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Abstract.  

The vesicular monoamine transporter type 2 gene (VMAT2) plays a crucial role in the 

storage and synaptic release of all monoamines, including serotonin (5-HT). To 

evaluate the specific role of VMAT2 in 5-HT neurons, we produced a conditional 

ablation of VMAT2 under the control of the serotonin transporter (slc6a4) promoter. 

VMAT2sert-cre mice showed a major (-95%) depletion of 5-HT levels in the brain with 

no major alterations of the other monoamines. Raphe neurons contained no 5-HT 

immunoreactivity in VMAT2sert-cre mice but developed normal innervations, as 

assessed by both tryptophan hydroxylase 2 and 5-HT transporter labeling. Increased 5-

HT1A autoreceptor coupling to G protein, as assessed with agonist stimulated 

[35S]GTP-γ-S binding, was observed in the raphe area, indicating an adaptive change 

to the reduced 5-HT transmission. Behavioral evaluation in adult VMAT2sert-cre mice 

showed an increase of escape-like reactions in response to tail suspension, and 

anxiolytic-like response in the novelty suppressed feeding test. In an aversive 

ultrasound-induced defense paradigm, VMAT2sert-cre mice displayed a major increase 

of escape-like behaviors. Wild-type-like defense phenotype could be rescued by 

replenishing intracellular 5-HT stores with chronic pargyline (a monoamine oxidase 

inhibitor) treatment. Pargyline also allowed some form of 5-HT release, albeit in 

reduced amount, in synaptosomes from VMAT2sert-cre mice brain. These findings are 

coherent with the notion that 5-HT plays an important role in anxiety, and provide new 

insights on the role of endogenous 5-HT in defense behaviors.  
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Introduction 

Serotonin (5-HT) has a central importance in the control of mood and anxiety states (Lucki 

1998). Dysfunctions of 5-HT neurotransmission can result from alterations at several critical 

points of monoamine metabolism such as synthesis, release, reuptake, catabolism, or 

serotonin receptors (Morilak and Frazer 2004). All these constitute entry points to 

pharmacological therapeutic approaches (Berton and Nestler 2006) and to genetic variations 

that impact disease predisposition. Vesicular monoamine transporters (VMAT) appear as 

important targets in regard to the neurobiology of mood. Indeed, the initial formulation of the 

monoamine theory of depression was derived from studies with reserpine, an irreversible 

VMAT blocker, prescribed as an antihypertensive agent, subsequently found to cause 

depression in humans (Freis 1954). Moreover, there is evidence for a link of depression with 

genetic polymorphism of the Vmat2 gene (Christiansen, et al. 2007; Gutierrez, et al. 2007). 

The main function of VMAT is to concentrate biogenic amines into intracellular storage 

organelles such as synaptic vesicles, shielding them from degradation, and concentrating them 

for release into the synaptic cleft (Henry, et al. 1998). Nevertheless, 5-HT can also function as 

a paracrine transmitter by acting on receptors distant from synaptic release sites (Bunin and 

Wightman 1999), and non-vesicular release of neurotransmitters is known to occur in some 

physiological conditions (Attwell, et al. 1993; Wu, et al. 2007).  

 VMATs exist as two different isoforms: VMAT1 mainly expressed in chromaffin 

and enterochromaffin cells, and VMAT2 essentially expressed in monoaminergic neurons 

(Erickson, et al. 1996; Erickson and Eiden 1993). Microdialysis (Adell and Artigas 1998) and 

voltametry (Bunin, et al. 1998; O'Connor and Kruk 1991) experiments showed that 

tetrabenazine, a selective VMAT2 blocker, prevents the release of 5-HT in the raphe and in 

axon terminal fields while Vmat2-KO mice showed no release of amines (Fon, et al. 1997; 

Wang, et al. 1997). Vmat2-KO mice do not survive beyond the first postnatal days (Alvarez, 

et al. 2002; Fon, et al. 1997; Wang, et al. 1997) preventing the long-term evaluation of the 

consequences of a lack of monoamine/5-HT release. VMAT2 heterozygous mice with rather 

small (20-30%) reductions in brain amines showed no change in anxiety-like behaviors, but 

indications of a “depression-like” phenotype (Fukui, et al. 2007). However, it was unclear 

whether this phenotype was linked to a reduced release of 5-HT or of other amines (DA, NA, 

histamine) that also depend on VMAT2 for vesicular storage. 
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 To overcome this limitation, we generated a conditional deletion of VMAT2 that 

allowed investigating the role of this transporter specifically in 5-HT neurons. Specific 

ablation of VMAT2 in raphe 5-HT neurons was obtained by Cre recombinase expressed under 

the control of the 5-HT transporter gene (SERT, slc6a4) promoter. We report that VMAT2sert-

cre mice have a near complete depletion of 5-HT in the brain, consequent to abolished 

vesicular 5-HT uptake. Raphe neurons develop normally and show a normal innervation of 

target areas. A consequence of the sustained 5-HT depletion was to increase the coupling of 

5-HT1A autoreceptors with its G protein, a known sensitive index of chronic changes in 5-HT 

levels. Behavioral observations in adults indicated that abolished synaptic 5-HT release 

caused anxiolytic-like phenotype, while increasing reactivity to innately aversive stimuli. The 

latter alteration was reversed by a 3-week treatment with pargyline, a monoamine oxidase 

inhibitor (MAOI), which markedly increased brain 5-HT levels. These observations are 

coherent with the notion that elevated levels of endogenous 5-HT in stressful situations can 

inhibit prepotent behaviors and is linked with anxiety (Gray and McNaughton 2000). This 

study established VMAT2sert-cre mice as a powerful model to analyze the role of 5-HT in 

otherwise normally developed raphe neurons. 
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Materials and methods  

Animals  

Procedures involving animals and their care were conducted in accordance with directives of 

the European Community (Council directive 86/609) and the French Agriculture and Forestry 

Ministry (Council directive 87-848, October 19, 1987, permissions 75-977 to L.L. and 00782 

to P.G).   

