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Abstract

By using stochastic calculus for two-parameter processes and chaos expansion into
multiple Wiener-Itô integrals, we define a 2D-stochastic current over the Brownian sheet.
This concept comes from geometric measure theory. We also study the regularity of the
stochastic current with respect to the randomness variable in the Watanabe spaces and
with respect to the spatial variable in the deterministic Sobolev spaces.

2000 AMS Classification Numbers: 60G15, 60G18, 60H05, 76M35, 60H05
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1 Introduction

The purpose of this paper is to study two-dimensional stochastic currents. The concept
of current comes from geometric measure theory. Let us briefly recall a few definitions on
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deterministic currents used in the sequel. More informations can be found in [4], [14], [18],
[9].

We shall denote the Euclidean norm and scalar product in R
d (d is fixed throughout

the paper) by |·| and 〈·, ·〉 respectively. We shall also need the space Λ2R
d of 2-vectors, its

dual space Λ2
R
d of 2-covectors, and the duality between them, still denoted by 〈·, ·〉. If we

represent vectors and covectors in the standard basis (the summations are extented from 1
to d)

v =
∑

i<j

vij ei ∧ ej , w =
∑

i<j

wij e
i ∧ ej

then
〈w, v〉 =

∑

i<j

wijv
ij .

Notationally, we prefer to write the covectors in the first argument of 〈., .〉 since later on the
notation for stochastic integrals is more natural. The norm of 2-vectors and 2-covectors is
also defined as

|v|2 =
∑

i<j

(
vij
)2
, |w|2 =

∑

i<j

(wij)
2 .

Notice that for all v1, v2 ∈ R
d and w1, w2 ∈ R

d, the duality between the 2-vector

v1 ∧ v2 =
∑

i<j

[
(v1)i (v2)j − (v1)j (v2)i

]
ei ∧ ej

and the 2-covector w1 ∧ w2 similarly defined, is given by

〈
w1 ∧ w2, v1 ∧ v2

〉
= det

(〈
vi, w

j
〉)
.

Similarly we have

|v1 ∧ v2|2 = det (〈vi, vj〉) = |v1|2 |v2|2 − 〈v1, v2〉2 .

Let Dk be the space of all infinitely differentiable and compactly supported k-forms on R
d.

A k-dimensional current is a linear continuous functional on Dk. We denote by Dk the
space of k-currents. In this paper we are only interested in the cases k = 1, 2, so we recall
a few corresponding notations. Let ϕ (resp. ψ) be an element of D1 (resp. D2). We shall
write them as

ϕ =
d∑

i=1

ϕi dx
i, ψ =

∑

i<j

ψij dx
i ∧ dxj

where ϕi and ψij are infinitely differentiable and compactly supported functions on R
d.

Typical examples of 1-currents are those induced by regular curves (Xt)t∈[0,T ] in R
d:

ϕ 7→ S(ϕ) :=

∫ T

0

〈
ϕ (Xt) , Ẋt

〉
dt (1)
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while typical examples of 2-currents are given by regular surfaces (f (t, s))(t,s)∈A in R
d,

where A is a Borel set in R
2:

ψ 7→ T (ψ) :=

∫

A

〈
ψ ◦ f, ∂f

∂t
∧ ∂f

∂s

〉
dtds

=

∫

A

∑

i<j

(ψij ◦ f)
〈
dxi ∧ dxj , ∂f

∂t
∧ ∂f

∂s

〉
dtds

=

∫

A

∑

i<j

(ψij ◦ f)
(
∂fi

∂t

∂fj

∂s
− ∂fj

∂t

∂fi

∂s

)
dtds. (2)

The generalization of the previous example of 1-current to the stochastic case has
been the object of previous research in the recent literature. We refer to [5], [6], [7], [8] for the
study of 1D-stochastic currents over the Brownian motion or over the fractional Brownian
motion using various interpretation (Itô, Skorohod, Stratonovich etc) for the stochastic
integral appearing in the definition of the stochastic current. We will investigate in our
paper the 2D-current in the stochastic context using the theory of stochastic integration for
two -parameter stochastic processes which has been developed in the eighties (see e.g. [2],
[10], [15]).

