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SPECTRUM OF MARKOV GENERATORS
ON SPARSE RANDOM GRAPHS

CHARLES BORDENAVE, PIETRO CAPUTO, AND DJALIL CHAFAT

ABSTRACT. We investigate the spectrum of the infinitesimal generator of the continuous time
random walk on a randomly weighted oriented graph. This is the non-Hermitian random n X n
matrix L defined by Lj, = X, if k # j and Lj; = 7Zk#j Ljj, where (Xji) 5 are ii.d.
random weights. Under mild assumptions on the law of the weights, we establish convergence
as n — oo of the empirical spectral distribution of L after centering and rescaling. In particular,
our assumptions include sparse random graphs such as the oriented Erd&s-Rényi graph where
each edge is present independently with probability p(n) — 0 as long as np(n) > (log(n))S.
The limiting distribution is characterized as an additive Gaussian deformation of the standard
circular law. In free probability terms, this coincides with the Brown measure of the free sum
of the circular element and a normal operator with Gaussian spectral measure. The density of
the limiting distribution is analyzed using a subordination formula. Furthermore, we study the
convergence of the invariant measure of L to the uniform distribution and establish estimates on
the extremal eigenvalues of L.
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1. INTRODUCTION

For each integer n > 1let X = (X;;)1<i j<n be the random matrix whose entries are i.i.d. copies
of a complex valued random variable x with variance o2. The circular law theorem (see e.g. the
survey papers [40] [12]) asserts that the empirical spectral distribution of X - after centering and
rescaling by o+/n - converges weakly to the uniform distribution on the unit disc of C. The sparse
regime is obtained by allowing the law of x to depend on n with a variance satisfying o2(n) — 0
as n — o0o. As an example, if x = €(n) is a Bernoulli random variable with parameter p(n),
then X is the adjacency matrix of the oriented Erdés-Rényi random graph where each edge is
present independently with probability p(n). In this example 0%(n) = p(n)(1 —p(n)) ~ p(n) when
p(n) — 0. Tt is expected that the circular law continues to hold in the sparse regime, as long as
no?(n) — oo. Results in this direction have been recently established in [37, 22] [32], where the
convergence is proved under some extra assumptions including that n'=¢¢2 — oo for some & > 0.

In this paper, we consider instead random matrices of the form

L=X-D (1.1)

where X is a matrix with i.i.d. entries as above, and D is the diagonal matrix obtained from the
row sums of X, i.e. fori=1,...,n,

D;; = i Xik.
k=1

If X is interpreted as the adjacency matrix of a weighted oriented graph, then L is the associated
Laplacian matrix, with zero row sums. In particular, if the weights X;; take values in [0, c0), then
L is the infinitesimal generator of the continuous time random walk on that graph, and properties
of the spectrum of L can be used to study its long-time behavior. Clearly, L has non independent
entries but independent rows. A related model is obtained by considering the stochastic matrix
P = D7'X. The circular law for the latter model in the non sparse regime has been studied in
[9). Here, we investigate the behavior of the spectrum of L both in the non sparse and the sparse
regime. We are mostly concerned with three issues:

(1) convergence of the empirical spectral distribution;
(2) properties of the limiting distribution;
(3) invariant measure and extremal eigenvalues of L.

As in the case of the circular law, the main challenge in establishing point (1) is the estimate on the
smallest singular value of deterministic shifts of L. This is carried out by combining the method of
Rudelson and Vershynin [35], and Gotze and Tikhomirov [22], together with some new arguments
needed to handle the non independence of the entries of L and the possibility of zero singular values
- for instance, L itself is not invertible since all its rows sum to zero. As for point (2) the analysis of
the resolvent is combined with free probabilistic arguments to characterize the limiting distribution
as the Brown measure of the free sum of the circular element and an unbounded normal operator
with Gaussian spectral measure. Further properties of this distribution are obtained by using a
subordination formula. This result can be interpreted as the asymptotic independence of X and
D. The Hermitian counterpart of these facts has been discussed by Bryc, Dembo and Jiang in [14],
who showed that if X is an i.i.d. Hermitian matrix, then the limiting spectral distribution of L -
after centering and rescaling - is the free convolution of the semi-circle law with a Gaussian law.
Finally, in point (3) we estimate the total variation distance between the invariant measure of L
and the uniform distribution. This analysis is based on perturbative arguments similar to those
recently used to analyze bounded rank perturbations of matrices with i.i.d. entries [2] [36] [4] [39].
Further perturbative reasoning is used to give bounds on the spectral radius and on the spectral
gap of L.

Before stating our main results, we introduce the notation to be used. If A is an n X n matrix, we
denote by A1 (A4),..., A\ (A) its eigenvalues, i.e. the roots in C of its characteristic polynomial. We
label them in such a way that |A1(A)| > --- > |A,(A)|. We denote by s1(A),...,s,(A) the singular
values of A, i.e. the eigenvalues of the Hermitian positive semidefinite matrix |A| = v/ A* A, labeled
so that s1(A) > -+ > s,(A4) > 0. The operator norm of A is ||A]| = s1(A) while the spectral radius
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is |[A\1(A)|. We define the discrete probability measures

1 1 <
MA:E];(SM(A) and VA:M|A|:E];(SSK-(A)‘

We denote “~” the weak convergence of measures against bounded continuous functions on R or on
C. If p and (p,) are random finite measures on R or on C, we say that u,, ~ p in probability when
for every bounded continuous function f and for every e > 0, lim,, o IP’(Uf dptn — [ f d,u‘ >¢e)=0.
In this paper, all the random variables are defined on a common probability space (2,4, P). For
each integer n > 1, let x = x(n) denote a complex valued random variable with law £ = L(n)
possibly dependent on n, with variance

0?(n) = Var(x) = E(|x — Ex|?) = Var(Rex) + Var(Jmx),

and mean m(n) = Ex. Throughout the paper, it is always assumed that x satisfies

lim no®(n) = oo, supo?(n) < oo, (1.2)
n—oo n

and the Lindeberg type condition:

For alle >0, lim a(n)_2E[|x - m(n)|21{‘x,m(n)‘QZEMz(n)}] = 0; (1.3)

n—o0

It is also assumed that the normalized covariance matrix converges:

lim o(n) 2Cov(Re(x),Im(x)) = K (1.4)
n—oo
for some 2 x 2 matrix K. This allows the real and imaginary parts of x to be correlated. Note
that the matrix K has unit trace by construction.
The two main examples we have in mind are:

A) non sparse case: x has law £ independent of n with finite positive variance;
B) sparse case:

x = €(n)y, (1.5)

with y a bounded random variable with law independent of n and €(n) an independent
Bernoulli variable with parameter p(n) satisfying p(n) — 0 and np(n) — oo.

These cases are referred to as model A and model B in the sequel. It is immediate to check that
either case satisfies the assumptions (L2)), (I3) and (L4). We will sometimes omit the script n in
x(n), L(n), m(n), o(n), etc. The matrix L is defined by (II]), and we consider the rescaled matrix

L—l—nm[_ X D —nml
ovn  oyn ovn

By the central limit theorem, the distribution of (D;; — nm)/(o+/n) converges to the Gaussian
law with mean 0 and covariance K. Combined with the circular law for X/(c+/n), this suggests
the interpretation of the spectral distribution of M, in the limit n — oo, as an additive Gaussian
deformation of the circular law.

Define C4 = {z € C: Jm(z) > 0}. If v is a probability measure on R then its Cauchy-Stieltjes
transform is the analytic function S, : C; — C, given for any z € C; by

M =

(1.6)

Su(z):/ ! dv(t). (1.7)

t—z
We denote by o the symmetrization of v, defined for any Borel set A of R by

v(A) + V(*A).

(A) = .

(1.8)
If v is supported in R, then v is characterized by its symmetrization 7. In the sequel, G is a Gauss-
ian random variable on R? = C with law A/(0, K) i.e. mean 0 and covariance matrix K. This law has

a Lebesgue density on R? if and only if K is invertible, given by (2m+/det(K)) ™! exp(—3(K~*-,-)).
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1.1. Convergence results. We begin with the singular values of shifts of the matrix M, a useful
proxy to the eigenvalues.

Theorem 1.1 (Singular values). For every z € C, there exists a probability measure v, on Ry
which depends only on z and K such that with probability one,

VM—z1 ~° Vi
n—o0

Moreover, the limiting law v, is characterized as follows: U, is the unique symmetric probability
measure on R with Cauchy-Stieltjes transform satisfying, for every n € C,,

V B Sy.(n) +n
0.0 = B g )

The next result concerns the eigenvalues of M. On top of our running assumptions (L2), (T3]
and ([4), here we need to assume further:

(1.9)

(i) variance growth:
no?(n)
lim ——= = ; 1.10
5 Tlog(m))s — T (1.10)

(ii) tightness conditions:

E (X1 (2 cpujry E[jx|?
lim sup b <lcl<th =1 and sup [|X| ]

=00 p>1 E[[x[?] n>1 02(n)

00; (1.11)

(ili) the set A of accumulation points of (y/nm(n)/o(n))n>1 has zero Lebesgue measure in C.

It is not hard to check that assumptions (i),(ii),(iii) are all satisfied by model A and model B,
provided in B we require that p(n) > (log(n))®/n.

Theorem 1.2 (Eigenvalues). Assume that (i), (i), (iii) above hold. Let p be the probability measure
on C defined by

1 o0
p=——AU with U(z):= —/ log(t) dv. (t),
21 0

where the Laplacian A = 9% + 85 is taken in the sense of Schwartz-Sobolev distributions in the
space D'(R?), and where v, is as in theorem [Tl Then, in probability,
pa

n—o0

1.2. Limiting distribution. The limiting distribution in theorem [[.2]is independent of the mean
m of the law £. This is rather natural since shifting the entries produces a deterministic rank
one perturbation. As in other known circumstances, a rank one additive perturbation produces
essentially a single outlier, and therefore does not affect the limiting spectral distribution, see e.g.
[2, 36], 16, B9]. To obtain further properties of the limiting distribution, we turn to free probability.

A non-commutative probability space is a pair (M, 7) where M is a von Neumann algebra of
bounded operators and 7 is a normal, faithful, tracial state on M. In the present work, we need to
deal with possibly unbounded operators in order to interpret o~ 'n~1/ 2(D — nmlI) when n — oc.
Following Brown [I3] and Haagerup and Schultz [26], one can associate to every element a in a
class M D M of closed densely defined operators affiliated with M, a probability measure p, on
C, called the Brown spectral measure. For normal operators the Brown measure coincides with
the usual spectral measure. The notion of x-free operators still makes sense in (M, ) even if the
elements of M are not necessarily bounded. We refer to section 1] below for precise definitions
in our setting and to [26] for a complete treatment. We use the standard notation |a| = v/a*a for
the square root of the non negative self-adjoint operator a*a.