 The floxed Vmat2 mouse line was produced at the Mouse Clinical Institute (Institut 

Clinique de la Souris, MCI/ICS, Illkirch, France) in coordination with unit Inserm U952 

(Bruno Giros,  to whom correspondence concerning the mouse line should be addressed: 

bruno.giros@inserm.fr ). A 9 kb fragment of the Vmat2 gene encompassing exons 1-3 was 

subcloned into the targeting vector and the two loxP sites and the neomycin-selectable 

cassette flanked by two FRT sites were introduced in the introns flanking the first coding 

exon. Embryonic stem cells were electroporated with the targeting vector and cell clones 

resistant to selection were screened by PCR and Southern analysis to identify clones that 

resulted from a correct targeting event (2 /744 clones analyzed). Excision of the neomycin 

cassette was performed in vivo by crossing chimeric mice with transgenic mice expressing the 

Flp recombinase under the control of the early beta-actin promoter. The presence of the floxed 

allele in the progeny was screened by PCR. VMAT2 lox/lox mice were maintained on a 

C57BL/6J background. 

 The SERTcre mouse line has previously been described (Zhuang, et al. 2005). This is 

a gene trap construction, which replaces exon 14 of the serotonin transporter gene (sert)  with 

a gene sequence encoding cre-recombinase. Previous studies showed that recombination 

occurs by E12 in the raphe neurons (Narboux-Neme, et al. 2008) and that virtually all TPH2 

neurons in the raphe have recombined in postnatal life (Zhuang, et al. 2005). Male 

VMAT2lox/+/SERTcre/+ or VMAT2lox/lox/SERTcre/+ mice were mated with female VMAT2 lox/lox 

to generate the 3 genotypes that were analyzed: VMAT2lox/lox/SERTcre/+ (recombined); 

VMAT2lox/lox (control 1); VMAT2lox/+/SERTcre/+ (control 2). After weaning and sexing, males 

and females were housed separately in groups of 6-8 animals per cage and maintained under 

standard laboratory conditions (22 ± 1°C, 60% relative humidity, 12-12 hours light-dark 

cycle, food and water ad libitum). Male mice were used at 2-3 months of age when their body 

weight in each genotype equally ranged between 20 and 25 g (Narboux-Nême, et al. 2009). 
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Some histological assays (VMAT and 5-HT immunohistochemistry) were performed on P7 

mice for early detection of the phenotype, which was found the same at adult ages. In 

addition, some C57BL/6J mice (purchased from Janvier, France) were used for 

pharmacological studies.  

Neurotransmission studies 

Tissue levels of 5-HT, 5-hydroxyindolacetic acid (5-HIAA), noradrenaline (NA) and 

dopamine (DA) were determined using high pressure liquid chromatography with 

electrochemical detection (HPLC-ED) as previously described (Mongeau, et al. 2010). Crude 

synaptosomes from VMAT2sert-cre and control mice, prepared as previously described (Gray 

and Whittaker 1962), were used in experiments for the measurements of [3H]5-HT uptake and 

release induced with the releasing agent 3,4-methylenedioxymethamphetamine (MDMA: 0.1 

nM - 10 µM) or potassium (3 - 100 mM). Quantitative autoradiography of 5-HT1A receptor-

mediated [35S]GTP-γ-S binding using the non-selective agonist 5-carboxamido-tryptamine (5-

CT; 10-1000 nM; non-specific binding defined by WAY 100635) was done as previously 

described (Fabre, et al. 2000). See the supplementary online information for further details. 

 

Histological analyses 

Mice were perfused transcardiacally with 4% paraformaldehyde, and brains were postfixed 

overnight in 4% paraformaldehyde, cryoprotected in 30% sucrose and serially sectioned (60 

µm thick sections) on a freezing microtome. Alternate series for immunohistochemistry, in 

situ hybridization and counterstaining were used. Immunohistochemistry was performed 

using specific antibodies against VMAT2 (1:10000, Phoenix), 5-HT (1:50000, Sigma), SERT 

(1:1000, Calbiochem) as described previously (Alvarez, et al. 2002). Secondary antibodies 

used were biotinylated anti-rabbit IgG (1:300, Jackson Laboratories) followed by avidin-

biotin-peroxidase complex (1:400, Amersham). Peroxidase activity was detected with 3,3'-

diaminobenzidine peroxide (DAB/H202). In situ hybridization experiments were performed as 

previously described (Bally-Cuif and Wassef 1994). The TPH2 c-DNA plasmid previously 

described (Cote, et al. 2003) was donated by P. Ravassard (CRICM, UPMC, Paris). 

Images were captured with a Cool Snap FX camera fitted to a Leica DM RD 

microscope under consistent light conditions using 20x/0.70 objectives. Images were copied 
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to 8-bit RGB digital format and analyzed with ImageJ software. The density of SERT-

immunoreactive fibers was estimated by counting the number of intersecting fibers with a grid 

composed of hemicycloids, as previously described (Gaspar, et al. 1991). The density of 

TPH2 labeled neurons was estimated in two sections through the rostral portion of the dorsal 

raphe nucleus. All neurons contained in a grid of 250x250 um were counted. The grid was 

placed over 3 different areas of the dorsal raphe, for each case. 

 

Behavioral testing  

Experiments were carried out in adult (2-4 months) VMAT2sert-cre and controls from the same 

litters that included both VMAT2lox/lox and VMAT2 lox/+ SERTcre/+ male mice. 

Elevated plus maze (EPM) 

The maze was made of polyvinylchloride with two lit open arms (27×5 cm) and two opaque 

closed arms (27×5×15 cm). The arms radiated from a central platform (5×5 cm) and the 

apparatus was 38.5 cm above the floor. To initiate the 5-min test session, the mouse was 

placed on the central platform, facing an open arm. The mouse was considered to be on the 

central platform whenever two paws were on it, and in one of the arms when all four paws 

were inside. Behavioral analysis was done using a video recording using ODlog (Macropod 

Software) by an observer unaware of genotype. Results are reported as the time spent and the 

number of entries in the open arms to assess anxiety-like behavior, and total number of entries 

into both open and closed arms to assess locomotor activity.  