Let (Ws,t)(t,s)∈[0,1]2 be a (2, d)-Brownian sheet, with d > 2. By this we mean a

centered Gaussian d-dimensional process with 2-dimensional time parameter (t, s) ∈ [0, 1]2

such that
Cov

(
W i

s,t,W
j
s′,t′

)
= δij (s ∧ t)

(
s′ ∧ t′

)

where δij denotes the Kronecker symbol. Note that the functional (1) defines a vector
valued distribution ∫ 1

0
∆(x−Xt)dXt

with ∆ the Dirac distribution and the meaning of ∆(x−Xt) will be clarified later. Given
(2) the correct multiparameter stochastic integrals to be studied for the theory of currents
are formally written as

Tij (x) :=

∫

[0,1]2
∆(x−Ws,t) ∂tW

i
s,t∂sW

j
s,t

with 1 ≤ i 6= j ≤ d. An important question is how to define the above stochastic integral.
At this level, there is no restriction to take i = 1, j = 2. Thus we need to define

and to study study the mapping

T (x) :=

∫

[0,1]2
∆(x−Ws,t) ∂tW

1
s,t∂sW

2
s,t. (3)

This is actually the aim of this work: to give a meaning to the integral (3) and to study
its regularity in the deterministic Sobolev spaces H−r(Rd;Rd) as a function of x and in
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the Sobolev-Watanabe spaces D
α,2 as a function of ω. As we mentioned above, the idea

to define the stochastic integral (3) comes from the stochastic integration theory for two-
parameter processes. We will explain it in details in Section 3. This integral also involves the
divergence (Skorohod) integral with respect to the Brownian sheet and multiple Wiener-Itô
integrals. Therefore, before defining (3) we will recall in the next section some elements of
the Malliavin calculus for Gaussian processes. We will find the following answer: although
the definition of the 2D -stochastic current is substantially different from the 1D-case, the
2D-current inherits the regularity of the one-dimensional case, with respect to ω as well
as with respect to x. That means the following: the integral (3) belongs to the Sobolev
-Watanabe space D−α,2 for every α > 1

2 and to the Sobolev space H−r(R;R) for r > 1
2 . We

notice the same interesting phenomenon already remark in the one-dimensional case (see
[8]): the order of regularity of (3) is the same with respect to ω and with respect to x.

Our paper is structured as follows: Section 2 contains some preliminaries on multiple
Wiener-Itô integrals and the divergence integral. In Section 3 we explain how we arrive to
the our definition of the 2D -stochastic currents, making links with the stochastic calculus
for two-parameter processes. In Sections 4 and 5 we analyze the 2D-stochastic current over
the Brownian sheet in Watanabe spaces and Sobolev spaces respectively. Finally in Section
6 we treat the 2D -stochastic current over the d -dimensional Brownian sheet.

2 Malliavin calculus, chaos expansion and Sobolev-Watanabe

spaces

Here we describe the elements from stochastic analysis that we will need in the paper.
ConsiderH a real separable Hilbert space and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process
on a probability space (Ω,A, P ), that is a centered Gaussian family of random variables such
that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H. Denote by In the multiple stochastic integral with respect
to B (see [16]). This In is actually an isometry between the Hilbert space H⊙n(symmetric
tensor product) equipped with the scaled norm 1√

n!
‖ · ‖H⊗n and the Wiener chaos of order

n which is defined as the closed linear span of the random variables Hn(B(ϕ)) where ϕ ∈
H, ‖ϕ‖H = 1 and Hn is the Hermite polynomial of degree n ≥ 1

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as: for m,n positive integers,

E (In(f)Im(g)) = n!〈f, g〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (4)

It also holds that
In(f) = In

(
f̃
)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xx) =
1
n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).
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We recall that any square integrable random variable which is measurable with
respect to the σ-algebra generated by B can be expanded into an orthogonal sum of multiple
stochastic integrals

F =
∑

n≥0

In(fn) (5)

where fn ∈ H⊙n are (uniquely determined) symmetric functions and I0(f0) = E [F ].
Let L be the Ornstein-Uhlenbeck operator

LF = −
∑

n≥0

nIn(fn)

if F is given by (5).
For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D

α,p as the closure
of the set of polynomial random variables with respect to the norm

‖F‖α,p = ‖(I − L)
α
2 ‖Lp(Ω)

where I represents the identity. In this way, a random variable F as in (5) belongs Dα,2 if
and only if ∑

n≥0

(1 + n)α‖In(fn)‖2L2(Ω) =
∑

n≥0

(1 + n)αn!‖fn‖2H⊗n <∞. (6)

We denote by D the Malliavin derivative operator that acts on smooth functions of the
form F = g(B(ϕ1), . . . , B(ϕn)) (g is a smooth function with compact support and ϕi ∈ H)

DF =
n∑

i=1

∂g

∂xi
(B(ϕ1), . . . , B(ϕn))ϕi.

The operator D is continuous from D
α,p into D

α,p (H) . The adjoint of D is denoted by δ and
is called the divergence (or Skorohod) integral. It is a continuous operator from D

α,p (H)
into D

α,p. For adapted integrands, the divergence integral coincides to the classical Itô
integral. We will use the notation

δ(u) =

∫ T

0
usdBs.