Theorem 1.3 (Free probability interpretation of the limiting laws). Let ¢ and g be x-free operators
in (M, 1), with ¢ circular, and g normal with spectral measure equal to N'(0, K). Then, if v, and
W are as in theorems [L.IHI.2, we have

Ve = Hjctg—z| and U= Hetg-

Having identified the limit law u, we obtain some additional information on it.
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Theorem 1.4 (Properties of the limiting measure). Let ¢ and g be as in theorem[I.3. The support
of the Brown measure pcyq of ¢+ g is given by

1
, = : —_— | > .
Supp(/j/c'f‘g) {ZE(C E(|GZ|2) = 1}

There exists a unique function f :supp(tietq) — [0, 1] such that for all z € supp(tic+g),

1
El —mm—— | =
[lG — 2P+ f(Z)Q]
Moreover, f is C™ in the interior of supp(petg), and letting ®(w,z) := (Jw — z|* + f(2)*)72, the
probability measure fi.yq is absolutely continuous with density given by

2 L fPE®R(G,2)] + - 'E[(GE?@Z(E(S]’ 2

(1.12)

It can be seen that u is rotationally invariant when K is a multiple of the identity, while this is
not the case if supp(£) C R, in which case Koo = K19 = K21 = 0 (in this case G does not have a
density on C since K is not invertible). Figures provide numerical simulations illustrating
this phenomenon in two special cases. Note also that the support of ji.44 is not bounded since it
contains the support of N'(0, K). Thus, supp(pe+g) = C if K is invertible. If K is not invertible,
it can be checked that the boundary of supp(pic+g) is

feca(te)-)

On this set, f(z) = 0, but from ([I2), we see that the density does not vanish there. This
phenomenon, not unusual for Brown measures, occurs for the circular law and more generally for
R-diagonal operators, see Haagerup and Larsen [25].

The formula ([[CI2) is slightly more explicit than the formulas given in Biane and Lehner [7,
Section 5]. Equation (II2) will be obtained via a subordination formula for the circular element
(forthcoming proposition [L3) in the spirit of the works of Biane [6] or Voiculescu [42]. This
subordination formula can also be used to compute more general Brown measures of the form pq.
with a, ¢ x-free and ¢ circular.

1.3. Extremal eigenvalues and the invariant measure. Theorem [[.2] suggests that the bulk
of the spectrum of L is concentrated around the value —mn in a two dimensional window of width
o+/n. Actually, it is possible to localize more precisely the support of the spectrum, by controlling
the extremal eigenvalues of L. Recall that L has always the trivial eigenvalue 0. Theorem [[.5] below
describes the positions of the remaining eigenvalues. For simplicity, we restrict our analysis to the
Markovian case in which supp(£) C [0, 00) and to either model A or B. Analogous statements hold
however in the general case. Note that we have here m > 0 and K11 = 1 while Ko = K13 = K91 =
0 (in particular, K is not invertible). We define for convenience the centered random matrices

X=X-EX, D=D-ED, L=L-EL=X-D. (1.13)
If J stands for the n x n matrix with all entries equal to 1, then we have
EL=L—-L=mJ—mnl.

Theorem 1.5 (Spectral support for model A). Assume model A, that supp(L) C Ry and that
E|x|* < 0co. Then with probability one, for n > 1, every eigenvalue A of L satisfies

|Re)| < ov/2nlog(n) (1 +o0(1)) and |ImA| < ovn(2+o(1)). (1.14)

Moreover, with probability one, for n > 1, every eigenvalue A\ # 0 of L satisfies

[ReX +mn| < oy/2nlog(n) (1+0(1)) and |ImA < ov/n(2+ o(1)). (1.15)

To interpret the above result, recall that Yin and Bai [44] theorem 2] prove that, in model A,
if E|x|* < oo then the operator norm of X is oy/n (2 + 0(1)). On the other hand, from the central
limit theorem one expects that the operator norm and the spectral radius of the diagonal (thus
normal) matrix D are of order o+/2nlog(n) (14 o(1)) (as for maximum of i.i.d. Gaussian random
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variables). Note that if one defines a spectral gap x of the Markov generator L as the minimum of
|ReA| for A # 0 in the spectrum of L, then by theorem [[5] one has a.s.

Kk > mn —oy/2nlog(n) (1 + o(1)). (1.16)

In theorem [5] we have restricted our attention to model A to be in position to use Yin and Bai
[44]. Beyond model A, their proof cannot be extended to laws which do not satisfy the assumption
E(jx —m|*) = O(c*). The latter will typically not hold when o(n) goes to 0. For example, in
model B, one has 02(n) ~ p(n)E|y|? and E(|x — m|*) ~ p(n)E|y|*. In this situation, we have the
following result.

Theorem 1.6 (Spectral support for model B). Assume model B, that supp(L) C Ry has bounded
diameter, and that

TLO'2

lim —— = ; 1.1
nlango log(n) o003 (1.17)

Then with probability one, for n > 1, every eigenvalue A of L satisfies

[ReA| < (24 o(1))o+/nlog(n +O(a2n4 log(n )) (1.18)

1

and [TmA| < (2+0(1 ))J\/_+(9( InTl g(n))
Moreover, with probability one, for n > 1, every eigenvalue A # 0 of L satisfies

[ReX + mn| < (24 0(1))oy/nlog(n +(9( 2n4 log(n )) (1.19)
and |TmA| < (2 + o(1))ov/n + O(U%n% log(n)).

Note that 02n7 log(n) = o(cy/nlog(n)) whenever (LI7) is strenghtened to no? > (log(n))2.
The term o2ni log(n) comes in our proof from an estimate of Vu [43] on the norm of sparse

matrices with independent bounded entries.

We turn to the properties of the invariant measure of L. If supp(£) C Ry and L is irreducible,
then from the Perron-Frobenius theorem, the kernel of L has dimension 1 and there is a unique
vector IT € (0,1)" such that L'II =0 and Y., II; = 1. The vector II is the invariant measure of
the Markov process with infinitesimal generator L.

Theorem 1.7 (Invariant measure). Assume that either the assumptions of theorems or .4
hold. Then, a.s. for n > 1, the Markov generator L is irreducible and

= U|Tvo<m tosl) >>+ <\“°g< >),

m n3/4

where U, = L(1,...,1)7 is the uniform probability distribution on the finite set {1,...,n} and
1@ty = 3 > |Qil is the total variation norm.

1.4. Comments and remarks. We conclude the introduction with a list of comments and open
questions.

1.4.1. Interpolation. A first observation is that all our results for the matrix L = X — D can be
extended with minor modifications to the case of the matrix L(®) = X — §D, where § € R is
independent of n, provided the law AN (0, K') characterizing our limiting spectral distributions is
replaced by N(0,02K). This gives back the circular law for § = 0.

1.4.2. Almost sure convergence. One expects that the convergence in theorem holds almost
surely and not simply in probability. This weaker convergence comes from our poor control of the
smallest singular value of the random matrix M — z. In the special case when the law L(n) of
the entries has a bounded density growing at most polynomially in n, then arguing as in [9], it is
possible to prove that the convergence in theorem holds almost surely.
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1.4.3. Sparsity. It is natural to conjecture that theorem continues to hold even if (I0) is
replaced by the weaker condition (2. However, this is a difficult open problem even in the
simpler case of the circular law. To our knowledge, our assumption (LI0) improves over previous
works [22] [32], where the variance is assumed to satisfy n!=0% — oo for some £ > 0. Assumption
(IIT) is crucial for the control of the smallest singular value of M. We believe that with some extra
effort the power 6 could be reduced. However, some power of log(n) is certainly needed for the
arguments used here. It is worthy of note that theorem [[LT] holds under the minimal assumption

2.

1.4.4. Heavy tails. A different model for random Markov generators is obtained when the law £
of x has heavy tails, with e.g. infinite first moment. In this context, we refer e.g. to [11}, 12] for the
spectral analysis of non-Hermitian matrices with i.i.d. entries, and to [I0] for the case of reversible
Markov transition matrices. It is natural to expect that, in contrast with the cases considered
here, there is no asymptotic independence of the matrices X and D in the heavy tailed case.

1.4.5. Spectral edge and spectral gap. Concerning theorem [[L5] it seems natural to conjecture the

asymptotic behavior K = mn — o1/2nlog(n) (1 4+ o(1)) for the spectral gap (I6]), but we do not
have a proof of the corresponding upper bound. In the same spirit, in the setting of theorem

or theorem we believe that with probability one, with L = L — EL,
L A (L
s )

lim — 2 —1,
n—=o0 g, /2nlog(n) n= g4/2nlog(n)

which contrasts with the behavior of X for which s;/|A;] = 2 as n — oo under a finite fourth
moment assumption [44].

The rest of the article is structured as follows. Sections 2l and [ provide the proof of theorem [Tl
and of theorem respectively. Section M is devoted to the proof of theorem and of theorem
4 Section [ gives the proof of theorems and [[L6] section [ contains a proof theorem [L.7
Finally, an appendix collects some facts on concentration function and small probabilities.

2. CONVERGENCE OF SINGULAR VALUES: PROOF OF THEOREM [I.1]

We adapt the strategy of proof described in [I2], section 4.5].

2.1. Concentration of singular values measure. A standard separability and density argu-
ment shows that it is sufficient to prove that for any compactly supported C*°(R) function f,

a.s.
/deMfz*/sz%O-

Since the matrix M — z has independent rows, we can rely on the concentration of measure
phenomenon for matrices with independent rows, see [I1], [12], or [24]. In particular, using [12]
lemma 4.18] and the Borel-Cantelli lemma, we obtain that for any compactly supported continuous
function f, a.s.

/fdl/M,Z — E/fdl/]\/[,Z — 0.

In other words, in order to prove the first part of theorem[I.1] it is sufficient to prove the convergence
to v, of the averaged measure Evp,_,.

2.2. Centralization and truncation. We now prove that it is sufficient to prove the convergence
for centered entries with bounded support. We first notice that

EM = o~ n=12mJ

has rank one, where J stands for the matrix with all entries equal to 1. Hence, writing M =
M —EM, from standard perturbation inequalities (see e.g. [29] Th. 3.3.16)):

‘ / g ot — / Fdvaror rank(M = M) _ ||fllgy.

n

< |Ifllgv (2.1)
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where || f|lgy = [1f/(t)] dt denotes the bounded variation norm of f. In particular, it is sufficient
to prove the convergence of Evas_,1 to v,. Recall the definition (LI3) of the centered matrices
X, D. Define

o
Xij = LigLx, <o vm}

where € = ¢, is a sequence going to 0 such that

m
lim E|:|0_72|1{|X¢j—m|228202n}:| =0. (22)

n—oo

its existence is guaranteed by assumption . Then, let X' = (X!.)1<i j<n, L' = X' — D and
1)/ 1301
M’ = L'/(oy/n). From Hoffman-Wielandt inequality, we have

2 1
_Z|Sk —ZI _Sk(M_ZI)l SE Z |Mz] M/ |2

1<ij<n

1
T 202 Z |XU| 1{|_”\>aa\/ﬁ}

1<i,j<n

Then by (22]), we deduce that
E - Z|sk "' —2I) —sk(MfzI)f%O.

The left hand side above is the square of the expected Wasserstein W5 coupling distance between
vnmr—.1r and vy ;7. Since the convergence in Wy distance implies weak convergence, we deduce
that it is sufficient to prove the convergence of Evy; .5 to v,. We then center the entries of X',
and set L =L —m'J and M = L/(c\/n), where m’ = EX],. As in 1)), we find

‘/f dvyr .1 — /f dvpy o1

Finally, consider the generator associated to X” := X' — EX’. Namely, define the matrices
L"=X"—D" and M" = L"/(c\/n), where D" is the diagonal matrix with

Dj =Y (X")i; =D, - Zlijl{@ijl»aﬁ} - nm
7

J

rank(M — M) _ [[fllgy

<
< fllgy .

Using m' = ~EX ;1 {1X,,|>e0 i} and again the Hoffman-Wielandt inequality, one has

1 <& ” 1 " 2
nz M — 2I) — s(M *ZI)’ §n202 Z |Dji — Dy

k=1 1<i<n

S 359 > (—wl{lﬁubamf} Elijlﬂ&jbaa\/ﬁ})

1<i<n |1<j<n

The expectation of the above expression equals

1
n2o2 E ‘Kijl{\ﬁij|>sa\/ﬁ} —BA;
1<i,j<n
which tends to 0 by (2.2]).
In summary, for the remainder of the proof, we will assume without loss of generality that the
law of X;; satisfies

2

eyt

EX11 =0, P(X11|>k0)=0 and E|X1i|?>=0c'(n)’ (2.3)

where

k(n) = o(a(n)y/n) and o'(n) = a(n)(1+o(1)).