Spontaneous locomotor activity  

Locomotor activity was measured using a computer-based photobeam apparatus (Actisystem 

II, Panlab, Barcelona, Spain). Actimeter box (area: 300 x 150 mm; height 180 mm; with 

plexiglass wall and grid floor) detected mouse movements by means of two infrared light 

beams. Mice were placed in the testing room at least 2 hours before the experiment.  
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Novelty suppressed feeding (NSF) 

Animals were placed one per cage for at least one week, and their bedding was changed just 

before food deprivation. All mice were deprived of their regular food for 48 hours and placed 

in the testing room for at least 1 hour before the test. They were then placed into an unfamiliar 

arena (area: 400 x 400 mm; height 180 mm; containing bedding) with a small plate containing 

food at the center of the field. The latency to feed was measured using a video recording, from 

the time the mouse is placed in the periphery of the arena until the animal began feeding. The 

latency to feed was also measured in the home cage, to assess if changes in latency might be 

accounted for by alteration in the feeding drive rather than reaction to the anxiogenic 

environment. The delay was measured from the time the mouse was placed at the periphery of 

the cage containing the food in the center.  

Food consumption  

Animals were placed one per cage for one week before measuring daily food intake over one 

week. The pellets consumed were measured by weighing the amount of remaining food each 

day. 

Tail suspension test 

The apparatus consists of three suspension units divided by walls (ID-Tech-Bioseb, Chaville, 

France). Mice were suspended by the tail, using an adhesive tape attached to a strain gauge 

transducing movements into a signal transmitted to a central unit for signal digitalization. 

Although VMAT2 ser-cre mouse weights differ from controls during postnatal life (Narboux-

Nême, et al. 2009), weight differences were no longer observed at adult age which eliminates 

any bias in measurements with this test. The duration of immobility was measured 

automatically by the software over a 6-min period. Struggling duration was analyzed from the 

traces generated by the software, and was defined as the total time the mouse spent in activity 

burst (i.e. excluding all the small movements), during the 6 min test period. Activity burst was 

defined as a force exerted on the transducer greater than or equal to 3 g above the baseline 

value for more than 2 s.  
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Ultrasound-induced defense reactions 

Mice were tested for their innate fear reactions to a train of ultrasonic stimuli (US), as 

previously described (Mongeau, et al. 2003). Animals were placed one per cage for at least 

one week before testing. In brief, 100 ms frequency sweeps between 17-20 kHz, 85 dB, 

alternately ON 2 s and then OFF 2 s for 1 min were delivered into the home cage (18 x 29 cm) 

after a 3 min baseline period. Flight reactions triggered during the ON periods were measured 

as the number of running events from one side of the cage to the other followed by behavioral 

arrest, while the percentage time freezing to the US was quantified by sampling events of 

complete immobility (except respiration) every 4 s during the OFF period. These defense 

behaviors were measured from a video file by an observer unaware of mouse genotype. 

Pargyline treatment 

Mice were treated using subcutaneous osmotic minipumps (Alzet model 2004) to avoid 

injection handling which alters mice spontaneous defense behaviors to the US. Chronic 

pargyline treatment was done to achieve sustained MAOA and MAOB inhibition and 

optimally enhanced 5-HT neurotransmission in both control and VMAT2sert-cre mice. 

Pargyline (70 mg/kg x day; Fluka, Buchs, Zwitzerland) or vehicle (water) was administered 

for 3 weeks using minipumps inserted in sterile conditions on the back of the animals under 

pentobarbital anesthesia (55 mg/kg, i.p.).  

Statistics 

Data were analyzed using the Student’s t-test when comparing two groups. The [35S]GTP-γ-S 

binding data and the effects of pargyline treatment on 5-HT levels and flight behaviors in 

relation to the genotype were analyzed using the two-way Anova followed by Bonferonni’s 

post-hoc test. EC50 values were compared by a one-way Anova followed by Bonferonni’s test. 

Statistical significance was set at P < 0.05. 
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Results  

Specific invalidation of the Vmat2 gene in 5-HT neurons 

Conditional ablation of Vmat2 was obtained by inserting loxP sequences into the genomic 

sequence of the Vmat2 gene by homologous recombination, which produced the new mouse 

line VMAT2lox/lox (Fig. 1). These mice were crossed to a previously described mouse line in 

which the 5-HT transporter (SERT, Slc6a4) promoter drives the expression of bacterial Cre 

recombinase (Narboux-Neme, et al. 2008; Zhuang, et al. 2005). The VMAT2lox/lox/SERTcre/+ 

double transgenic line (hence termed VMAT2sert-cre) was amplified for analysis. As with other 

5-HT depleted transgenic mice (Alenina, et al. 2009; Dai, et al. 2008), there was an increased 

mortality of VMAT2sert-cre mice between P1 and P30 compared to control mice. 

 We first checked the effectiveness and selectivity of the Cre-mediated excision using 

an antiserum that specifically stains the VMAT2 isoform. In wild type (C57BL/6J) mice and 

VMAT2lox/lox mice, immunolabeling was observed in neurons of the raphe, the locus 

coeruleus, the substantia nigra, and the hypothalamus (Fig. 2A). In the VMAT2sert-cre mice 

(Fig. 2A), VMAT2-immunostaining was abolished in the raphe neurons but was still present 

in noradrenergic neurons of the locus coeruleus, in dopaminergic neurons of the substantia 

nigra. Similarly VMAT2-immunostaining was unchanged in the hypothalamus and histamine 

neurons (Fig. 2A). No visible reduction in VMAT2-immunostaining was detected in 

heterozygote mice lacking only one allele of the VMAT2 gene (VMAT2lox/+/SERTcre/+; data 

not shown).  

