‖P‖)1/(τ−ε) we have Q ≥ Q0.
Since P ∈ Zp \ {(0, . . . , 0)}, P does not belong to the set C(ε,Q) defined in assertion (iii).
Now writing P = λ1e1 + . . .+ λkek + u with λj ∈ R and u ∈ F⊥, we have

max
1≤j≤k

|λj| ≤ κ‖λ1e1 + . . .+ λkek‖ ≤ κ‖P‖ = Qτ−ε

so that ‖u‖ > Q−1−ε. Using the definition of Q and that of Dist(P, F ), this concludes the
proof of Theorem 5.

4.3 Connection with a Siegel-type criterion

The following result is analogous to Theorem 2, but its proof is much easier. It relies on
Siegel’s ideas for linear independence (see for instance [6], p. 81–82 and 215–216, or [18],
Proposition 4.1). Special cases of this result have already been used in Diophantine results
(see §4.4 below).

Proposition 1. Let 1 ≤ k ≤ p− 1, and e1, . . . , ek ∈ Rp be R-linearly independent vectors.
Let (Qn)n≥1 be an increasing sequence of positive integers, and for any n ≥ 1, let

L
(t)
n = ℓ

(t)
1,nX1 + . . . + ℓ

(t)
p,nXp be p linearly independent linear forms on Rp (for 1 ≤ t ≤ p),

with integer coefficients ℓ
(t)
i,n such that, as n→ ∞:

|L(t)
n (ej)| ≤ Q−τj+o(1)

n for any j ∈ {1, . . . , k} and any t ∈ {1, . . . , p},

where τ1, . . . , τk > 0 are real numbers, and

max
1≤i≤p
1≤t≤p

|ℓ
(t)
i,n| ≤ Q1+o(1)

n .

Then:

(a) Conclusions (i) and (ii) of Theorem 2 hold.

(b) Let ε > 0, and n be sufficiently large (in terms of ε). Let Cn denote the set of all
vectors that can be written as λ1e1 + . . .+ λkek + u with:

{
λ1, . . . , λk ∈ R such that |λj| ≤ Q

τj−ε
n for any j ∈ {1, . . . , k}

u ∈ (SpanR(e1, . . . , ek))
⊥ such that ‖u‖ ≤ Q−1−ε

n

Then Cn ∩ Zp = {(0, . . . , 0)}.
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The main difference with Theorem 2 is that we require here p linearly independent
linear forms for any n (and we also assume e1, . . . , ek to be R-linearly independent). This
makes the proof much easier, and enables one to get rid of several important assumptions
of Theorem 2 (namely Qn+1 = Q

1+o(1)
n , τ1, . . . , τk pairwise distinct, and |Ln(ej)| not too

small).

If Qn+1 = Q
1+o(1)
n in Proposition 1 then in (b) we may replace Qn with any Q, by letting

n be such that Qn ≤ Q < Qn+1.

Proof of Proposition 1: To prove conclusion (i) of Theorem 2, let F be a subspace of Rp

defined over Q, of dimension d, which contains e1, . . . , ek. Let n be sufficiently large. Up
to reordering L

(1)
n , . . . , L

(p)
n , we may assume the restrictions of L

(1)
n , . . . , L

(d)
n to F to be

linearly independent linear forms on F . Denoting by (u1, . . . , ud) a basis of F consisting in

vectors of Zp, the matrix [L
(t)
n (uj)]1≤t,j≤d has a non-zero integer determinant. By making

suitable linear combinations of the columns, the values L
(t)
n (e1), . . . , L

(t)
n (ek) appear and

lead to the upper bound Q
d−k−τ1−...−τk+o(1)
n on the absolute value of this determinant. This

concludes the proof of (i) of Theorem 2.
To prove part (b) of Proposition 1 (which implies conclusion (ii) of Theorem 2), we

let P = λ1e1 + . . . + λkek + u ∈ Cn ∩ Zp be non-zero; then L
(t)
n (P ) 6= 0 for some t, but

L
(t)
n (P ) ∈ Z and |L

(t)
n (P )| < 1. This concludes the proof of Proposition 1.

4.4 Diophantine applications

The main interest of Theorems 2 and 3 is that they provide (in conclusion (i)) a lower
bound for the rank of (C1, . . . , Cp). Such a lower bound (with k essentially equal to aε)
implies Theorem 1, using a general lemma of linear algebra (see [8] for details). This kind
of lower bounds (with k ≥ 2) exists in the literature: for instance Gutnik proved [12] that
the vectors (

1
0

)
,

(
0
1

)
,

(
−2 log 2
ζ(2)

)
,

(
ζ(2)

−3ζ(3)

)
(4.2)

are Q-linearly independent in R2 (so that, for any r ∈ Q⋆, at least one number among
ζ(2) − 2r log 2 and 3ζ(3) − rζ(2) is irrational). More recently he obtained also [13] the
Q-linear independence of

(
1
0

)
,

(
0
1

)
,

(
2ζ(3)
3ζ(4)

)
,

(
3ζ(4)
6ζ(5)

)
. (4.3)

In the same spirit, T. Hessami-Pilehrood has proved [16] that if q is greater than some
explicit function of k then the following 2k vectors are Q-linearly independent in Rk:




1
0
...
0


 ,




0
1
...
0


 , . . . ,




0
0
...
1


 , (4.4)
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


Li1(
−1
q
)

Li2(
−1
q
)

...
Lik(

−1
q
)


 , . . . ,




(
j − 1
j − 1

)
Lij(

−1
q
)(

j

j − 1

)
Lij+1(

−1
q
)

...(
j + k − 2

j − 1

)
Lij+k−1(

−1
q
)


 , . . . ,




(
k − 1
k − 1

)
Lik(

−1
q
)(

k

k − 1

)
Lik+1(

−1
q
)

...(
2k − 2
k − 1

)
Li2k−1(

−1
q
)


 .

The same result holds with 1/q instead of −1/q; see also Gutnik’s preprints cited in [16].

These results share two common features: they rely on a special case of Proposition 1,
and they prove the linear independence of the full set of p vectors involved. Using Theo-
rem 3 it should not be difficult to produce alternative proofs of these results, in which only
one sequence of small linear forms is constructed (instead of p linearly independent ones);
this may lead to further generalizations: for instance no proof of Ball-Rivoal’s lower bound
(1.1) is known without using Nesterenko’s criterion. Moreover, it should be possible also
to obtain lower bounds for the rank of a family of vectors (like (4.2) or (4.3) up to ζ(a),
or (4.4) with smaller values of q) eventhough the present methods fail to prove the linear
independence of the full set.
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