SPECTRUM OF MARKOV GENERATORS ON SPARSE RANDOM GRAPHS 9

2.3. Tightness. Let us check that Ev;_.; is tight. Recall an instance of the Weyl inequality: for
all A, B in M, (C), for all i:

|si(A) — s;(B)| < s1(A — B).
Consequently,

/52 dvyr—.1(s) < /52 dvr(s) + |22

It is thus sufficient to check that E [s? dvas(s) is uniformly bounded. However,

1
2d — 'L'2
/S v (s) - > My

1<i,j<n
2
1 1
= X2+ E § X..
n2o2 Z | X1 n202 & K
1<i#j<n 1<is<n |1<j<n,j7#i

The conclusion follows by taking expectation and using (Z3]).

2.4. Linearization. We use a common linearization technique. With the notation from (7)) and
(L) one has the identity of the Cauchy-Stieltjes transform, for n € C,

S’)Al—zf (77) = %TI‘ [(H(Z) - 77]271)71} 5 (24)

where I, is the 2n x 2n identity matrix and H(z) is the 2n x 2n hermitian matrix

0 M —z
with eigenvalues {+s;(M — z),i=1,...,n}. Define Hy C M2(C) as

H, ::{(Z ;),ZEC,UGC+}. (2.5)

q(z,m) := (Z ;) ;

let q(z,7m) ® I, denote the 2n x 2n matrix obtained by repeating n times along the diagonal the
2 x 2 block ¢g. Through a permutation of the entries, the matrix H(z) — nla, is equivalent to the
matrix

For ¢ € Hy, with

where B is obtained from the 2 x 2 blocks B;;, 1 <1i,j < n:

0 M
Pia = (Mj' 0 >

If B(z) := B —q(2,0) ® I,, then B(z) € M, (M3(C)) ~ Ma,(C) is Hermitian, and its resolvent
is denoted by

R(q) = (B(Z) - 77]271)71 = (B - Q(Zﬂ?) ® In)il' (27)
Then R(q) € M, (M2(C)) and, by (Z4)), we deduce that
Sont—ax (77) = %T‘I‘R(Q)

We set

cr(q)  di(q)
As in [12] lemma 4.19], it is not hard to check that

o) =S an@) = - dil) and bg) =~ > bila) = - D ekla)  (28)
k=1 k=1

It follows that

R(q)rr = (ak(q) bk(q)) € My(C).

Sonr—er (77) = a(‘])' (29)

Hence, in order to prove that Evy,_, converges, it is sufficient to prove that Ea(q) converges to,
say, a(q), for all ¢ € Hy. By tightness, a(q) will necessarily be the Cauchy-Stieltjes transform
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of a symmetric measure. (Indeed, since 7p;_.; is tight and symmetric, any accumulation point
of Up;_,; will be a symmetric probability measure. Also, recall that the weak convergence of a
sequence of probability measures on R, (v, )n>1 to v, is equivalent to the convergence for alln € C

of S,, (1) to S,(n)).

2.5. Approximate fixed point equation. We use a resolvent method to deduce an approximate
fixed point equation satisfied by a(g). The Schur block inversion formula states that if Aisa k x k
matrix then for every partition {1,...,k} =T U I¢,

(Ail)L] = (A]ﬁ] — A]ﬁ]c(A[ch)ilA[c’])il.
Applied to k = 2n, A = B(2) — nlan, ¢ = q(z,7n), it gives

= (57, *57) -0~ @Rae) - (210)

where @ € M,,_1,1(M2(C)), is the 2(n — 1) x 2 matrix given by the blocks

0; = 0 M\ _ 1 0 Xp
CA\M; 0 ) oyn\Xin 0

for 1 = 1, ey — 1, and E = (Bij)lgingnfl, E(Z) = E - q(Z,O) ®In,1,

R(q)=(B—q®I,—1)"" = (B(2) — nIp(n-_1)) "
is the resolvent of a minor.

Define the matrix M’ € M,,_1(C) by

!/

X, Xk
M. =L _§, ok
K O'\/ﬁ 7 Z O'\/E’

1<k<n—1

fori,j=1,...,n—1. Let R and B’ in M,,_1(M2(C)) be the matrices obtained as in (Z6]) and
(7) with M replaced by M’. From the resolvent formula and the bounds || R'||, || R|| < (Jm(n))~!:

ans( (5, "))
Xin 0 1<i<n—1

IR - R'|| = o(1). (2.11)
(Here and below, o(1) depends on ¢(z,n) through Jm(n)). Since ||Q*SQ| < [|S||||Q*Q| and
E|Q*Q| = O(1), with S = R — R’ we obtain

HE—R’

- - 1
—|lr(B-PB RH < -
| B < gmm)?

Hence using ([2.3)), we deduce that

-1
o 0 Mnn * /
P (- (o ) varmaia)

with £1 a 2 x 2 matrix satisfying E||e1] = o(1).
We denote by F,,—1 the o-algebra spanned by the variables (X;;)1<; j<n—1. Then R’ is F,_1-

measurable and is independent of Q. If E, [-] := E[-|F,—_1], we get, using (2.3) and 2.8)
/ ’ o = ap 0
EQRQ= Y EQRl =5 > (T )
1<k,0<n—1 k=1
0_/2 n—1 a;C 0 1 n—1 ,d,k 0
-mr( a)=z (b a) e
k=1 k=1
where

oo (o by = [ak b,
Rkk = (C;c d;c and Rkk = Ek C'ik y

and e is a 2 x 2 matrix. Using (2.I1]), we have the bound

lnfa —lnz_:la’ — L) - Lmvw) <H§—R’ = o(1)
(et k n = k 2n 2n -
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We deduce that ||es|| = o(1). Similarly, recall that B(z) is a minor of B(z). We may thus use the
interlacing inequality (1)) for the function f = (- —n)~!. We find

n—1 n
1 1
S ST [Fy R Y
; ; R |7 —n[? Jm(n)

In summary, we have checked that

B[ Q] = () 0) +en

where a = a(q) is as in ([2.9), and €3 satisfies ||e3]| = o(1). Moreover, we define

(@R o) (oo o))
Since || R|| < Jm(n)~!, we have
|R:Ryil| < Jm(n)~2 and Tr( Zéyjéﬁ) = Te(R*R) < 2nTm(n)~2.
i,J
Also, by (Z3)

E|X12j — (7’2|2 < 2k2%0"%.

Then, an elementary computation gives

wus%@o=0(Jﬂi—>=du

nJm(n)204

Moreover, a(q) is close to its expectation. More precisely, from [12, lemma 4.21],

Blatg) - Ba(o)* = O 5msz ) = ol

We recall finally that the central limit theorem with Lindeberg condition implies that

1 n—1
Mnn = 70’\/5 ;an

converges weakly to G with distribution N(0, K'). From Skorokhod’s representation theorem, we
may assume that this convergence holds almost surely. Then, we have proved that the 2 x 2 matrix

0 M\, (0 G\, s a 0
A<M,m 0 )+<G o>+QRQE<o a>

has a norm which converges to 0 in probability as n — co. On the other hand, from (ZI0Q)),

RunA = —Ro <q +E <8 2) - <g g)) A (2.12)

—1
Since the norms of <q +E (8 2) - <CQT' g)) and R, are at most Jm(n)~!, we get

-1
a 0 0 G
]ERnnE<q+IE<O a)(@ O)) +e

with ||| = o(1). Using exchangeability, we get that the functions in (2.8) satisfy

(6 Y-se6 )2 9)
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2.6. Uniqueness of the fixed point equation. From what precedes, any accumulation point

of E (a 2) is solution of the fixed point equation

<g g) - E(‘” <g 2) - (g §)>1 (2.13)

with a = a(q) € C,. Therefore, for ¢ = ¢(z,7n) € H;:

a—+n

TGP —(at )2

The above identity is precisely the fixed point equation satisfied by Sy, (n) given in theorem [I11
Hence, to conclude the proof of theorem[IT] it is sufficient to prove that there is a unique symmetric
measure whose Cauchy-Stieltjes transform is solution of this fixed point equation. We know from
239) and Montel’s theorem that n € C1 — «a(q(z,7n)) € C4 is analytic for every fixed z € C. In
particular, it is sufficient to check that there is a unique solution in C for n = it, for a fixed ¢t > 0.
If h(z,t) = Im(a(q)), we find

h+t
h=E .
G2+ (h+ 17
Thus, h # 0 and
) 1+ th™?

TGP+ ()2
The right hand side in a decreasing function in h on (0,00) with limits equal to +o0o0 and 0 at

h — 0 and h — oco. Thus, there is a unique solution h > 0 of the above equation. The proof of
theorem [[.1] is over.

3. CONVERGENCE OF EIGENVALUES: PROOF OF THEOREM

3.1. Strategy of proof. In order to prove theorem [[.2] we will use the Hermitization method;
see e.g. [12, lemma 4.3] for the proof of the next lemma.

Lemma 3.1 (Hermitization). Let (An)n21 be a sequence of complex random matrices where A,
is n x n for every n > 1. Suppose that there exists a family (v,) of (non-random) probability
measures on Ry such that for a.a. z € C,

zeC

(1) va, —. tends weakly in probability to v;
(73) log(+) is uniformly integrable in probability for (va,—»)n>1-

Then, in probability, pa, converges weakly to the probability measure p defined by
1 oo
=—A log(t) dv,(t).
p=ged [ loste) o

Applied to our matrix M(n) = o~'/n(L/n + ml), the validity of (i) follows from theorem
[T (convergence a.s. implies convergence in probability). The proof of (i) is performed in the
remainder of this section using ideas developed by Tao and Vu in [38] and by the authors in [9],
together with an analysis of the smallest singular value which follows closely the work of Gotze
and Tikhomirov [22]. We are going to prove the following theorem.

Theorem 3.2 (Uniform integrability). Under the assumptions of theorem [[2, there exists an
increasing function J : [0,00) — [0,00) with J(t)/t — 0o as t — oo such that for all z € C\A,

lim limsup]P’</ J(|log(s)]) dvar(ny—=(s) > t) =0.
=00 nseco 0
From the de La Vallée Poussin criterion for uniform integrability, theorem implies point (i)
above, i.e. the uniform integrability in probability of log(-) for (vas(n)—z)n>1, see [12]. Therefore,
it implies theorem The proof of theorem is divided into three steps corresponding to the
control of the large singular values, of the moderately small singular values and of the smallest
singular value of M(n) — z.
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3.2. Large singular values.

Lemma 3.3. For all z € C, there exists C > 0 such that, formn >1,t >0,

]P’</:E2 AV (ny—z(T) > t) <Cct .

In particular, for any u > 0,
P(|M(n) — z|| > u) < Cu>n. (3.1)

Proof. As in Section 2.3 we find
/x2 dvp—(x) < /x2 dvyr(z) + |22

1 1 2
= g Pl + S S| o —m| P
i#] i

% j#i
Since E|X;;|? = O(0?) by (LI, taking expectation, we find

E/xQ dvyr—.(x) = O(1).

It remains to apply Markov’s inequality. The bound (B.I) now follows from ||[M(n) — z||* <
n [ dvpgny—-(x). O

3.3. Smallest singular value. A crucial step towards the proof of theorem B.2lis a lower bound,
in probability, on the smallest singular value s, (M —z). Here, our main result is a quasi polynomial
lower bound.