 5-HT immunocytochemistry showed a major and uniform depletion of 5-HT 

immunostaining in all axon terminal fields (fig. 2B) with very faint residual staining in raphe 

neurons in the brainstem in P7 mice (Fig. 2B) and a complete lack of labeling in the adult 

raphe. However, the density of TPH2-positive neurons, in the rostral part of the dorsal raphe 

nucleus, was unchanged (Fig. 2C). To assess raphe projections, immunolabeling was 

performed with anti-SERT antibodies. Examination of serial coronal sections through the 

brain showed a comparable distribution and morphology of the SERT-labeled axons in 

VMAT2sert-cre and control brains. The density of SERT-labeled axons was estimated in the 

cerebral cortex and hippocampus. This showed no difference in fiber density between control 

and mutants (Fig. 2C). Overall these results indicated that 5-HT raphe neurons developed 

normally in VMAT2sert-cre mutants compared to WT mice. 
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Consequences on monoamines metabolism, uptake and signal transduction 

Tissue monoamines’ levels were measured by HPLC in various brain areas (cortex, striatum, 

hippocampus, brainstem), gut, and blood, as these tissues are known to produce or contain 

large amounts of 5-HT. Monoamines levels were not significantly different in wild-type 

(C57BL/6J), VMAT2lox/lox, and VMAT2lox/+/SERTcre/+ mice, that lack one allele of VMAT2 

(results not shown), hence, in subsequent studies the VMAT2lox/lox and the 

VMAT2lox/+/SERTcre/+ mice were pooled as controls. Dramatic decreases in 5-HT levels were 

observed throughout the brain of VMAT2sert-cre mice (from -92% to -96%), with no significant 

differences between brain structures (Fig. 3A, left). Remarkably, no changes in 5-HIAA 

levels were observed (Fig. 3A, right). This suggests (with data of Fig. 2C) that 5-HT was 

produced in normal amounts. Dopamine levels in the striatum and noradrenaline levels in the 

hippocampus and the cortex (Fig 3) were not or only marginally altered, although there was a 

17 ± 3 % (P < 0.01) decrease of hippocampal NA in VMAT2sert-cre mice [that could be 

explained by a lack of stimulatory action of 5-HT on NA terminals in that area (Mongeau, et 

al. 1994)] as compared to controls (fig. 3B).  By contrast, 5-HT levels were normal in the gut 

(Fig. 3C), consistent with the fact that enterochromaffin cells express VMAT1 rather than 

VMAT2 (Erickson, et al. 1996). A different situation occurred in the blood where a 80 ± 3 % 

(P < 0.001) decrease of 5-HT levels was noted (Fig. 3C), consistent with the notion that 

platelets use VMAT2 rather than VMAT1 to store 5-HT (Holtje, et al. 2003). 

 The release of endogenous 5-HT was examined in synaptosomes preparations 

obtained from the whole brain.  No potassium-induced release of 5-HT was observed in 

untreated synaptosomes from VMAT2sert-cre mice (Fig. 4A). [3H]5-HT uptake and MDMA- 

and potassium-induced release were also analyzed on synaptosomes from control, SERTcre/+ 

and VMAT2sert-cre mice (Fig. 4 B-D). After loading, [3H]5-HT is normally distributed between 

two compartments, a fraction in the storage vesicles and another fraction in the axoplasm.  

The MAOI pargyline (0.1 mM) was added to the medium to prevent degradation of [3H]5-HT 

occurring in the axoplasm.  

 In VMAT2sert-cre synaptosomes, uptake of [3H]5-HT was reduced to a similar level as 

that observed in reserpine (0.1 µM) - treated synaptosomes from WT mice (Fig. 4B). In 

contrast, no significant alterations were noted in the SERTcre/+ synaptosomes. MDMA-induced 

release, occurring through the reversal of the reuptake carrier (Hekmatpanah and Peroutka 

1990; McKenna, et al. 1991; Renoir, et al. 2008), was analysed in synaptosomes from WT 
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and VMAT2sert-cre mice (Fig. 4C). The total amount of [3H]-5-HT in synaptosomes was 

decreased in VMAT2sert-cre or WT  mice treated with reserpine compared to controls (WT = 

0.13 ± 0.01;  SERTcre/+  = 0.14 ± 0.02;  VMAT2sert-cre = 0.07 ± 0.01; WT + reserpine = 0.06 ± 

0.01 mmol/g of protein), as expected from the reduced uptake of [3H]5-HT into the storage 

vesicles of VMAT2sert-cre mice compared to WT mice (Fig. 4B). There was a small but 

significant change in the concentration of MDMA that triggers 50% release in VMAT2sert-cre 

mice compared to control mice (Fig. 4C): the dose response curve was slightly shifted to the 

left when using VMAT2sert-cre synaptosomes (log EC50: VMAT2sert-cre = -7.35 ± 0.11; WT = - 

6.86 ± 0.09 M, n=3, P < 0.01). A similar change compared to WT synaptosomes was found in 

WT synaptosomes treated with reserpine (log EC50: WT + reserpine = -7.26 ± 0.11 M, P < 

0.05), but not in synaptosomes from SERT+/cre mice (log EC50: -6.69 M ± 0.14; Fig. 4C). 

However, the concentration of KCl necessary to trigger 50% of maximal release of [3H]5-HT 

was similar across all synaptosomes preparations (Fig. 4D; EC50: WT = 24.7 ± 8.5 mM; 

VMAT2sert-cre = 21.8 ± 5.4 mM; SERTcre/+ = 23.9 ± 4.8 mM; WT + reserpine = 25.9 ± 8.5 

mM). This release is likely to represent a predominantly axoplasmic pool of [3H]5-HT since 

all experiments were conducted in presence of pargyline.  

 Potassium-induced release is only weakly dependent on the presence of calcium in 

the media in the above conditions (varying from 0 to 30% at 3-100 mM of KCl; not shown), 

suggestive of non-vesicular release. Other experimental conditions were used to test calcium-

dependent release. This involved the retrieval of pargyline from the media and shorter 

potassium pulses (30 s). In these conditions we observed a calcium dependent release of 

[3H]5-HT (indicated in figure 4E as a decrement in the amount of radioactivity in the 

synaptosomes after KCl stimulation) in WT mice, whereas no significant calcium dependent 

vesicular release was found in synaptosomes from VMAT2sert-cre mice. 

 To assess whether adaptive changes occur at 5-HT receptors as a consequence of the 

VMAT2sert-cre 5-HT depletion, we measured 5-HT1A receptor-stimulated [35S]GTP-γ-S 

binding using 5-carboxamido-tryptamine (5-CT) as the agonist (Fabre, et al. 2000). [35S]GTP-

γ-S binding was significantly increased in the dorsal raphe nucleus in response to 5-HT1A 

receptor activation by 5-CT in the VMAT2sert-cre compared to control mice (P < 0.0001, two 

way Anova, Fig. 5A), suggesting an upregulation of the 5-HT1A autoreceptors and / or 

enhanced coupling efficacy of these autoreceptors to G proteins. In contrast, no change in the 
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5-CT-induced [35S]GTP-γ-S binding was found in post-synaptic sites, such as the dorsal 

hippocampus (Fig. 5B), the ventral hippocampus and the septum (not shown).  