Let u be a stochastic process having the chaotic decomposition us =
∑

n≥0 In(fn(·, s)) where
fn(·, s) ∈ H⊗n for every s. One can prove that u ∈ Dom δ if and only if f̃n ∈ H⊗(n+1) for
every n ≥ 0, and

∑∞
n=0 In+1(f̃n) converges in L2(Ω). In this case,

δ(u) =

∞∑

n=0

In+1(f̃n) and E|δ(u)|2 =

∞∑

n=0

(n+ 1)! ‖f̃n‖2H⊗(n+1) . (7)

We will also recall the integration by parts formula

Fδ(u) = δ(Fu) + 〈DF, u〉H (8)
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which holds for F ∈ D
α,2, u ∈ D

α,2(H) and Fu ∈ D
α,2(H). In the present work we will

consider divergence integral with respect to a Brownian motion in R
d. Throughout this

paper we will denote by ps(x) the Gaussian kernel of variance s > 0 given by ps(x) =
1√
2πs

e−
x2

2s , x ∈ R and for x = (x1, . . . , xd) ∈ R
d by pds(x) =

∏d
i=1 ps(xi).

3 Definition of the 2D- stochastic current

The idea to define a stochastic integral (3) comes from the stochastic calculus for two-
parameter martingales developed in the eighties. Let us briefly recall the context. Consider
a two- parameter Wiener process (Ws,t)s,t∈[0,1] and let us express the random variable W 2

s,t

(here Ws,t is one dimensional random variable and W 2
s,t is its square; we mention this in

order to avoid the confusion with the components of the two-dimensional Brownian sheet
that appears in Section 2) as a stochastic integral plus a deterministic integral in the spirit
of the classical Itô formula. Let t, s ∈ [0, 1]0 be fixed and let

0 = t0 < t1 < . . . tn = t and 0 = s0 < s1 < . . . sm = s

be two partitions of the intervals [0, t] and [0, s] respectively. For fixed t, we can write

W 2
s,t = 2

m−1∑

i=0

Wsi,t

(
Wsi+1,t −Wsi,t

)
+

m−1∑

i=0

(
Wsi+1,t −Wsi,t

)2
.

It is standard to prove that the last summand
∑m−1

i=0

(
Wsi+1,t −Wsi,t

)2
converges in L2(Ω)

as m → ∞ to st which, in some sense, constitutes the quadratic variation of the two-
parameter martingale Ws,t. Let us analyze the first summand. Writing g(t) = g(0) +∑n−1

j=0 (g(tj+1)− g(tj)) we get

m−1∑

i=0

Wsi,t

(
Wsi+1,t −Wsi,t

)
=

m−1∑

i=0

m−1∑

j=0

Wsi,tj+1

(
Wsi+1,tj+1 −Wsi+1,tj −Wsi,tj+1 +Wsi,tj

)

+

m−1∑

i=0

m−1∑

j=0

(
Wsi,tj+1 −Wsi,tj

) (
Wsi+1,tjWsi,tj

)
.

The first summand above usually converges to the stochastic integral with respect to
the Wiener sheet

∫ s
0

∫ t
0 Wu,vdWu,v (see [10] or [15] for the definition of the integral and the

proof of the convergence; but the stochastic integral can be also understood as the Skorohod
integral δ

(
W·,·1[0,s]×[0,t](·, ·)

)
with respect to the Gaussian process W ). The summand∑m−1

i=0

∑m−1
j=0

(
Wsi,tj+1 −Wsi,tj

) (
Wsi+1,tjWsi,tj

)
is a specific two-parameter case term and

it converges, for fixed s, t ∈ [0, 1] as m,n→ ∞ to a random variable denoted M̃s,t such that
the stochastic process (M̃s,t)s,t∈[0,1] is a two-parameter martingale (we refer again to [10] or
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[15] for details). A similar term M̃ appears also in the stochastic calculus for the fractional
Brownian sheet (see [19]). The stochastic process M̃ can be interpreted as

M̃s,t =

∫ s

0

∫ t

0
duWu,vdvWu,v.

We refer to [19] for a discussion in this sense. In terms of the divergence integral it can be
written as

M̃s,t = δ
(2)
(u1,v1),(u2,v2)

(
1⊗2
[0,s]×[0,t]((u1, v1), (u2, v2))1[0,u1](u2)1[0,v2](v1))

)
.