Proposition 3.4 (Smallest singular value). Under the assumptions of theorem[L2, for all z € C\A,
lim P(s,(M —z) > e_(log("))2) = 1. (3.2)
n—oo

The proof of Proposition [34] follows closely the strategy developed in [22], in turn inspired by
the works [35] [31]. However, some crucial modifications are needed due to the extra terms coming
form the diagonal matrix D. If one assumes that o2(n) > n~'/4*¢ for some € > 0, then the quasi
polynomial e~ (108(m)* can be replaced by n=* in [3.2), see Section B.3.4 below. Before we start the
proof of Proposition B4l we collect some important preliminaries.

3.3.1. Distance of a random vector to a subspace. The following lemma is valid under the sole
assumption (LII). For the proof we adapt the argument of [38, Proposition 5.1], see also [12]
Appendix A], but some extra care is needed to handle the sparse regime 0> — 0. Remark that
condition (LIT)) implies that there exists a > 0 such that

inf inf o~ 2Var(x(™)) > 0, (3.3)

T>an>1
where x(7) is the random variable x conditioned on |x| < T’

Lemma 3.5. Let R := (X;,...,Xin) denote a row of the matrix X and assume (LII). Let
¥ : N = N be such that p(n) — oo, and ¥(n) < n. There exists € > 0 such that for any subspace
H of C™ with 1 < dim(H) < n —(n), one has

P(dist(R, H) <eoy/n— dim(H)) < e U(n) 4 gmeb(n)*/n, (3.4)

Proof. As in [38, Proposition 5.1] we can assume that the random variables X;; are centered, since
this amounts to replace H with H’, the linear span of H and a deterministic one-dimensional space,
satisfying dim(H’) < n—(n)+1. Next, we truncate X;;: Fix T' > 0 and use Chebyshev’s inequality
to bound P(|X1;| > T) < T~202. Let E,, denote the event that > WXyl > 1)) > eyp(n), for
some ¢ > 0 to be chosen later. We take T such that T2 > 4no?/(c1(n)). Then, from Hoeffding’s
inequality one has,

P(E,) < e~ ¥m/n, (3.5)
Thus, in proving ([B4) we can now assume that the complementary event ES occurs. Set T =
max{20+/n/(cy(n)),a}, where a > 0 is the parameter in ([B3]). Conditioning on the set I such
that |Xy,;| < T iff j € I, |I| > n — cy(n), and conditioning on the values of X;; for j € I°,
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one can reduce the problem to estimating dist(R, H') by dist(R, H") where R is the vector X4},
j =1,...,|I|, made of i.i.d. copies of the centered variable x(T) —Ex(T) and H" has dimension at
most dim(H") + [I¢|+1<n—v¢n)+2+cp(n) <n—(1—2¢)Y(n). A simple computation yields

E[dist(é, H”)ﬂ =5%(n—dim(H")), & = Var(x™).

Using (3.3)), one has 62 > c10? for some constant ¢; > 0. As in [38] we may now invoke Talagrand’s
concentration inequality for Lipschitz convex functions of bounded independent variables. Using
n—dim(H") > (1 — 2¢)y(n), if ¢ is sufficiently small this implies that for some £ > 0 one has

IP’(dist(R, H") <eo\/n— dim(H)) < exp(—ea®T2h(n)). (3.6)
The expression above is then an upper bound for the probability of the event

ES N {dist(R,H) < eov/n —dim(H)}.
Therefore if T is bounded one has the upper bound 6_5/"2’”(”), for some & > 0, while if T' — oo,
then 0272 = c1)(n)/(4n) and one has the upper bound e=<¥(™*/"  This ends the proof of

i) O

3.3.2. Compressible and incompressible vectors. For § € (0, 1), define the set of sparse vectors
Sparse(d) := {z € C" : |supp(z)| < on}

where supp(z) = {¢ : z; # 0} and |supp(z)| is its cardinality. Given p € (0,1), consider the

partition of the unit sphere S”~! into a set of compressible vectors and the complementary set of

incompressible vectors as follows:

Comp(d, p) := {x € S"~' : dist(x, Sparse(d)) < p}
Incomp(§, p) := S"~ 1\ Comp(4, p).

For any matrix A € M,,(C):

5u() = i Acll, = win (_win el win ], ). (37)
We will apply B to A=Y T, the transpose of the matrix

Y =oyn(M(n) — z), (3.8)
and then use the obvious identities s;(Y ") = 5;(Y) = oy/ns;(M — 2),i=1,...,n.
Next, we recall two lemmas from [35]; see also [I12] Appendix A].

Lemma 3.6. Let x € Incomp(d, p). There exists a subset m C {1,...,n} such that |x| > dn/2,
and for all i € 7,

P 2

i— < i < .

N il < on
Lemma 3.7. Let A € M, (C) be any random matriz and let Wy, denote its k-th column. For
1<k<mn, let H, =span{W;, j # k}. Then, for anyt >0,

. tp 2 )
P Az, < 22} < 2 N P(dist(Wy, Hy,) < 1)
(reln?olfnri(&mn 7l < ﬁ)—an; (ot Wi M) < 1)

3.3.3. Small ball probabilities and related estimates. We turn to some crucial estimates. We assume
that the hypothesis of theorem hold.

Lemma 3.8. Let R := (X;1,...,Xin) denote a row of the matrix X. There exists C' > 0, such
that for any t > 0, any d,p € (0,1), and x € Incomp(4, p), and any w € C,

P((R) ) <) < = (), (39)
ovén\ p

Proof. Note that the left hand side is bounded above by p,(t), where p, is the concentration

function defined in (A.J)). By lemma [3.6] we can assume that for all 1 <14 < dn/2, |x;| > p/v/n. Tt

suffices to invoke theorem [AJ] with n replaced by |dn/2], with x replaced by y = zv/n/p and use

the identity: py(vt) = py(t) for all v > 0. O
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Lemma 3.9. Let s(n) = n” for some k > 0. There exists € > 0 such that, if

o?(n) eo(n)
5 = . p= : 3.10
log(n)” "~ s(n)vs (3.10)
then for all n large enough:
) eo(n)
P min YTz, < ; s1(Y) <s n) < exp(—ena?(n)). 3.11
(Locmin, 1¥7aly < 725 () < sl ) < expl-zno®() (3.11)
Proof. If A € M,,(C) and y € C™ is such that supp(y) C = C {1,...,n}, then
||Ay||2 > ||y||25n(A\7r)7
where A\, is the n x |7| matrix formed by the columns of A selected by m. Therefore,
min Azxll, > (1 — min  s,(A) — ps1(A). 3.12
amin[Ael, > (1= p)_minsa(Ay) = psa(4) (3.12)
On the other hand, for any z € CI7l,
9 2
|Aall; = | Yo wwi
PET
> meax|xi|2dist2(Wi,Hi)
1
> min dist? Wi, H;) — 12
> min dis (W3, )|7T|Z|:EJ| ;
Jjem
where W; is the i-th column of A and H; := span{W; : j € m, j # i}. In particular,
1
5n(Ajz) > \/ﬁ I_réindist(Wi,Hi). (3.13)
T e

Next, we apply (.13) to A =Y T. We have W; = R + (—D;; + mn — zy/n)e; where R; is the i-th
row of X. Therefore,

dlSt(W“ Hi) Z dlSt(R“ span{Hi, 61}) = dlSt(RZ, Hll)
where H] = span{H;,e;} = span{R;,e; : j € m,j # i}. H] has dimension at most nd + 1 and is
independent of R;. By lemma B35 with e.g. ¥)(n) =n — 2dn > n/2, one has that, for some ¢ > 0

P(min dist(W;, H;) < 50\/5) < nexp(—eo?n)
1em
for all n large enough. From @I3), for |7| < dn:

P<sn((yT)|w) < %) < nexp(—eo?n).

Therefore, using the union bound and 1 — p > 3/4, we deduce from (B.12)

IP’( min HYT?UHQSi : 81(Y)§s(n)) S( n )ne—EUQn:en(h(é)(l-i-o(l))—agZ),

z€Comp 2\/3 L(STLJ
with h(d) := —dlogd — (1 — §)log(l — §). As n — oo, h(d) = —dlogd(l + o(1)) and using
no? > log(n) one has —dlogd < e0?/2 for all n large enough. Therefore, B.11) follows by
adjusting the value of €. O

Lemma 3.10. Let Wy, Hy, be as in lemma[3.7, with A=Y ". Let §,p,s(n) be as in lemma[Z9.
There exists C' > 0 such that, for all 1 <k <mn andt >0,

i _ C ts(n)
P(dist(Wy, Hi) < t; 51(Y) < s(n)) < g (po|a| + 1), (3.14)

where « = my/njo — z.
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Note that the z dependence, represented by the coefficient « in the above estimate, cannot be
completely avoided since if z = m+/n/o then s,(Y) = 0.

The proof of lemma [3.10] requires a couple of intermediate steps. Fix k and, conditional on Hy,
consider a unit vector ( orthogonal to Hy. Since Wy is independent of Hy, the random vector ¢
can be assumed to be independent of Wy. Clearly,

diSt(Wk,Hk) > |<C,Wk>| (3.15)
Define ¢ = (1,...,1) and ® = span{¢} = {\p, A € C}.

Lemma 3.11. Let n > 2. The unit vector { orthogonal to Hy satisfies
. |a|o/n
dist({, @) > 3.16
(e, #) 2 S0V, (3.16)
where « = my/n/o — z. In particular, if s1(Y) < s, then one has, for any A € C,

alov/n
¢~ gl > 2T

Proof. Set ¢ = %qﬁ. Since ||| = ||¢]| = 1, we have

dist(¢, ®) = dist(¢, span{¢}) = dist(¢, span{C}).
(the last identity follows from ¢ € R™). Let B € M,(C) be the matrix obtained from Y by
replacing the k-th row with the zero vector. Then, by construction B{ = 0. Hence, ¢ € ker B and
dist(¢, ®) > dist(¢, ker B).

Observe that ¢ = au+ bv, where a,b € C, and some unit vectors v € ker B and u € (ker B)*. Then
|a| = dist(¢, ker B) can be bounded as follows. Note that Y satisfies Y ¢ = ao/n¢ and therefore
aBu = B¢ = acy/ng — acey. Consequently, one has

s1(B)la| > |[aBu|| = | B)| = |alovn =1 > |alov/n/2
This implies B.10) since s1(B) < s1(Y). O
Lemma 3.12. Let §,p, s(n) be as in lemma [TQ There exists € > 0 such that, for all n large
enough:
P(3X\ € C: n(X\) € Comp(8,p);s1(Y) < s(n)) < exp(—eo’n),
where for A € C, n(A) := (¢ — A9)/[|¢ — Ad||.
Proof. Let B be as in the proof of lemmal[3.I1l Thus B{ = 0. Note that by lemma BTl n()\) is well

defined as soon as a # 0, and then [[n()\)[| = 1. If there exists A € C such that n(\) € Comp(d, p),
then B(fj(A) + X ¢) =0 for N = A/||¢ — A¢|| € C. Therefore

[ B(z + A¢)| = 0.

min
z€Comp(4,p), AeC
Note that if @y, := span{¢,er}, then Y¢ € &, B € &, and Bx — Y € Oy, for all vectors 2. Thus

min Yz +v|, =0.
z€Comp(4,p), vVED

The above equation can be rewritten as

min IIYz|, =0, 3.17
i 1Yl (317)

where II is the orthogonal projection on the orthogonal complement of ®;. On the other hand,
one has
MY z[ly = (|| ysn (Y ]j7),

if 7 is the support of z. As in (BI3) one has

$n([Y]}x) min dist(W;, H;),

1
Z N
A /|7T| iem

where W; is the i-th column of ITY and H; := span{W; : j € m,j # i}. Note that
diSt(Wi, Hi) Z diSt(CZ‘, HZ{/),
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where H! = span{C},es, @y : j,¢ € m,j # i} and C; is the i-th column of X. Then, since H/ has
dimension at most 1+ 2nd and is independent of C;, by lemma B3, with e.g. ¢)(n) = n — 3dn,

o
< —

P{ sn([Y]}r) < < nexp(—ea’n),
(w02 )

for some € > 0. In particular, as in the proof of ([B.ITl), one sees that the probability of the event
in ([BI7) intersected with the event s;(Y) < s(n) is bounded by exp(—eo?n), for some new & > 0
and all n large enough. This proves the lemma. g