Behavioral consequences 

We measured the consequences of VMAT2sert-cre -induced 5-HT depletion in standard models 

of anxiety and depression. In the elevated plus-maze (EPM), VMAT2sert-cre mice spent the 

same amount of time exploring the open arms as control mice (Fig. 6A). There was however a 

significant decrease (-37 ± 7 %; P<0.05) in the overall entries into both the closed and the 

open arms (Fig. 6A) suggesting a change in locomotor activity that could confound the 

interpretation of the EPM data. Indeed, specific assessment of locomotion with an actimeter 

also showed a 40% reduction in spontaneous locomotor activity of the VMAT2sert-cre mice 

(Fig. 6B).  

 To further explore the anxiety-related phenotype in a model less dependent on 

locomotion, we applied the novelty suppressed feeding test, in which there is a conflict 

between the feeding drive and risk assessment behaviors. VMAT2sert-cre mice initiated to feed 

much sooner (about 3 times faster; Fig. 6C) than control mice in the unfamiliar cage but not in 

the home cage, indicating an anxiolytic-like phenotype, rather than a change in appetite. 

Furthermore, in isolated adult mice of the same weight (22 ± 1 g), food consumption 

measured during one week did not differ between transgenic and control mice (VMAT2sert-cre: 

3.58 ± 0.28 g; control: 3.65 ± 0.30 g; mean ± S.E.M. n=5-6). Finally, when tested in the tail 

suspension test (TST), VMAT2sert-cre mice were more reactive than control mice. Indeed, 

immobility time was reduced (Fig. 6D; -37 ± 12 %; P<0.01) and time spent actively 

struggling to escape was increased (+68% ± 13%, P=0.001). These observations suggested an 

increase of active defense behaviors of VMAT2sert-cre mice in the TST.  

 Interestingly, VMAT2sert-cre mice also displayed a large increase of behavioral 

reactivity in response to stimulation with the innately aversive ultrasonic stimulus (US; P < 

0.01; fig. 7A).  In addition, VMAT2sert-cre mice froze less in reaction to the US compared to 

control mice (control: 69 ± 7 % of time during the OFF periods; VMAT2sert-cre: 37 ± 8 %; 

mean ± S.E.M.; P < 0.05, n=4-5, not shown).  

 To examine whether the change in behavioral reactivity to the US in VMAT2sert-cre 

mice was due to the reduced 5-HT levels, we investigated the effects of a long term pargyline 
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treatment (70 mg/kg x day, for 3 weeks). Pargyline reversed the 5-HT depletion (-94 ± 

0.01%) observed in VMAT2sert-cre mice, and even markedly increased 5-HT levels compared 

to vehicle treated control mice (Fig. 7D). Nevertheless, after pargyline treatment 5-HT tissue 

levels was still 20  ± 13 % lower in VMAT2sert-cre mutants compared to pargyline-treated 

control mice (Fig. 7D). Two-way Anova indicated a significant effect (P < 0.0001) of 

treatment F(1,19) = 574 and of genotype F(1,19) = 46, but no significant interactions [F(1,19) 

= 0.3]. Pargyline also restored some 5-HT immunostaining in raphe neurons and axon 

terminals of VMAT2sert-cre mice (Fig. 7B,C), although the levels were lower than those 

observed in controls (not shown). In response to the US, VMAT2sert-cre mice treated with 

pargyline no longer displayed their increment of flight responses compared to control mice 

(Fig. 7A). Two-way Anova indicated significant effects (P = 0.01) of treatment F(1,12) = 9, 

genotype F(1,12) = 9 and a significant treatment x genotype interaction F(1,12) = 10. 

Furthermore, there were no changes in the percentage of time spent freezing in response to the 

US in pargyline treated mice (control: 87 ± 6 % of time during the OFF periods; VMAT2sert-

cre: 76 ± 24 %, not shown).   

 

Discussion  

Previous studies have shown that the majority of brain monoamines resides in the vesicular 

storage pools and that pharmacological inhibition of VMAT prevents vesicular release of 5-

HT (Adell and Artigas 1998; Bunin, et al. 1998; O'Connor and Kruk 1991). We confirm here 

that VMAT2 is the only vesicular transporter implicated in this effect in the CNS, since its 

genetic ablation in 5-HT neurons entirely reproduced the effects on 5-HT uptake of complete 

VMAT inhibition with reserpine. Interestingly, however, in the VMAT2sert-cre mice, 5-HT is 

probably produced at normal rates, as suggested by (i) the normal levels of TPH2 gene 

expression, (ii) the normal amounts of 5-HIAA (the product of oxidative deamination of 5-

HT), and (iii) the normal raise of 5-HT levels after MAO inhibition by pargyline. Hence, all 

5-HT produced or taken up by neurons, that cannot be stored into vesicles is rapidly 

metabolized by mitochondrial monoamine oxidases present in raphe neurons (Shih, et al. 

1997; Vitalis, et al. 2002). Because 5-HT continues to be produced in raphe neurons at a 

seemingly normal rate, it can still be released. While such release is likely to be marginal in 

standard conditions because of the low endogenous levels of 5-HT, it could still occur 

following administration of a MAOI which causes a major raise of 5-HT tissue levels. 
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Furthermore, it cannot be excluded that pargyline could enhance some form of vesicular 

storage (Buu 1989). In VMAT2sert-cre mice MAOIs restored some functions such as the 

inhibitory action of 5-HT on active defense reactions (fig. 7B) as well as normal growth 

(Alvarez, et al. 2002; Narboux-Nême, et al. 2009). This functional restoration in vivo fits well 

with the potassium- and MDMA-induced releases of [3H]5-HT observed in vitro in 

VMAT2sert-cre synaptosomes.  