Let us explain the above notation. The symbol δ(2) means the double (iterated) Skorohod
integral with respect to the Wiener sheet W . The indices (u1, v1), (u2, v2) in the formula

δ
(2)
(u1,v1),(u2,v2)

means that the double Skorohod integral acts with respect to the two variables

(u1, v1) and (u2, v2).
More generally, if (Xs,t)s,t∈[0,1] is an adapted two-parameter process (let us be vague

on this concept because several definitions of the adaptability exist in the two-parameter
context; we refer again to [10], [15] or [2]), then the sequence

m−1∑

i=0

n−1∑

j=0

Xsi,tj

(
Wsi,tj+1 −Wsi,tj

) (
Wsi+1,tj −Wsi,tj

)

converges to the integral
∫ t

0

∫ s

0
Xu,vdMu,v =

∫ t

0

∫ s

0
Xu,vduWu,vdvWu,v

which can be also written as a double Skokorod integral in the following way (assuming
that X is regular enough in the Malliavin calculus sense)

∫ t

0

∫ s

0
Xu,vduWu,vdvWu,v = δ(2)

(
Xu1,v21[0,u1](u2)1[0,v2](v1)

)

where δ(2) denotes the double Skorohod integrals which as above acts with respect to the
variables (u1, v1), (u2, v2) ∈ [0, 1]2.

The above discussion motivate the following definition of the 2D stochastic current.

Definition 1 Let (Ws,t)s,t∈[0,1] be a Wiener sheet and for every x ∈ R, s, t ∈ [0, 1] consider
the functional ∆(x −Ws,t) which is a distribution in the Watanabe sense. We define the
stochastic current over the Wiener sheet W as the mapping

x→ ξ(x) := δ
(2)
(u1,v1),(u2,v2)

(
∆(x−Wu1,v2)1[0,u1](u2)1[0,v2](v1)

)
. (9)

The meaning of this definition will be clarified in the sequel. The term ∆(x−Wu1,v2)
is a distribution in the Sobolev-Watanabe spaces. In the rest of our paper we will analyze
the mapping ξ introduced above from different perspectives: first as a functional of the
randomness ω and then as a function of x ∈ R

d.
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4 The 2D-stochastic current in Watanabe spaces

Let us first analyze the function ξ(x), for fixed x ∈ R, as a distribution in the Watanabe (or
Sobolev-Watanabe) sense (see Section 2). Concretely, we will prove in this section that for
every x the function ξ(x) belongs to the Watanabe space D

α,2 for every α > −1
2 . We also

prove that ξ(x) can be approximated, under the norm of the space D
α,2 by some Riemann

sums. In this way, we make the link with the discussion in the previous section.

4.1 Regularity of the 2D stochastic current in the Watanabe spaces

Our method to prove the regularity of the functional (9) is based on the Wiener-Itô chaos
decomposition. Let (Xs)s∈S be an isonormal Gaussian process with covariance

EXsXt := R(s, t) s, t ∈ S.

The set S is a subset of RN . We will use the following decomposition of the delta Dirac
function (see Nualart and Vives [17], Imkeller et al. [11], Eddahbi et al. [3]) into orthogonal
sum of multiple Wiener-Itô integrals

∆(x−Xs) =
∑

n≥0

R(s)−
n
2 pR(s)(x)Hn

(
x

R(s)
1
2

)
In

(
1⊗n
[0,s]

)
(10)

:=
∑

n≥0

axn(s)In

(
1⊗n
[0,s]

)
, x ∈ R, s ∈ S

where R(s) := R(s, s), pR(s) is the Gaussian kernel of variance R(s), Hn is the Hermite
polynomial of degree n and In represents the multiple Wiener-Itô integral of degree n with
respect to the Gaussian process X as defined in the previous section. We also denoted by

axn(s) = R(s)−
n
2 pR(s)(x)Hn

(
x

R(s)
1
2

)
(11)

for every s ∈ S, x ∈ R, n ≥ 0.
For X =W = (Ws,t)s,t∈[0,1], the Wiener sheet, we have

∆(x−Wu1,v2) =
∑

m≥0

axm(u1, v2)Im

(
1⊗m
[0,u1]×[0,v2]

)
(12)

where for every u1, v2 ∈ [0, 1],

axm(u1, v2) := (u1v2)
−m

2 pu1v2(x)Hm

(
x√
u1v2

)
. (13)

We will show in the next result that the 2D-stochastic current defined in Definition
1 is well-defined as a distribution in the Watanabe sense.
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Theorem 1 For every x ∈ R the functional ξ(x) defined in Definition 1 belongs to the
Watanabe space D

−α,2 for any α > 1
2 .

Proof: Let x ∈ R be fixed throughout the proof. We will compute first the divergence
integral

δ
(2)
(u1,v1),(u2,v2)

(
∆(x−Wu1,v2)1[0,u1](u2)1[0,v2](v1)

)

with respect to the variables (u1, v1) and (u2, v2) belonging to [0, 1]2. Using (12) and the
chaotic form of the divergence integral (7), we will need to symmetrize the function

((x1, y1), (x2, y2), . . . , (xm+1, ym+1), (xm+2, ym+2))

→ axm(xm+1, ym+2)1[xm+2,1](xm+1)1[0,ym+2](ym+1)1
⊗m
[0,xm+1]×[0,ym+2]

((x1, y1), (x2, y2), . . . , (xm, ym))

with respect to the m+ 2 variables

(x1, y1), (x2, y2), . . . , (xm+, ym+2).