Let us now go back to (3I0). Observe that
n

(G W) => (G = G) X + (¢, 0) = (¢ — G, Rie) + (G, v),

i=1
where v is a deterministic vector, and we use the notation Ry for the k-th row of X. With the
notation of lemma BIT] and lemma B.I2] on the event s1(Y) < s we can write

- la|oy/n
- 2s
where n = n(\), at A = (, and wy depends only on ¢ and therefore is independent of Ry. By

lemma [3.12 and using exp(—co?n) < (ov/én)~1, in order to prove ([B.I4), it is sufficient to invoke
lemma [3.8 above. This ends the proof of lemma 3101

diSt(Wk, Hk)

|(n, Ri) + wg, (3.18)

3.3.4. Proof of Proposition [3.f] Take 6, p and s(n) as in lemma From (I4) and lemma 3.7
we find, for all ¢ > 0,

2t c t
IP’< min HYTJUHQ_ re ; 81(Y)§8> < —<—S+1)-
z€Incomp(d,p) \/ﬁ ovVodn |Oé|0'

Using our choice of p, d, s(n), we obtain for some new constant C' > 0, for all ¢ > 0,

1 3/2 t 3K
P( min HYTZL'||2 <t;s(Y) < n“) < C( Oi(n)) ( n?y/n N 1>.
z€Incomp(4,p) o \/ﬁ |CY|0’10g(7’L)

(3.19)

From [B.I1) we know that

]P’< min )||YTZL'||2 <ey/log(n) ; s1(Y) < n“) < exp(—ena?(n)). (3.20)

z€Comp(d,p
Since s1(Y) = ov/n||M(n) — z||, by (8] one has
P(s1(Y) > s) < Cn?s™2, (3.21)

Suppose that
o2 > l/Ate (3.22)

for some £ > 0. Choosing e.g. Kk = 1 4+, s = n!*?, with v = 0.1, and t = n~*, then the above
expressions and (B71) imply that

lim P(sn(Y) > n~*) =0. (3.23)
In particular, this proves Proposition 4] under the mild sparsity assumption (3.22)).

In the general case we cannot count on ([B.22), and we only assume no? > (log(n))®. In
particular, while the bound [B20) is still meaningful, the bound (B.I9) becomes useless, even at
t =0, ife.g. 0 < n~'/% To deal with this problem we use a further partition of the set Incomp(J, p)
inspired by the method of Géetze and Tikhomirov [22]. More precisely, for fixed ¢ > 0,k > 1,
define

_ a%(n) oy = eo(n)
log(n) ’ nry/by

5\/54,
d¢ = be—1log(n), pe= e ! pe—1, £=2,...,N, (3.24)

o1
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where N = N(n) is defined as the smallest integer k > 2 such that (logn)¥*'a2(n) > 1. Note that
01, p1 are the choice of values of 4, p from lemma [3.8 Define further

1 eVoONpN
nk '

ONy1 = Tog(m) 2’ and pyy1 = (3.25)

It is immediate to check that this defines an increasing sequence &, = (log(n))*~2¢2%(n) and a
decreasing sequence pg, £ = 1,..., N +1, such that o%(n)(log(n))~! < d; < (logn) =2, pn+1 < pr <
e(log(n))/?n=", with N(n) = O(log(n)/(loglog(n))), and

pn+1 > exp (—n(log(n))?), (3.26)

for any n > 0, for n large enough.
As in our previous argument, cf. [B:23]), the value of x is not essential as long as x > 1, and it
may be fixed for the rest of this proof as e.g. k = 2. Next, using the sequences (d¢, p¢), define

Co = Comp(d1,p1), Cn+1 = Incomp(dn+1, pn+1),
Cy = Comp(d¢41, pe+1) N Incomp(de, pg), 1 <€ < N. (3.27)

Note that these sets form a partition S*~1 = UéV:ngCg and therefore, for any ¢ > 0:

N+1
P(sn (V) < t) < ; P(gi& Y Tz, < t). (3.28)

Thus, it will be sufficient to show that

R ' s
nl;rr;o ; P(;Iencne HYT:cH2 < ¢ (log(n)) ) =0. (3.29)

For the term Cj, since d1, p1 coincide with the choice of lemma [3.9] one can use the estimate ([3.20)
and [B2I). For £ > 1 we need a refinement of the argument used for (319) and (3:20).

Lemma 3.13. There exists a constant € > 0 such that if 0, pe are defined by B.24)), then for all
{=1,...,N:

IP’(miCp 1Y Tzlla < eper/de; s1(Y) <n”; s1(X) < n”) < exp (—en(1 Ao?6m)). (3.30)
rely

Proof. Let x € Incomp(,, p¢) and assume that supp(z) C 7 with |7| = dp41n. Let W; = R +
(=D;; +mn — zy/n)e; be the i-th column of YT and H = span(e;,i € 7), and write

1Y Tz = > Wiaillz > dist( Y Wiai, H)
i€ e
- dist(z Rizi, H) = dist(X T, H). (3.31)
PET
Next, we want to apply corollary [A4l Taking s = n”, from (320) one has that log(pz%[) <
25,

(log(n))2. Therefore, using no?(n) > (log(n))?3, de41 = (log(n))*~Lo?(n), one has
(1 A o28m)
log(o75,)

p2os

Opy1 < (3.32)

for any n > 0, and all n large enough. Hence, if ¢; is as in corollary [A.4l then
P(HYTSCHQ < clpg\/a; s1(X) < n“) < exp (—cln(l A 0254n)).

If n € (0,1) and By = H N Incomp(y, pe), there exists an n-net N of By, of cardinality (3/n)F,
k = dp41n, such that

min ||YT$||2 > min ||YT$||2 —ns1(Y).
z:dist(z,Bg)<n z€EN
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Hence, if we take n = ppy1 = 8”;’1—”\/&, from the union bound, and then using (3.32):

P min YT(E < (c1 —e¢ (S,S Y<7’LK;S X) < nF
(z:dist(z,BH)<p[+1 H H2 - ( 1 )p@ ¢ 1( ) = 1( ) = )

6n”
< exp <5¢+1nlog <m
1V 0y

Finally, summing over all choices of |7| = d¢41n, one finds

> —cn(l A 025471)) < exp (f%n(l A 0254n)).

]P)(HEIICI} 1V x|z < (e1 — €)pen/de; s1(Y) < 0”5 51(X) < n"’”)
x £
C1 2
< exp (nh(54+1)(1 +o(1)) — En(l No 5471)),

with A(6) = —6log(8) — (1 — &) log(1 — d). Since 6p+1logdrr1 < (1 Ac?6em), the above expression
is bounded by e~ FnA*8n) for all n large enough. The conclusion follows by choosing e.g.

_a
€= 5. O

Let us now conclude the proof of Proposition [34l Observe that by (B.2I]) we may assume that
51(Y) < n”. Moreover, the same argument proving ([3.:2]]) proves the same bound for s1(X). Thus,
one may assume that s1(X) < n" as well at the price of adding a vanishing term to (8:29). Using
B20) (for the case £ = 0) and B30) (for the case £ =1,..., N), together with the simple bounds

epin/0g > e~ 1e()* (1 A 626,m) > (logn)2, one has

n—o0

N
lim P( min ||[Y "z < e~ (los(m)* ) — ¢, (3.33)
zeCy

Thus, to end the proof of ([329), it remains to prove

P( min  ||[Y Tz, < e<10g<n>>2> — 0. (3.34)

:EGCN+1

To prove ([B.34), observe that lemma B.7 and lemma BTl as in (3I]), imply that for all ¢ > 0:

n

. tpNJrl 2 2t81(Y)
P YTz, < < P(|(n™, R <
(zGHCl'lJ\If1+1 ” ZL'||2 - \/ﬁ > - (SN+17’L ]; <|<77 ’ k> + wk| - |Oé|0'\/ﬁ ’

(k

where wy € C and 7 ) € §"~! denote suitable random variables independent of Ry, the k-th row
of X. Thanks to (32I]), one can safely assume that s1(Y) < n”. By exchangeability it is enough to
consider the first row R of X, and the associated random variables 7, w. Using dy4+1 = (log(n))~2,

taking ¢t = e~ (1°2)* /i /pn 11, and using 2nfe~(98(")* /(|a|opy41) < e~ 218 /o], for n large,
it is then sufficient to prove

lim (1og(n))21p>(|<n,3> | < |a|7167%(l°g(”))2) = 0. (3.35)

n—oo

By conditioning on the event 7 € Incomp(dn 41, pN+1), lemma implies that

]P)(|<777 R) +w| < |a|71€7%(log("))2;77 € Incomp(dn 41, PN+1))

—3 (log(n))?
< C ez vn 1) < QClog(n)’ (3.36)
o/ ONF1IT lalpn 41 ovn

where the last bound holds for all z € C\ A, for n sufficiently large, so that « is bounded away
from 0. Since by assumption (LI0) we have o/n > (log(n))?, this proves ([3.35)), provided that

nh_?;o(log(”)f P(n € Comp(dn+1,pn+1)) = 0. (3.37)
As in the proof of lemma B12] cf. 3I7), n € Comp(dn+t1,pn+1) implies

min : |IIY z||, = 0,

z€Comp(dN+1,PN+1
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where II is the orthogonal projection on (span{¢,ei})t. Since Comp(Sn1,pn+1) = UN (Co,
B37) may be reduced to the estimate

N
lim (1 )2y P min [IYz||s =0) =0. 3.38
i log(r0)* 3 (1min jval o) (3.38)

To prove (B38)), one repeats the argument in the proof of lemma B3l More precisely, (B3] is
now replaced by

TIY ||, > dist(Xz, H')

where H' = span{H, ¢, e1}. Since H' has dimension at most dp+1n + 2, the same arguments apply
here. As in the proof of ([B33]), this implies [B.38]). This concludes the proof of Proposition B4l

3.4. Moderately small singular values.
Lemma 3.14 (Moderately small singular values). Assume (LI0) and (LII). Let u(n) = n/[(logn)5].
There exists co such that for any z € C, a.s. forn>>1

1

sn—i(M(n) —2) 2 cor,  u(n) <i<n-—1,

Proof. We follow the original proof of Tao and Vu [38] for the circular law. To lighten the notations,
we denote by s1 > -+ > s, the singular values of M — zI. We fix u(n) <i <n — 1, and consider
the matrix Y’ formed by the first m :=n — [¢/2] rows of oy/n(M — z). Let s§ > --- > s/ be the
singular values of Y’. By the Cauchy-Poincaré interlacing, we get

U—1n—1/2s/ < Snei

(see e.g. [29, corollary 3.1.3]). Next, by [38, lemma A4], we have
Y2 sl 2y gy = disty - st 2 o1,

where dist; := dist(R};, H}) is the distance from the 5t row R of the matrix Y’ to H}, the subspace
spanned by all other rows of Y’. In particular, we have

; (2 n—[i/2] n—[i/2]
—s, 2 < s 5 <ot Y s <o’ Z dist; (3.39)

Now, we note that
dist; = dist(R}, H;) > dist(R;, H;),

where H; = span{H}, e;} and R; is the j™ row of X. Now, Hj is independent of R; and dim(H;) <
n—%+1<n-2%u(n). We may use lemma with the choice ¥(n) = 1 u(n). By assumption
(LI0) one has

min{c?(n)y(n),¥(n)?/n} > log(n). (3.40)

By the union bound, this implies

n—1 n—[i/2] \/;
>l U U {dlst ﬁ} < 0. (3.41)

77,21 1= u(’n,) j 1

Consequently, by the first Borel-Cantelli lemma, we obtain that a.s. for n > 1, all u(n) < i <n-—1,
and all 1 <j <n-—[i/2],
dist; > ——= \/_ > U\/_
2\/5 4
Finally, 339) gives s2_; > (i2)/(32n2), i.e. the desired result with co := 1/(4v/2). O
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3.5. Proof of theorem Let us choose J(t) = t2. By lemma [3.3] it is sufficient to prove that

1
tl;rgo li?HsolipP</0 J(|log s|) dvas(ny—z(s) > t> =0.
We shall actually prove that if n, is the last 4 such that s,,_;(M — z) < 1, then there exists C' >0
such that

n—oo

lim p(% nz J(|log spi(M — 2)]) < c) ~1. (3.42)
1=0

With the notation, of lemma B.I4] let F), be the event, that s,(M — z) > e~008(m)” and that for
all u(n) <i <n-—1, $,i(M — z) > ¢pi/n. Then by Proposition B4l and lemma [BT4] F,, has
probability tending to 1. Also, if F;, holds, writing s,,—; for s,_;(M — z) one has

%2J(|logsn—i|)§ %ZJ((log %Z (|log(coi/n)|)
uln)(login 4 n
- Loty LS logni)

This last expression is uniformly bounded since u(n) = n/[(log(n))?] and the sum is approximated
by a finite integral. This concludes the proof of ([42).