 The mechanism involved in the [3H]5-HT release in VMAT2sert-cre synaptosomes is 

presently unclear, but two non-mutually exclusive possibilities can be discussed: 1) Release of 

[3H]5-HT via the carrier (Evans and Collard 1988). Although this was suggested to occur in 

VMAT2 KO mice (Fon, et al. 1997), we do not presently have any data in favor of flux 

reversal in VMAT2sert-cre mice. 2) Alternate vesicular storage and release pathways. It is 

known that 5-HT can passively cross the membrane of intracellular acidic organelles where it 

is protonated and remains trapped because charged monoamines cannot cross back 

membranes. In view of pH differences between vesicles and axoplasm, there could be at least 

a 100-fold increase in [3H]5-HT vesicular concentration compared to the axoplasm (Njus, et 

al. 1986), although this passively generated gradient remains very small compared to that 

generated by VMAT2, it may nevertheless be a way to compensate for VMAT2 loss. Future 

studies are clearly needed to understand how 5-HT release can occur in the VMAT2sert-cre 

mice. 

 Beyond the cellular mechanisms involved, an important finding here is that [3H]5-HT 

stabilized via MAO inhibition in the axoplasm can be mobilized out of the synaptosomes. The 

small but significant changes in the EC50 values obtained after MDMA stimulation indicate 

that the process underlying 5-HT release in VMAT2sert-cre mice is likely to be different from 

that of WT mice. However, the relatively low calcium dependency of our release conditions 

in presence of pargyline might preclude similar observation after potassium stimulation. It is 

also important to emphasize that in the absence of pargyline, calcium-dependent vesicular 

release of 5-HT was not observed in VMAT2sert-cre mice. 

 The reduced 5-HT in the VMAT2sert-cre mice caused a sensitization of the 5-HT1A 

autoreceptors coupled to Gαi proteins in the dorsal raphe nucleus. In contrast, the decrease in 

5-HT contents in the VMAT2sert-cre mice caused no adaptive changes of 5-HT1A receptors in 

target areas, such as the hippocampus. This is in line with the notion that raphe 5-HT1A 

autoreceptors, but not hippocampal 5-HT1A receptors, show modulation in response to 
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changes in 5-HT levels (Fabre, et al. 2000; Mannoury la Cour, et al. 2006; Mongeau, et al. 

1997) and indicate that extracellular 5-HT level was much reduced at the level of serotonergic 

somas.  

The VMAT2sert-cre mouse line offers an interesting model of hyposerotonergia, 

complementary to other recently described genetic mouse models (Trowbridge, et al. 2010). 

All recent genetic hyposerotonergic models focused on reducing 5-HT production either by 

targeting the central 5-HT synthesis enzyme, tryptophan hydroxylase 2 (TPH2) (Alenina, et 

al. 2009; Beaulieu, et al. 2008; Gutknecht, et al. 2008; Savelieva, et al. 2008) or by 

invalidating the transcription factors controlling differentiation of raphe neurons such as pet1 

and lmx1B (Dai, et al. 2008; Hendricks, et al. 2003; Kiyasova, et al. 2011; Zhao, et al. 2006). 

The more severe 5-HT depletion observed here (-95%), compared with previous models (-70-

90%), is likely due to the fact that increased 5-HT degradation, when VMAT2 is absent, 

affects all sources of 5-HT (e.g, produced by TPH1/TPH2). The present observations, 

consistent with Tph2 knockout mice (Alenina, et al. 2009; Gutknecht, et al. 2008), showed 

both a normal development of the raphe neurons, and a normal density of 5-HT terminals in 

the hippocampus and the cerebral cortex of VMAT2sert-cre mice. Subtle developmental defects 

may nonetheless exist given the large body of evidence supporting the role of 5-HT in the 

maturation of neural circuits (Trowbridge, et al. 2010).  

Normal morphology of 5-HT neurons and brain specificity provides two major 

advantages of genetic models in general compared to pharmacological depletion methods 

such as, respectively, lesions of 5-HT neurons with 5,7-dihydroxytryptamine and depletion 

with p-chlorophenylalanine (PCPA). Compared to the Tph2 knockout which irreversibly 

inactivates 5-HT synthesis, the VMAT2sert-cre mutation has also the advantage of rapid 

reversibility via MAO inhibition since TPH2 is not targeted or down regulated.  Overall, 

VMAT2 selective deletion should allow more direct explorations of the function of 

monoamine release in otherwise normally developed raphe neurons.  

 

Behavioral characterization of the VMAT2sert-cre mice showed that depletion of central 

5-HT stores reduces anxiety. This finding is in agreement with reports in several genetic 

models of 5-HT deficient mice (Dai, et al. 2008; Kiyasova, et al. 2011) and with numerous 

studies using pharmacological approaches to decrease brain 5-HT in rats (Graeff 2004; 

Griebel 1995). Furthermore, decreased 5-HT input at several receptors (including the 5-HT2A 
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and 5-HT2C subtypes) clearly reduces anxiety in mice (Heisler, et al. 2007; Mongeau, et al. 

2010; Weisstaub, et al. 2006). 

VMAT2sert-cre mice were first tested in the most standard model, the elevated plus maze 

(EPM), having a strong validity for anxiolysis mediated by the GABAergic system, but not so 

much, it seems from previous studies (McCreary, et al. 1996), for the serotonergic system. 

Indeed, the effect of altering 5-HT on the behaviors observed in the EPM was argued to be the 

overall result of a balance between distinct 5-HT systems in different brain areas. For 

example, microinjection of a 5-HT2C agonist generated opposite effects in the EPM depending 

on the brain areas targeted (Cornelio and Nunes-de-Souza 2007; Nunes-de-Souza, et al. 

2008). This might explain the lack of changes in VMAT2sert-cre mice observed here with the 

EPM.  The observed decrease in exploratory behavior of VMAT2sert-cre mice, as in other 

hyposerotonergic models (Dringenberg, et al. 1995; Hendricks, et al. 2003), is also a 

confounding factor for the interpretation of EPM data. In contrast, consistent effects of 5-HT 

depletion have been noted in several models involving conflicts, where reduced 5-HT tone 

was linked to decreased anxiety-like behaviors (Graeff 2004). In the NSF, which involves a 

conflict between the drive to feed and the risk assessment behaviors triggered by the 

unfamiliar environment, VMAT2sert-cre mice showed an anxiolytic-like behavioral profile. 