The above function is already symmetric in its firstm variables. Noting that for any function
f(a1, a2, . . . , am, x, y) which is symmetric with respect to a1, .., am, its symmetrization with
respect to its all m+ 2 variables is given by

f̃(a1, .., am+2) =
1

(m+ 1)(m+ 2)

m+2∑

k,l=1;k 6=l

f(a1, .., âk, .., âl, ..am+2, ak, al) (14)

(the notation â means that the variable a is missing above) we get, for every x ∈ R,

ξ(x) =
∑

m≥0

1

(m+ 1)(m+ 2)
Im+2

m+2∑

k,l=1;k 6=l

axm(xk, yl)1[0,xk ]×[0,yl](xl, yk)

×1⊗m
[0,xk]×[0,yl]

(
(x1, y1), (x2, y2), . . . , (xk, yk), (xl, yl), . . . , (xm+2, ym+2)

)

=
∑

m≥0

Im+2
1

(m+ 1)(m+ 2)

m+2∑

k,l=1;k 6=l

axm(xk, yl)

1⊗m+1
[0,xk]

(x1, .., xk, .., xm+2)1
⊗m+1
[0,yl]

(y1, .., yl, .., ym+2) (15)

where (xk, yk) means, as above, that the variable (xk, yk) is missing.
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Using (6), the D
α,2 norm of the random distribution ξ(x) can be written as

‖ξ(x)‖2α,2

=
∑

m≥0

(1 +m)α(m+ 2)!‖


 1

m+ 1

1

m+ 2

m+2∑

k,l=1;k 6=l

axm(xk, yl)1[0,xk]×[0,yl](xl, yk)

×1⊗m
[0,xk]×[0,yl]

(
(x1, y1), (x2, y2), . . . , (xk, yk), (xl, yl), . . . , (xm+2, ym+2)

))
‖L2(([0,1]2)m+2)

=
∑

m≥0

(1 +m)α(m+ 2)!

(
1

m+ 1

1

m+ 2

)2 m+2∑

k,l=1;k 6=l

m+2∑

k′,l′=1;k′ 6=l′

∫

([0,1]2)m+2

dx1dy1..dxm+2dym+2

m+2∑

k,l=1;k 6=l

axm(xk, yl)1
⊗m+1
[0,xk]

(x1, .., xk, .., xm+2)1
⊗m+1
[0,yl]

(y1, .., yl, .., ym+2)

m+2∑

k′,l′=0;k′ 6=l′

axm(xk′ , yl′)1
⊗m+1
[0,xk′ ]

(x1, .., xk′ , .., xm+2)1
⊗m+1
[0,yl′ ]

(y1, .., yl′ , .., ym+2).

Notice that if k 6= k′, the terms 1[0,xk](xk′) and 1[0,xk′ ]
(xk) appear in the above expression.

Therefore, all the summand with k 6= k′ will vanish. Similarly, the summands with l 6= l′

will vanish. Consequently,

‖ξ(x)‖2α,2 =
∑

m≥0

(1 +m)αm!
1

m+ 1

1

m+ 2

m+2∑

k,l=1;k 6=l

∫

([0,1]2)m+2

dx1dy1..dxm+2dym+2

×(axm(xk, yl))
21⊗m+1

[0,xk]
(x1, .., xk, .., xm+2)1

⊗m+1
[0,yl]

(y1, .., yl, .., ym+2)

=
∑

m≥0

(1 +m)αm!
1

m+ 1

1

m+ 2

m+2∑

k,l=1;k 6=l

∫ 1

0
dxk

∫ 1

0
dyl(a

x
m(xk, yl))

2

×
∫

[0,xk]m+1

dx1...dxk..dxm+2

∫

[0,yl]m+1

dy1...dyl..dym+2

=
∑

m≥0

(1 +m)αm!
1

m+ 1

1

m+ 2

m+2∑

k,l=1;k 6=l

∫ 1

0
dxk

∫ 1

0
dyl(a

x
m(xk, yl))

2xm+1
k ym+1

l .

Using the expression (13) of the coefficient axm we have

(axm(xk, yl))
2xm+1

k ym+1
l =

(
pxkyl(x)Hm

(
x√
xkyl

))2

xkyl.

Therefore

‖ξ(x)‖2α,2 =
∑

m≥0

(1 +m)αm!