4. LIMITING DISTRIBUTION: PROOF OF THEOREMS [[.3] AND [[.4]

4.1. Brown measure. In this paragraph, we recall classical notions of operator algebra. Consider
the pair (M, 7), where M is a von Neumann algebra and 7 is a normal, faithful, tracial state on
M. For a € M, set |a| = va*a. For a self-adjoint element a € M, we denote by u, the spectral
measure of a, that is the unique probability measure on the real line satisfying, for any z € C,,

ra—2 = [L s, 2

t—z

The Brown measure [I3] of a € M is the probability measure u, on C, which satisfies for almost
all z € C,

1081z = Maua(3) = [10g(0) dpa—1 (0

In distribution, it is given by the formula

o = 52 [108(®) dua 1) (4.1)

Our notation is consistent: firstly, if a is self-adjoint, then the Brown measure coincides with the
spectral measure; secondly, if M = M,,(C) and 7 = %Tr is the normalized trace on M,,(C), then
the Brown measure of A is simply equal to s = % Dy dxi(A)

The *-distribution of a € M is the collection of all its x-moments 7(a®*a®2 - - - a®") where a®' is
either a or a*. The element ¢ € M is circular if it has the x-distribution of (s1 + iss)/v/2 where
s1 and so are free semi-circular variables. We refer to Voiculescu, Dykema and Nica [41] for a
complete treatment of free non-commutative variables.

As explained in Haagerup and Schultz [26], it is possible to extend these notions to unbounded

operators. Let M be the set of closed, densely defined operators a affiliated with M satisfying

/1og(1 + 1) dpujq)(t) < F00.

In particular the normal operator g in theorem is an element of M. Also, note that if a € M
and z € C, then a — z € M. For all a € M, Haagerup and Schultz check that it is possible to
define the Brown measure by (&1]).
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4.2. Proof of theorem [I.3l From theorem [[.2], 1 is given by the formula, in distribution,

W= %A /1og(t) dv,(t).

Hence in view of (1)), the statement of theorem [[.3] will follow once we prove that for all z € C,

Ve = Hletg—=|-

To prove the latter identity, assume that x has distribution N(0, K), i.e. (X;;)1<i j<n are ii.d.
centered Gaussian variable with covariance K, and ¢ = 1. Let (G;);>1 be an independent
sequence of i.i.d. Gaussian random variables, G; ~ N(0,K). We define the diagonal matrix
D' = diag(Gh,...,G,), which is independent of X and set M’ = inX — D’. The proof of theorem
[LTlshows that vas— ., va—, both converge a.s. to v,. However, it is a consequence of Capitaine and
Casalis [I5] proposition 5.1] or Anderson, Guionnet and Zeitouni [Il theorem 5.4.5], that Evyp—,
converges weakly to pjcqg—- ([I, theorem 5.4.5] is stated for Wigner matrices but the result can
be lifted to our case, see [I], exercice 5.4.14]).

4.3. Quaternionic resolvent. Here we give another characterization of the Brown measure fic44.
We use the same linearization procedure as in section 2.4 to develop a quaternionic resolvent
approach for the Brown measure. This approach was introduced in the mathematical physics
literature [20] 23] B4] for the analysis of non-hermitian random matrices; see also [I1] and [12]
§4.6]. As above, we consider the operator algebra (M, 7) associated to the von Neumann algebra
(M, 7). If elements of M act on a Hilbert space H, we define the Hilbert space Ho = H x Z/27
and for 2 = (y,e) € Ha, we set # = (y,e + 1). In particular, this transform is an involution & = .
There is the direct sum decomposition Hy = Ho® Hy with H. = {z = (y,e) : y € H}. An operator
b acting on Hs has the 2 x 2 representation

boo  bo1
b= 4.2
<510 bn) (42)

where b;; are operators on H. That is, if x = (y0,0) + (y1,1) € Ha, then bz = (20,0) + (21, 1),
where 2o = booyo + bo1y1, and 21 = bigyo + b11y1. We define the linear map 7o on operators acting
on Ho, with values in M (C), through the formula,

_ (7(boo) T(bo1)
n) = (T4 70 (43

biv(a) = (. )

The operator bip(a) is self-adjoint. It will be called the bipartization of a.
Recall the definition (2.) of H; and ¢ = ¢(z,7n) € Hy We define the quaternionic transform of
a as the 2 x 2 matrix

Given a € M we define the operator

T'a(q) := mo((bip(a) — ¢ @ Ig)™1).
Here g ® I is the operator on Hy defined by ([@2) with bgg = b11 = nI and byy = 21, byp = Z1,
with I the identity operator on H. Note that (bip(a) — ¢ ® Ix)~! is the usual resolvent at 7 of
the self-adjoint operator b(z) := bip(a) — q(2,0) ® Ig. Hence (bip(a) — ¢ ® Iy)~! inherits the
usual properties of resolvent operators (analyticity in € C, bounded norm). For a proof of the
next lemma, see [12, lemma 4.19]. We use the notation 8 = 1(8, — i9,), for the derivative at
z=ux+1y e C.

Lemma 4.1 (Properties of the quaternionic transform). For all ¢ = q(z,n) € Hy,
a(q) ﬁ(q))
La(g) = | 7 € Hy,
@ <6(q) alg)) =
with
alq) = S/:L\afz\ (1),

and, in distribution,

1., .
fa = = lim 9B(q(z, it)).
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Recall that a sequence of matrices (Ay),>1 is said to converge in *-moments to a € M if for
any integer k and (g;)1<;<k € {1, *}¥,

1
1 _ €1 A€2 ..., Ak — €1 482 ... g%k
nhﬂn;o nTrAn As2. ATk =1(ata a*).

Also, if (A,)n>1 is a sequence of random matrices, (A, ),>1 converges in expected x-moments to
a € M if the above convergence holds in expectation.

Lemma 4.2 (Continuity of the quaternionic transform). If (A4,) is a sequence of matrices con-
verging in x-moments to a € M then for all ¢ € Hy, T4, (q) converges to T'a(q). If (Ayn) is a
sequence of random matrices converging in expected x-moments to a € M then ET' 4, (¢) converges
to Tu(q).

Proof. For ease of notation, let a, = a — z. Then, in matrix form,

-1 2 ¥\ —1 2 * -1
bin(a) — q @ In)-! = <—17 az) <77*(77 —a:a3) " a1’ — aZas)” >
(bip(a) =g ® Inr) atl -7 ai(n? —a.a)™ n(n® —ala,)?

Hence
T (q) _ _ ( 777'(772 - azai)’_l T(a2(772 - GEQZ)_l)) )
‘ T(az(n® —aza)™")  nr(n® —alaz)”!
For a replaced by A, and 7 by %Tr, we may expand in series the terms of the above expression.
Each term of the series is a x-moment of (A, — z) and it converges by assumption to the x-moment
in a — z. Since |a| is bounded, for |n| large enough, the series is absolutely convergent. We thus

obtain the convergence of "4, (¢) for || large enough. Finally, we may extend by analyticity to all
ne (CJr. ]

Ifr= (?; g;i) is a 2 x 2 matrix, we define diag(I') = (1—‘61 1"22>-

Proposition 4.3 (Subordination formula). If ¢ and a are x-free operators in (M, T) with ¢ circular
then for all g = q(z,n) € Hy,

Letva(q) = Tja—z(q(0,n) + diag(Teya(q)))- (4.4)

Moreover, if a is normal then
Leval(q) = Talg + diag(le+a(q)))-

A version of proposition 3] in the language of random matrices, was obtained by Rogers [34]
theorem 2]. However, our formulas coincide only for normal operators. This subordination formula
is also reminiscent of the subordination formula in Biane [6, proposition 2] on the free sum with a
semi-circular. Our argument is indirect and relies on random matrices.

Proof of proposition [{.3. Let uo,u1 be unitary operators on H. We consider the unitary operator
u in Hs defined in matrix form by
_ [ Uo 0
u= ( ! u) _

To(u*bu) = 12(b).
Now, for ease of notation, let a, = a — z. There exist unitary operators ug = ug(z),u; = u1(2)
such that uja,u; = |az|. Then, with u as above,

. o 0 Az \ % 0 |a’Z|
bip(a,) = (az 0> =u <|az| 0 >u

Since w;c, ufc and ¢ have the same x-distribution, ubip(c)u* and bip(c) have also the same *-
distribution, we obtain from what precedes that

Letala(z,m)) = m2((bip(c) + bip(az) — q(0,7)) ™) = Leqja.i(a(0,m)).
As a consequence, in order to prove proposition B3] it is sufficient to prove the statement for a
normal operator. Now, if a is normal, let u, denote its spectral measure.
We first assume that a € M. Consider a diagonal matrix A of size n with i.i.d. diagonal entries
with distribution y, and ¥ an independent complex Ginibre matrix of size n (i.e. (Yij)i<i j<n I8

From (&3)), for any operator b,
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an array of i.i.d. N(0, I2/2) random variables). The proof of theorem [[1] cf. [Z.I3), shows that
ET 44y/,/m converges to the function I' which satisfies

['(q) = I'a(q + diag(T'(q))).

On the other hand, it is known that A + Y/y/n converges in expected x-moments to the free sum
a + ¢, see [15, proposition 5.1] or [I, theorem 5.4.5]. Tt thus remains to invoke lemma This
completes the proof of lemma [£3] when a € M.