This agrees with the anxiolytic-like effect of PCPA-induced 5-HT depletion (Bechtholt, et al. 

2007) and with observations in other 5-HT depleted mutant mice (Dai, et al. 2008; Kiyasova, 

et al. 2011). 

It is also interesting to note that VMAT2sert-cre mice spent more time struggling to 

escape than control mice in the TST. This is coherent with observations in the TPH1/TPH2 

KO mice which displayed increased struggling time in the forced swim test (Savelieva, et al. 

2008). The increase of struggling or escape-like behavior of VMAT2sert-cre mice in the TST 

might be mechanistically similar to the increase in ultrasound-induced flight also observed 

here with these mutants. Both of these effects can potentially be accounted for by a lack of 

inhibitory effect of 5-HT at the midbrain level (Kiser and Lebovitz 1975). As far as we know, 

the present genetic invalidation study is the first which clearly indicates a tonic inhibitory role 

of endogenous 5-HT on the expression of active defense behaviors in reaction to fear stimuli. 

Previous pharmacological studies in rats showed that flight behaviors induced by an aversive 

ultrasound are decreased by the 5-HT agonist mCPP (Beckett, et al. 1996).  Furthermore, 

treatment with the MAOI phenelzine decreased flight behavior in the mouse defense battery 

test, and this was mostly apparent after chronic compared to acute treatment (Griebel, et al. 

1998). In our study, we have performed a long term, rather than a short term, MAOI treatment 
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to optimally enhance 5-HT neurotransmission via the desensitization of 5-HT1A autoreceptors 

(Mongeau, et al. 1997), which were found to be hypersensitive in VMAT2sert-cre mice (Fig 5).  

 

In relation with depression, it is generally believed that a reduced brain 5-HT tone 

results in depressed-like behaviors in escape-related models of depression such as the TST or 

the forced swim test (FST). However, although 5-HT is necessary for the action of 

antidepressant drugs in these models, 5-HT depletion with PCPA generally fails to alter 

baseline immobility (Cryan, et al. 2005; O'Leary, et al. 2007). In contrast, depleting 

catecholamines in adult mice strongly increases baseline immobility in the TST (O'Leary, et 

al. 2007). Constitutive knock-downs of VMAT2 (VMAT2 +/-), which reduces the release of 

all monoamines, also results in an increased immobility in the FST and the TST (Fukui, et al. 

2007). However, the present observation that selective deletion of VMAT2 in serotonergic 

neurons decreased, rather than increased, immobility in the TST, together with previous 

observation (Savelieva, et al. 2008) on TPH1/TPH2-KO mice subjected to the FST, indicate 

that a depletion of 5-HT is insufficient to induce depression-like behaviors in such escape-

related tests.  

Furthermore, the antidepressant-like effect observed in the TST in VMAT2sert-cre mice 

might not be paradoxical considering that antidepressant drugs exert their effect in the TST 

after acute rather than chronic treatment (Cryan, et al. 2005). It is important to emphasize here 

that although chronic treatments increase 5-HT neurotransmission, acute administrations do 

not (Mongeau, et al. 1997). The transient surges of extracellular 5-HT levels, associated with 

acute antidepressant drugs, trigger strong inhibition of both 5-HT neuronal firing and release 

through negative autoreceptors feedback (Auerbach, et al. 1995; Hajos, et al. 1995; Hervas 

and Artigas 1998; Hjorth and Auerbach 1994).  

 

Conclusion and perspectives  

 

Genetic invalidation of VMAT2 in 5-HT neurons provides an interesting model to test the 

function of endogenous 5-HT release in normally developed 5-HT raphe neurons. Using this 

model we show that decrease of 5-HT results in an anxiolytic profile in a conflict test, 

contrasting with an increase in acute stress or innate fear stimulus-induced escape-like 

behaviors. Chronic treatment with a MAOI prevented the behavioral abnormality of 

VMAT2sert-cre mice in terms of defense to an innately aversive stimulus. Interestingly, flight 

reactions have often been used in validated models of panic disorders (Griebel, et al. 1996) 
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and chronic MAOIs are well known to be effective anti-panic agents (Bakish, et al. 1993). 

Incidentally, these data address new questions as to whether extrasynaptic or non-vesicular 5-

HT release mechanisms might be involved in the therapeutic effects of this class of 

antidepressant drugs. 
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Figure Legends  

 

Fig. 1 – Conditional ablation of the Vmat2 gene 

Schematic representation of the wild-type, targeted and mutated Vmat2 alleles. Two loxP sites 

and a neomycin-selectable marker flanked by FRT sites were inserted by homologous 

recombination into the introns flanking the first Vmat2 coding exon. Correct targeting event in 

one positive ES cell clone was evaluated by Southern blotting with a probe directed against 

the neomycin sequence after hydrolysis with four different restriction enzymes. The location 

of the restriction sites is indicated on the targeted allele (N, NsiI; Sc, ScaI; Sp, SpeI; S, SacI). 

Theoretical sizes of the fragments (in kb) are indicated in brackets. The neomycin cassette 

was subsequently excised in vivo by Flp-mediated recombination to produce the floxed allele.  

 

Fig. 2 - Distribution of VMAT2 and serotonergic markers in VMAT2sert-cre mice vs 

control mice.  

A - VMAT2 immunostaining shows the major sites of VMAT2 expression in control  and 

VMAT2sert-cre mice. Coronal sections at comparable levels in the raphe, the locus coeruleus, 

the substantia nigra, and the hypothalamus from P7 mice. VMAT2 immunostaining is 

abolished in the raphe neurons of the VMAT2sert-cre mice compared to control mice, whereas 

immunostaining is unchanged in the noradrenergic, the dopaminergic or the histaminergic 

neurons in the other brain areas. B - A drastic depletion of 5-HT contents is visible with 

immunohistochemistry in both the raphe and the forebrain of VMAT2sert-cre mice compared to 

control mice. A faint 5-HT immunoreactivity remains visible in the raphe neurons 

(arrowhead) of VMAT2sert-cre mice. C - Tryptophan hydroxylase 2 in situ hybridization shows 

the distribution of neurons in the dorsal raphe of VMAT2sert-cre mice and the histogram shows 

the unchanged density of positive cells compared to controls (values are mean density on a 

surface of 784 µm2, error bars=S.E.M.; n=5). 5-HT transporter immunohistochemistry shows 

labeled axons in the hippocampus of VMAT2sert-cre mice with normal appearance, and there 

was no significant change in the density of fibers in the stratum moleculare of the dentate 

gyrus compared to controls (values are mean intersecting fibers on a surface of 0.462 mm2, 

error bars=S.E.M.; n=5-6). 
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Fig. 3 –Tissue levels of monoamines in the brain and the periphery 