∫ 1

0

∫ 1

0
dudv

(
puv(x)Hm

(
x√
uv

))2

uv.

10



We use the identity, for every y ∈ R,

Hn(y)e
− y2

2 = (−1)[n/2]2
n
2

2

n!π

∫ ∞

0
une−u2

g(uy
√
2)du (16)

where g(r) = cos(r) if n is even and g(r) = sin(r) if n is odd. Since |g(r)| ≤ 1, we have the
bound ∣∣∣∣Hn(y)e

− y2

2

∣∣∣∣ ≤ 2
n
2

2

n!π
Γ(
n+ 1

2
) := cn. (17)

This implies that

‖ξ(x)‖2α,2 ≤ 1

2π

∑

m≥0

(1 +m)αm!c2m

∫ 1

0

∫ 1

0
dudv(uv)

1
2

=
1

2π

4

9

∑

m≥0

(1 +m)αm!c2m

and this is finite for every α < −1
2 because, by Stirling’s formula, m!c2m (this has been

already used in [17], [3], [1]) behaves as n−
1
2 .

Remark 1 We remark that the regularity of the functional ξ(x) in the Watanabe sense is
the same as in the one-parameter case (see [8]). This implies in particular that it is not a
random variable, but a distribution.

Remark 2 Note that the integration interval for the stochastic integral dW in the definition
of ξ(x) is the entire interval [0, 1]. In the one-parameter case (see [8]), we need to consider
the quantity ξ(x) =

∫ 1
a ∆(x − Bs)dBs with a > 0 in order to obtain that ξ(x) ∈ D

α,2 with
α < −1

2 .

4.2 Approximation of 2D-stochastic current in Watanabe spaces

Let us introduce the Riemann sum

TN,M (x) =
N−1∑

i=0

M−1∑

j=0

∆(x−Wsi,tj )
(
Wsi+1,tj −Wsi,tj

) (
Wsi,tj+1 −Wsi,tj

)
. (18)

Remark 3 It is analogous to prove that TN,M (x) belongs to the Sobolew-Watanabe space
D
α,2 for every α < −1

2 . This is also a consequence of the proof of Theorem 2 below.

Following the discussion at the beginning of Section 3 it is natural to expect that
TN,M (x) converges as M,N → ∞ to ξ(x) for every x ∈ R. We will actually show that the
sequence (18) approximates ξ(x) in the norm of the Watanabe space D

−α,2 with α > 1
2 .
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Theorem 2 For every x ∈ R, the sequence TN,M (x) given by (18) converges to ξ(x) as
M,N → ∞ in the norm ‖ · ‖α,2 for any α > 1

2 .

Proof: Fix again x ∈ R. The first step is to express TN,M using multiple Wiener-Itô
integrals. We have, by the integration by parts formula (8) and the symmetrization formula
(14)

TN,M (x) = δ(2)




N−1∑

i=0

M−1∑

j=0

∆(x−Wsi,tj )1[0,si]×[tj ,tj+1](u1, v1)1[si,si+1]×[0,tj ](u2, v2)




=
N−1∑

i=0

M−1∑

j=0

axm(si, tj)

×
∑

m≥0

Im+2

(
1⊗m
[0,si]×[0,tj ]

((x1, y1), ..., (xm, ym))1[0,si]×[tj ,tj+1](u1, v1)1[si,si+1]×[0,tj ](u2, v2)
)

=
N−1∑

i=0

M−1∑

j=0

axm(si, tj)
∑

m≥0

Im+2

(
1

(m+ 1)(m + 2)

m+2∑

k,l=1;k 6=l

1⊗m
[0,si]×[0,tj ]

((x1, y1), .., (xk , yk), (xl, yl), .., (xm+2, ym+2))

1[0,si]×[tj ,tj+1](xk, yk))1[si,si+1]×[0,tj ](xl, yl)
)
. (19)

Taking into account relation (19) and its analogous for ξ(x) (see the proof of Theorem 1,
formula 15) we obtain

‖TN,M (x)− ξ(x)‖2α,2 =
∑

m≥0

(3 +m)α
m!

(m+ 1)(m + 2)

m+2∑

k,l=1;k 6=l

∫

[0,1]2m
dx1..dxm+2dy1..dym+2




N−1∑

i=0

M−1∑

j=0

axm(si, tj)1
⊗m+1
[0,si]

(x1, .., xk, .., xm+2)1[si,si+1](xk)1
⊗m+1
[0,tj ]

(y1, .., yl, ..ym+2)

−axm(xk, yl)1
⊗m+1
[0,xk]

(x1, .., xk, .., xm+2)1
⊗m+1
[0,yl]

(y1, .., yl, ..ym+2)
)2

12



and as in the proof of Theorem 1

‖TN,M (x)− ξ(x)‖2α,2 =
∑

m≥0

(3 +m)α
m!