In the general case, let a € M be a normal operator. From the spectral theorem, (see e.g. [17,
§X.4]), there is a resolution of the identity E (i.e. a projection valued probability measure) such

that
a:/AdE(/\),
ol

and D(a) = {¢ € H : [ |N?d(¢, E(A\)y)) < co}. For n integer, define

an = / AE(N).
A<}

By construction, as n — oo, for any ¢ € D(a),
Jant —avli= [ P EO) 0.
{2 A|>n}
That is, a,, converges in strong sense toward a. Hence the sequences of operators, bip(a,)—q(z,0)®
Iy and bip(ay, + ¢) — ¢(z,0) ® Iy also converge in the strong sense to bip(a) — ¢(z,0) ® Iy and
bip(a 4 ¢) — ¢(z,0) ® I, respectively. In particular, for any ¢ € H,
la,(q) = Talg) and Ta,ic(q) = Tase(q)- (4.5)

(see e.g. [33, theorem VIIL.25(a)]).
Moreover, by construction a, is a bounded operator and, from what precedes, I',, . satisfies
the fixed point equation

I(q) = Ta, (g + diag(I'(g)))- (4.6)
We note finally that
ITa(q) = Tal@)ll < Clla =4I, (4.7)
where for ¢ = q(2,7), ¢ = q(2',7'), C = min(Im(n), Im(n'))~2. Indeed, by the resolvent identity:
b-a) ' =0-¢)"=0b-a) (¢ - @Im)b-q)"
Hence
ITa(g) = Tal@) < [|(0 =) [la = d'll[|(6 = )] < Clla = Il

The conclusion follows from (&3]),(£6) and (£7). O

Remark 4.4 (Uniqueness of the solution to the fixed point equation). Note that [@4]) characterizes
completely the quaternionic transform of ¢ + a. Indeed, in section [2.68, we have proved that there
exists a unique map T' : Hy — Hy which satisfies [@4) for all ¢ € Hy and such that, with
a(q) = T(q)11, for all z € C, n — a(q(z,n)) is analytic on Cy and is the Cauchy-Stieltjes
transform of a symmetric measure on R. Indeed, in 2I3)), replace z — G by a random variable G,
with law pijq—»| to obtain (EZ).

4.4. Proof of theorem [I.4l Set
Fewate) = (50 29).

a(q)
By proposition [£3] T'.,, satisfies the fixed point equation

(5 2)-=((& §)--(G2)
~E e 6ol ara) 48)

where G has law A(0, K) and g = ¢(z,7). For ease of notation, we set
G,=2—-G
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We also define

1
Y= EC:E—— >1,,
{Z G =P }
and its closure & = {z eC: Eﬁ > 1}. As in section[Z6], for n = it, we find o = ih(z,t) € iR
and
- 1+th™!
OGP+ (R )2
In particular, if 0 < t < 1, then
1+ht
1<E—v——.
= GLE + k2
When h goes to infinity, the right hand side goes to 0 (uniformly in z). Hence there exists ¢ > 0,
such that for all z € C and 0 <t <1, h(z,t) < ¢. Similarly,

SE— L
TGP+ (h+ 1)
Thus for all z € ¥ there exists ¢, > 0 depending continuously on z such that h(z,t)

+t>c
We now let ¢ | 0. From what precedes, if z € ¥, any accumulation point, say f(z), of h(z,t)
satisfies f(z) € [cz,c] and

1

1
L=EE e Ier 4
The function ¢, : z — E(|G.|? + 22)! is decreasing, for z > 0. Hence, for all z € X, there exists
a unique value f(z) which satisfies ([3]). Moreover, for any 0 < ¢ < 1 and z € C, the map ¢, is
C*> on [g,e71], while for any = > ¢, the map 1, : z — E(|G,|*> + 22)7! is C* on C. Then, the
implicit function theorem implies that z — f(z) is C* on X.
Now, take z ¢ ¥, we recall that

h(t,z) +t
|G.|2 + (b + )2’

and for 0 <t <1, 0 < h(z,t) < c. Hence, letting ¢ | 0, any accumulation point f(z) of h(z,t)
satisfies f(z) € [0, ] and

h(t,z) =E

f(2)
z2) =Eeam———.
A e
If f(z) # 0 then ([@3) would hold true. However, this would contradict the assumption z ¢ .
Therefore, for all z ¢ X, we have

7(z) =0,
By ([£38), it follows that
B(2) 1= lim Bla(z it) = B
tl0 G- + f(2)?
By lemma 1] the Brown measure of ¢ + g is equal in distribution to
1 GZ

1
petg = ——0B(z) = ;3Em-

Now, if z ¢ 3, then f(2) is 0 in a neighborhood of z. Hence, —3(z) = E(G — z)~!. Since 9z = 0,

0B(z) =0, and we deduce that the density of pc4+q is 0 on (X)°.
Assume now that z € ¥. We find that p.+4 has a density given by 1/7 times
1 |G |? G,
=E — —2f(2)f R)Erm—m———,
LA A Ry (P A <R RS TP

where we use G, = 1, 9|G.|?> = G,. Here f'(z) = 0f(z). Using ([£3), the first term on the right
hand side is equal to 1 and

—0B(z)

G 1

TR G e

C=Ele T io®
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Hence,

G,
G2 @mﬂﬁmﬁf
2 212 1
(IG-12 + f(2)?) Eemr e
2

~08(z)=1-E

G,
I (G5 B Aezion;
- 2 2)2 1
(lGZ| +f(2) ) E(\G2|2+f(z)2)2
From what precedes, if z € X, f(z) > 0. We have thus proved that the density of Me+g 1S positive

on ¥, the interior of ¥, and given by 1/7 times the above expression, while on C\X the density is
0. In particular, the support of pcyq is ¥.. This concludes the proof of theorem [l

5. EXTREMAL EIGENVALUES: PROOF OF THEOREMS AND

5.1. Proof of theorem The next lemma allows us to control the spectral norm of the
diagonal matrix D defined in (I.I3)). The proof uses a refined central limit theorem together with
estimates for the maximum of i.i.d. standard Gaussian random variables. We refer to |14, theorem
1.5] for a proof.

Lemma 5.1 (Gaussianization). Under the assumptions of theorem [, almost surely

max |D;;| = o+v/2nlog(n) (14 o(1)).

1<i<n

Next, we observe that from the Bauer-Fike theorem [5] theorem 25.1] one has that the eigenvalues
of L = X — D are all contained in the subset of C defined by

UB ll’ ))7

where B(z,t) stands for the Euclidean closed ball (actually a disk) around z with radius ¢, and
51(X) is the largest singular value of X. Since s1(X) = 20+/n (14 0(1)) (by [3, theorem 2]), using
lemma [5.T] one finds that all eigenvalues A of L must satisfy (I4]).

We turn to the proof of (LIH). We observe that from the Bauer-Fike theorem all eigenvalues
of L must be contained in the subset of C defined by

U B(Gi,s1(X)),

where (3,...,(, are the (real) eigenvalues of —D + mJ — mnl. The eigenvalues of mJ — mnlI are
easily seen to be z; = 0 and 20 = -+ = z, = —mn. Thus, the bound s1(X) = ov/n(2 + o(1))
proves statement (LI5) on Jm(A). For the statement on 9%( ), we first notice that

—mn — ov/2nlog(n) (1 + o(1)) < —mn — || L|| < Re(X) < 0.

This proves one side of the bound on |9Re(\) +mn| and, for the other side, we can assume without
loss of generality that

— o [2log(n)

lim < 1. (5.1)
n—oo M n
Moreover one can arrange the labeling in such a way that maxi<;<n |(; — z;| = O(max; |D;;|), so
that one has
(G1= O(mas D) and e (G +mnl = O(max D).

If n is large enough, by lemma [5.] the bound s1(X) = ov/n(2 + o(1)) and assumption (G.1I), we
see that

B(G1,51(X)) N B(,51(X)) = 2,
for all 2 < j < n. Thus, a continuity argument [28, proof of Gershgorin’s theorem 6.1.1] im-
plies that apart from A = 0, which belongs to B((1,81(X)), all other eigenvalues of L belong to
Ui_yB(j,51(X)). Using the bound s1(X) = 20v/n (1+0(1)) and lemma 5T we see that any A # 0
in the spectrum of L must satisfy (m)
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5.2. Proof of theorem Since ||L|] < || X]|| + ||DJI, we may bound separately the norms of
| X|| and ||D|. We have

1Dl = max [ X,,).

J

By assumption there exists a > 0 such that with probability one, |X,;| < a. From Bennett’s
inequality, for any 1 <i < n, t > 0:

- o3n at
P E X, | >t <2 B
2 K| Ztovn | < o (<(755))

where h(s) = (1 + s)log(1 + s) — s ~ s2/2 as s goes to 0. We choose t = /2clog(n), we find by

1D
P Zlij > o4/2cnlog(n) < pe+o(D),
j=1

In particular, if ¢ = 2(1 + )2, from the union bound, for n > 1,

n

> Vi <n~ite
P max Z;XU >2(1+¢e)oy/nlogn) | <n
]:

Hence, from Borel-Cantelli lemma we get a.s. for n > 1,

DI < (2 + o(1))ov/nlog(n).

We now turn to the bound on || X]||. This is a much more delicate matter. Fortunately, we may
use a result by Vu [43] theorem 1.4], which extends Fiiredi and Komlés [2I]. It asserts that a.s.
forn>1,

IX]| = (2+ 0(1))ov/n + co2n i log(n).
This proves (IL.I8). To prove (LI9]), we may follow the proof of theorem

6. INVARIANT MEASURE: PROOF OF THEOREM [I.7]

We start by proving the matrix L is irreducible. Consider the graph G on {1,...,n} whose
adjacency matrix is A = (Ai;)1<ij<n with A;; = 0 and A4;; = 1ix,,20y for i # j. Note that G is
an oriented Erd6s-Rényi random graph where each edge is present independently with probability
p = P(X;; # 0). To prove irreducibility of L, we shall prove that the oriented graph G is connected.
Hence, by a fundamental result of Erdés and Rényi [19], see also e.g. [8, theorem 7.3], [30, Corollary
3.31], it is sufficient to check that

lim pn

i, Tog(n)
Note that the cited references deal with non-oriented Erdés-Rényi graphs. This does not change
much, see the discussion [I8] p.2]. For either model A or model B, the statement (G.I]) follows from
assumption (LI0).

We may now turn to the analysis of the invariant measure II. We will rely on a method that
has already been successfully used in random matrix models with finite rank perturbations, for
example in [4, [39]. We write

(6.1)

L =L+ m¢p* —mnl,
with ¢ = (1,...,1)T. Then, if 2 is not an eigenvalue of L, we have
det(L — zI + mnl) = det(L + m¢o* — zI)
=det(I +m(L — 2I) ' ¢p*) det(L — 2I)
= (1+me¢*(L— 2I)"'¢) det(L — 1),

where at the last line we have used the well known Sylvester determinant theorem: for all A €
M, (C), B € My, (C),
det(I, + AB) = det(I, + BA).
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In particular, z — mn will be an eigenvalue of L if and only if
f(z) == 14+m¢*(L—2I)"'¢ = 0.
Further, still if z is not an eigenvalue of L,
¢* (L —2I)" (L — 2I +mnl) = ¢*(L — 1) (L — 2I + m¢¢p*)
= f(2)¢".