A - Tissue levels of 5-HT and 5-HIAA were determined in various dissected brain areas from 

adult control (open bars) and VMAT2sert-cre mice (black bars). There was a highly significant 

decrease in 5-HT levels in all examined brain areas. ***: P<0.0001 ; Student’s t-test ; error 

bars=S.E.M.; n=5-6. B - Tissue levels of NA in the cortex and the hippocampus and DA in 

the striatum. There was no change of NA in the cortex but a small reduction in the 

hippocampus, while striatal DA levels were found unchanged using the Student’s t-test; n = 5-

6, **; P<0.01. C - Levels of 5-HT in the gut and in the blood. There were no changes in the 

gut, whereas 5-HT was significantly decreased in blood ***: P<0.0001; Student’s t-test; n=5-

8.  

   

Fig. 4 – Uptake and release of [3H] 5-HT using synaptosome preparations obtained from 

whole brain in controls, SERTcre/+ and VMAT2sert-cre mice.  

A - The release of endogenous 5-HT evoked with varying concentration of potassium in 

synaptosomes from WT mice was not observed in synaptosomes from VMAT2sert-cre  mice 

(n=3). B - [3H]5-HT uptake in VMAT2sert-cre or reserpine-treated (0.1 µM) synaptosomes 

compared to WT or SERTcre/+ synaptosomes. There was less total uptake in synaptosomes 

from VMAT2sert-cre mice or from WT mice treated with the VMAT inhibitor reserpine (Vmax; 

VMAT2sert-cre = 2.0 ± 0.1 fmol/min, reserpine = 2.6 ± 0.07, mean ± S.E.M., n = 3) compared 

to synaptosomes from WT or SERTcre/+ mice (Vmax: control = 6.8 ± 0.5 fmol/min; SERTcre/+ 

= 5.5 ± 0.3, n = 3). There were no significant changes (using one-way Anova) in the Km 

values between groups (WT = 18.8 ± 4.5 nM; VMAT2sert-cre = 13.5 ± 3.2 nM; SERTcre/+ = 

12.7 ± 3 nM; reserpine = 12.25 ± 1.4 nM; means ± S.E.M., n = 3. C – The concentration 

response curve of the MDMA-induced [3H]5-HT release was slightly shifted to the left in 

preloaded synaptosomes from VMAT2sert-cre mice or reserpine-treated synaptosomes. D- 

There were no major changes in potassium-induced [3H]5-HT release between the various 

synaptosome preparations in conditions weakly dependent on calcium, n=3. E- In conditions 

in which potassium-induced release is fully dependent on the presence of calcium in the 

incubation buffer (brief stimulation in absence of pargyline, WT synaptosomes top panel) 

there was no significant release in preloaded synaptosomes from VMAT2sert-cre mice (bottom 

panel). 
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Fig. 5 – [35S]GTP-γ-S binding in the dorsal raphe nucleus and the hippocampus  after 

stimulation with the 5-HT1A agonist 5-carboxamidotryptamine (5-CT). A - There was an 

increased coupling efficiency as shown by more agonist-induced [35S]GTP-γ-S binding in the 

raphe of VMAT2sert-cre (open circles) versus control mice (filled circles). Two-way Anova 

indicated a significant (P < 0.001) main effect of the genotype [F(1,35) = 19], of 5-CT 

concentration [F(3,35) = 34], and a marginally significant (P = 0.06) genotype x 5-CT 

interaction [F(3,35) = 2.8]. Post-hoc Bonferroni’s tests indicated significant differences at 

specific concentrations * P < 0.05, ** P < 0.01. B - There were no changes in the 

hippocampus. Error bars=S.E.M., n=6. 

 

Fig. 6 - The VMAT2sert-cre mutation decreased anxiety and locomotion but increased 

reactivity to stress. A - There was no change in the time spent in the open arms or in the 

number of open arm entries, but there was a significant decrease in the total number of entries 

in VMAT2sert-cre mutants compared to control mice. B - There was a significant decrease of 

basal locomotor activity in the VMAT2sert-cre mutants as measured over a 15 min period in an 

actimeter. C - The latency to feed when mice were placed in an unfamiliar cage, but not home 

cage, was decreased in VMAT2sert-cre mutants. D - Tail suspension test shows an increase in 

the time spent struggling, and decreased immobility time in VMAT2sert-cre mice compared to 

control mice. Student’s t-tests, * P < 0.05, **P < = 0.01. Error bars=S.E.M., n=5-12. 

 

Fig. 7 - Inverse relationship between brain tissue levels of 5-HT and aversive ultrasound-

induced flight behaviors in VMAT2sert-cre mice. A - There was an enhancement of flight 

behaviors in reaction to the aversive ultrasound (1 min fast sweep 17-20 kHz, 85 dB) in 

VMAT2sert-cre mice compared to control mice, which was reversed by a chronic treatment 

with pargyline (70 mg/kg x day for 3 weeks). * P < 0.01 using Bonferonni’s test. Error 

bars=S.E.M., n=3-5. B-C’ - 5-HT-immunoreactive neurons were observed in the raphe area 

(B) and positive fibers were observed in dorsolateral periaqueductal gray areas in sections 

from VMAT2sert-cre treated with pargyline (C). This staining was absent in VMAT2sert-cre 

treated with saline (B’ and C’). D - Chronic pargyline reversed the severe 5-HT depletion 

occurring in VMAT2sert-cre mice, and markedly increased 5-HT levels (in the hippocampus). 

Bonferonni’s test indicated a significant decrease in 5-HT levels in VMAT2sert-cre mutants 

compared to control mice (### P < 0.001, # P < 0.05), and significant increases of 5-HT 

levels after pargyline (*** P < 0.001) compared to control mice. 
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