(m+ 1)(m + 2)

m+2∑

k,l=1;k 6=l


N−1∑

i=0

M−1∑

j=0

(axm(si, tj))
2sm+1

i (si+1 − si)t
m+1
j (tj+1 − tj)

−2

N−1∑

i=0

M−1∑

j=0

axm(si, tj)s
m+1
i tm+1

j

∫ si+1

si

∫ tj+1

tj

dxkdyla
x
m(xk, yl)

+

∫ 1

0

∫ 1

0
dxkdyl(a

x
m(xk, yl))

2xm+1
k ym+1

l

)

=
∑

m≥0

(3 +m)αm!




N−1∑

i=0

M−1∑

j=0

(axm(si, tj))
2sm+1

i (si+1 − si)t
m+1
j (tj+1 − tj)

−2
N−1∑

i=0

M−1∑

j=0

axm(si, tj)s
m+1
i tm+1

j

∫ si+1

si

∫ tj+1

tj

dudvaxm(u, v)

+

∫ 1

0

∫ 1

0
dudv(axm(u, v))2(uv)m+1

)
.

Now we claim that, for every fixed m ≥ 0, the sequence



N−1∑

i=0

M−1∑

j=0

(axm(si, tj))
2sm+1

i (si+1 − si)t
m+1
j (tj+1 − tj)

−2

N−1∑

i=0

M−1∑

j=0

axm(si, tj)s
m+1
i tm+1

j

∫ si+1

si

∫ tj+1

tj

dudvaxm(u, v) + 2

∫ 1

0

∫ 1

0
dudv(axm(u, v))2(uv)m+1




converges to zero as N,M → ∞. This is true because

N−1∑

i=0

M−1∑

j=0

(axm(si, tj))
2sm+1

i (si+1−si)tm+1
j (tj+1−tj) →N,M→∞

∫ 1

0

∫ 1

0
dudv(axm(u, v))2(uv)m+1

and
N−1∑

i=0

M−1∑

j=0

axm(si, tj)s
m+1
i tm+1

j

∫ si+1

si

∫ tj+1

tj

dudvaxm(u, v) →N,M→∞

∫ 1

0

∫ 1

0
dudv(axm(u, v))2(uv)m+1

using Riemann sums convergence. To conclude the convergence of ‖TN,M (x) − ξ(x)‖2α,2 to

zero for every α > −1
2 it suffices to check that

N−1∑

i=0

M−1∑

j=0

(axm(si, tj))
2sm+1

i (si+1 − si)t
m+1
j (tj+1 − tj) ≤ cm− 1

2 ,
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N−1∑

i=0

M−1∑

j=0

axm(si, tj)s
m+1
i tm+1

j

∫ si+1

si

∫ tj+1

tj

dudvaxm(u, v) ≤ cm− 1
2 ,

and ∫ 1

0

∫ 1

0
dudv(axm(u, v))2(uv)m+1 ≤ cm− 1

2 .

with c > 0 a constant not depending on m. The last bound has been proved before (see the
proof of Theorem 1) and the first two bounds can be obtained analogously using relations
(16) and (17).

5 2D-stochastic currents in deterministic Sobolev spaces

The purpose is this paragraph in to study the mapping (9) as a function of the spatial
variable x ∈ R.

5.1 Regularity in the deterministic Sobolev spaces

We study in this part the regularity with respect to the variable x ∈ R
d of the mapping

given by (9) in the (deterministic) Sobolev spaces H−r(Rd;Rd). This is the dual space
to Hr

(
R
d,Rd

)
, or equivalently the space of all vector valued distributions ϕ such that

∫
Rd

(
1 + |x|2

)−r
|ϕ̂ (x)|2 dx < ∞, ϕ̂ being the Fourier transform of ϕ. Assume first that

d = 1. The case d ≥ 2 will be treated later.
We will recall the following lemma (see [8], Lemma 1).

Lemma 1 Let s = (s1, .., sN ) ∈ [0, 1]N be fixed. The Fourier transform of the function

x→ axm(s) : R → R

is denoted by ax̂m(s) and it is given by

ax̂m(s) = e−
x2

2
|s| (−i)mxm

m!

where |s| = s1...sN .

As a consequence, the Fourier transform with respect to x, denoted in the sequel
∆(x̂−Wu1,v2), of the random distribution ∆(x−Wu1,v2) is given by

∆(x̂−Wu1,v2) =
∑

m

ax̂m(u1, v2)Im

(
1⊗m
[0,u1]×[0,v2]

)
= e−ixWu1,v2 .