We deduce that if z — mn is an eigenvalue of L then ¢*(L — zI)~! is a left eigenvector of L with
eigenvalue z — mn. Now 0 is an eigenvalue of L and, by theorems [[BHL.Gl a.s. for n > 1, mn is
not an eigenvalue of L. Hence from what precedes, for 1 < i < n,

Ui

I = —"
% 2221 Uk,

where

From the resolvent identity,

Thus, using theorems [LHHLE, and ||¢| = v/n,

(I‘%)l

In other words, writing u; = 1 + ¢;, we find

Z lex] < ﬁ(Z sf) = O(% nlog(n)) + O<gn1/4 log(n)>.

k=1

16— ull < ||¢|H—H

=

3
3

Consequently, uniformly in i =1,...,n:

Therefore,

Hi—%HS%iOsiHO(% @)JFO(
o 2B o s

APPENDIX A. CONCENTRATION FUNCTION AND SMALL BALL PROBABILITIES

3@
2
=

N

N———

For x € C™ and t > 0, define the concentration function as

ZX:cz—w

where {X;,7i=1,...,n} are i.i.d. copies of the complex valued random variable x with law L(n).
Throughout this section we assume that x satisfies (LII) and no? > 1 only. This implies the
existence of constants a,b > 0 such that for all n > 1, letting x(*) denote the random variable x
conditioned on |x| < a:

pa(t) = max]P’(

weC

< t) (A1)

P(x| <a)>b, & = Var(x(“)) > bo?, (A.2)
P(a™! < |x| < a) > bo?. (A.3)

We start with a consequence of Haldsz [27].
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Theorem A.1 (Haldsz concentration bound). Let 1 < m < n. There exists a constant C > 0
independent of (m,n) such that if |z;| > 1, 1 <i <m, then for all t > 0,
C
(1) < —=(t +1).
pe(t) € =1+ 1)

is smaller than ﬁ for all m > 1. Hence, from Hoeffding

—Ccm

Proof. For any constant ¢ > 0, e

inequality, it is sufficient to prove the statement conditioned on {|X1| < a,...,|Xk| < a} with
k=0bm/2, if b > 0is as in (A2). At the price of replacing m by bm/2 and o by &, one can
replace x by x(®) from the start. For ease of notation, we will simply assume that the variables
are bounded by a.

We first assume that all X; and x; are real valued. It is sufficient to prove the statement for
t > 1. Following Rudelson and Vershynin in [35], set Y = |X; — X5|/2. For any ¢ > 0,

B(Y] > ) 2 P(Xa| > 30P(Xa] < ).
Using (A3), (LII) and Markov inequality, we find, for some constant c¢q > 0,
P(|Y| > 1/(3a)) > bo?(1 — E| X2|?a®) > bo*(1 — cooa?).
In particular, if copo?a? < 1/2 then there exists a constant ¢ > 0 such that
P(|Y| > ¢) > co?.

On the other hand, if cpo?a® > 1/2, from ([A.3), we may use Paley-Zygmund inequality and deduce
easily that the above inequality also holds (for some new constant c).
Let Y the law of the variable Y conditioned on |Y| > ¢. It follows that if f is a non-negative
measurable function,
Ef(Y) > co’Bf(Y). (A.4)

From Esseen inequality, cf. [35, lemma 4.2], for some universal constant C' > 0,

2m 2t~ m
pa(t) < C/ do = Ct/ I |Ee?®Xxwx | ap.
0 0 k=1

Now, we use the bound |z| < exp(—2 (1 — |2|?)) valid for all z, and the identity,

]Eei% Z;cnzl Xk

1
2
’Eei‘gx’“””’“ ‘2 = Ecos(20Y zy,),
to write
n ) m 1 m )

H }Eezeka’“} < H exp (75(1 —Ecos(20Yxy)) = H exp (—Esin®(0Y zy)).

k=1 k=1 k=1
Therefore,

2mt ! m
o (t) < Ct/ exp ( - ZESiHQ(kaY))dG.
0

k=1
This implies, using (A4) and |zx| > 1,

2mt !
p(t) < Ct sup/ exp ( — cmo? sin2(9)\))d9.
0

A>c

By the change of variable §/ = 6, using t~* < 1, one has

2T A 5 . 2(9) Clt
pz(t) < C't sup —/ e-¢mo sYde < . A5
A <ctswy | A (4.5)
The right hand side follows easily by decomposing the integral along the periods of sin().

It remains to prove the statement for complex random variables. It is a consequence of the real
case. Indeed, we may assume for example that at least m/2 of the x;’s satisfy Re(x;) > 1/1/2
(otherwise, this is satisfied by the imaginary part). We then notice that the function p, does not
change if we rotate x into e*“x with u € [0,27]. But, we may argue as in [37, lemma 2.4] : there
exists u such that for all z € C,

20"

Var(i}ie(emxz)) > Re(2) 5
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Finally, we note that

p(t) < glggp(’%e(éei“)(kxk — w)’ < t) = Iggﬁgp(’éme(ei“kak) — w’ < t).

Therefore, the case of complex random variables follows from the case of real random variable. [J

If oy/m is not large, the bound in theorem [A.]] becomes useless. In this case, we may however
give a weak bound on the concentration function.

Lemma A.2. Let 1 < m < n. There ezxists a constant co > 0 independent of (m,n) such that if
x satisfies |x;| > 1, for 1 <i < m, then

pe(co) <1 —co(mo? A1). (A.6)
Proof. Let us start with some comments. First from (A3), (LII) and Markov inequality,
P(|X1| > 1/(2a)) < 4E|X,*a® < Co%a® and P(|X1| > 1/a) > bo?.

Hence, if |z1] > 1, for n = 1, we find p,, (1/(2a)) < 1—co(c? A1). Since the concentration function
of the sum is bounded by the concentration function of one of its summands, we get (A.6]) for
m = 1.

Also, from theorem [A] if ov/m > 4C, then p,(1) < 1/2. Hence, it suffices to prove the
statement for o?m < 16C?. Then, simple manipulations show that, at the price of reducing the
constant cp, it suffices to prove the statement of the lemma with the extra assumptions o?m < e
and m > 1/e for some € > 0 arbitrarily small (but independent of m,n).

We will first give a proof in the specific case when x is a Bernoulli random variable with param-
eter p. We will generalize the argument afterward. We fix ¢ = 1/4 and define px = p(a,,....0,) (1)
We will assume that pm < 1/4 and m > 4. We are going to show that p,, <1 —mp/4. Let k > 2
and assume that p_1 > 1 — kp. Let S = Zi:ll Xiz; and u, be such that py_1 = P(|S — u.| < t).
We write, for u € C,

PS4+ xp Xk —u| <t) =1 —p)P(|S —u| <) +pP(|S —u+ zx| <)
Now, since |zx| > 1, u and u — x, cannot be both at distance less than ¢t = 1/4 from u,. Using
P(|S — u«| >t) < kp and P(|S — u| <t) < pr—1, we deduce
pr < max ((1 = p)py—1 + kp®, (1 = p)kp + pp—1)

< max (pr—1 — p(1 — 2kp), p(k + 1 — 2kp))

S Pre—1 — p/2a
provided that pk < 1/4. Now the argument goes as follows, if there exists |m/2] < k < m
such that py < 1 — kp, then since p,,, < pi, we find p,, <1 —[m/2]p < 1—mp/4. Otherwise,
for all [m/2] < k < m, pr > 1 — kp, and we apply recursively the above argument. We find
Pm < Plmy2) — (m—|m/2])p/2 <1 —mp/4. This concludes the proof when x is Bernoulli random
variable.

In the general case, we take t = 1/(4a), with a > 0 as in (A2)). We have p = bo? < P(|X;| >
1/a), and, from Markov inequality, 1 —¢q = 1 —co® < P(|X1| < 1/(4a)). Setting pr = Pay,....00) (1),
the above argument gives p,, < 1 —mp/4 as soon as o?m is small enough. Indeed, as above, let
k > 2 and assume that py_1 > 1 — kp. Note that, with the above notation, if | X, — X}| > 3/(4a),
then u + 2, X], and u + X, cannot be both at distance less than ¢ = a/4 from u,. In particular,
from

P(|S + 2x X —ul <t) < (¢ —p)pr—1
+ (1= @P(|S —u + 2 Xg| <] | Xk| <1/(4a))
+ pP(|S — u 4 2 Xi| < t| | Xk| > 1/a),
we get

pr < max ((q — p)pr—1 + (1 — Q)pr—1 + kp?, (¢ — P)pr—1 + (1 — q)kp + ppr—1)
< max (pkl —p(1 —2kp), p(k + ]% - 2kQ)>

S Pe—1 — p/27
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provided that o2k is small enough. The rest of the argument is identical. 0

The following corollary is a version of [22] lemma 4.6] (our variable x satisfies however more
general statistical assumptions than in [22]).

Corollary A.3. There exists ¢ > 0 such that if x € Incomp(d, p), with §,p € (0,1), u € C", then
P(| Xz — ulls < ¢pV6) < gmen(1no®on) (A7)
Proof. We have

n
E Xigxp — uy

k=1

[ Xz = ulls =

isg with S, =
=1

Thanks to lemma B.6 one may assume that |z;| > p/+/n for all 1 <4 < dn/2. From theorem [A]
one obtains

1P><SZ— < 5—%) < pa(pt/v/n) < Cf—ﬁ

for some constant C > 0, and all ¢t > 0. Assume first that ov/dn > 4C'. Then, taking ¢t = 1, we get

P 1
< ) < D
]P)<Sl \/ﬁ) 2

The S;’s are independent random variables. By Hoeffding’s inequality,

P(|| Xz — ul]s < p/2) < P(Z Lis;> 2} < n/4> < e /8,

i=1

This implies (A7).
It remains to consider the case ov/dn < 4C. Here, we may use lemma with m = dn/2.
Therefore, there exists ¢y > 0, such that

Co Co
IP’(Si < p_ﬁ) < ps (%) < 1—¢yo’dn. (A.8)
Once (A.g) is available, we can conclude the proof as follows. From Bennett’s inequality, there
exists ¢ > 0 such that if ; are i.i.d. Bernoulli random variables with parameter ¢, 0 < ¢ < 1/2,

n n 3
P(Zfi < %) < P(ZEEi —& > %) <e e,
1=1 =1

From (A.8)), we can take ¢; = 1{Si>%}’ with 1/2 > q > cono?d. Then, using no? > 1, one has
that || Xz — ull2 < epv/§ implies 27| &; < 22, for some ¢ > 0. It follows that for some new ¢ > 0:
]P’(HXx —uf2 < cp\/g) < emen?o?s,

This ends the proof. O

Corollary [A23] implies a probabilistic bound on the distance of Xz to a vector space.
Corollary A.4. There exists ¢y > 0 such that if © € Incomp(d, p), with §,p € (0,1), s > 1, and
H is a deterministic vector space such that
c1n(1 Aa?on)

dim(H) <
H) < og)

, (A.9)

then
P(dist(X:z:,H) <c p\/g; S1(X) < S) <e @ n(l/\g25n).

Proof. By definition,
dist(Xz, H) = mig | Xz — ullo.
ue

On the event s1(X) < s, if |lul|2 > 2s then || X2 —ull2 > s > 1 > pv/3. Hence, we may restrict our
attention to

min || Xz — ul|2,
wEBH(s)
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where By (s) = {u € H;|jull2 < 2s}. Now, if ¢ < 1 and k = dim(H), there exists an e-net N of
By (s) of cardinality (5s/¢)¥, with

min || Xz — u|2 > min || Xz — uls —e.
wEBH(s) ueN

Let ¢ > 0 and take € = 9%3. From the union bound,

k
1
P( dist(Xz, H) < Cp;/g; s51(X)<s | < (Cp(\)jg) £%§P0|Xx — a2 < cp\/g).

Then if ¢ is chosen as in corollary [A.3] we find

)
P dist(Xx,H)ﬁ#;sl(X)gs Sek1°g<

C;(ijg) —cn(1Ac?6n) .

In particular if & = dim(H) satisfies (A.9)), then the conclusion follows by taking c; sufficiently
small. 0
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FIGURE 1.1. The bottom graphic shows a simulation of 50 i.i.d. copies of the
spectrum of n~/2L with n = 500 when £ is the exponential law on R of parameter
1 shifted by =1 (m = 0, K33 = 1, and K12 = Ko1 = Koo = 0). The top
graphics shows a simulation of 50 i.i.d. copies of the spectrum of n~/2L with
n = 500 when £ is the Gaussian law on C of mean 0 and covariance K = %_[2.
These simulations and graphics were produced with the free software GNU Octave
provided by Debian GNU/Linux.
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FIGURE 1.2. Kernel estimators of the densities for the simulations in figure [[LT1
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