14



Proposition 1 The Fourier transform of the function

x→ ξ(x)

is given by

ξ̂(x) = δ
(2)
(u1,v1),(u2,v2)

(
e−ixWu1,v21[0,u1]×[0,v2]

)
.

Proof: Using formula (15) and the expression of the Fourier transform of x → axm from
Lemma 1, we get (to justify the interchange of the order of integration below we refer to
Exercise 3.2.7 in [16])

ξ̂(x) =
∑

m≥0

Im+2
1

(m+ 1)(m+ 2)

m+2∑

k,l=1;k 6=l

ax̂m(xk, yl)

1⊗m+1
[0,xk]

(x1, .., xk, .., xm+2)1
⊗m+1
[0,yl]

(y1, .., yk, .., ym+2)

= δ
(2)
(u1,v1),(u2,v2)

e−
x2

2
u1v2

∑

m≥0

(−i)mxm
m!

Im

(
1⊗m
[0,u1]×[0,v2]

(·)
)

= δ
(2)
(u1,v1),(u2,v2)

(
e−ixWu1,v21[0,u1]×[0,v2]

)
.

Here we used the fact that

e−ixWu1,v2 =
∑

m≥0

(−i)mxm
m!

Im

(
1⊗m
[0,u1]×[0,v2]

(·)
)

which can be obtained using Stroock’s formula (see [8] relation (9)).

Consequently, we obtain the following result:

Theorem 3 For almost all ω, it holds that ξ ∈ H−r(R,R) if r > 1
2

Proof: It is easy to see that

E

∣∣∣ξ̂(x)
∣∣∣
2

=

∫ 1

0
du1

∫ u1

0
du2

∫ 1

0
dv2

∫ v2

0
dv1

∣∣e−ixWu1,v2

∣∣2

=

∫ 1

0
u1du1

∫ 1

0
v2dv2 =

1

4

and consequently

E‖ξ(x)‖H−r =

∫

R

1

1 + x2
E

∣∣∣ξ̂(x)
∣∣∣
2
dx

is finite if and only if r > 1
2 .

Remark 4 We note that, as in the case of 1D -currents, the regularity of (9) is the same
with respect to the space variable x and with respect to the randomness variable ω.
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5.2 Convergence of the Fourier transforms

Here we study the convergence of the sequence TN,M (18) to the 2D-stochastic current (9)
in the Sobolev space. Precisely, we have the following:

Theorem 4 Let TN,M be given by (18). Then as M,N → ∞, the sequence TN,M converges
to ξ in L2(Ω;H−r(R;R)) for every r > 1

2 .

Proof: From (18) it is immediate that

TN,M (x̂) =
N−1∑

i=0

M−1∑

j=0

ei
xWsi,tj

(
Wsi+1,tj −Wsi,tj

) (
Wsi,tj+1 −Wsi,tj

)

where TN,M (x̂) denotes the Fourier transform of x→ TN,M (x). We also know from Propo-
sition 1 that

ξ(x̂) = δ
(2)
(u1,v1),(u2,v2)

(
e−xWu1,v21[0,u1](u2)1[0,v2](v1)

)
.

Then the L2(Ω;H−r(R;R))-norm of the difference TN,M − ξ can be computed as follows

E |TN,M − ξ|2H−r(R;R) = E

∫

R

|TN,M (x̂)− ξ(x̂)|2 (1 + x2)−rdx.

Let us first compute

E |TN,M (x̂)− ξ(x̂)|2

= E

∣∣∣∣∣∣

N−1∑

i=0

M−1∑

j=0

cos(−xWsi,tj )
(
Wsi+1,tj −Wsi,tj

) (
Wsi,tj+1 −Wsi,tj

)

−δ(2)(u1,v1),(u2,v2)

(
cos(−xWu1,v2)1[0,u1](u2)1[0,v2](v1)

)∣∣∣
2

+E

∣∣∣∣∣∣

N−1∑

i=0

M−1∑

j=0

sin(−xWsi,tj

(
Wsi+1,tj −Wsi,tj

) (
Wsi,tj+1 −Wsi,tj

)

−δ(2)(u1,v1),(u2,v2)

(
sin(−xWu1,v2)1[0,u1](u2)1[0,v2](v1)

)∣∣∣
2
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and from the independence of the increments of the Brownian sheet

E |TN,M (x̂)− ξ(x̂)|2

= E

N−1∑

i=0

M−1∑

j=0

cos(−xWsi,tj )
2sitj(si+1 − si)(tj+1 − tj)

+E

∫ 1

0
du1

∫ u1

0
du2

∫ 1

0
dv2

∫ v2

0
dv1 cos(−xWu1,v2)

2

−2E

N−1∑

i=0

M−1∑

j=0

∫ si+1

si

du1

∫ si

0
du2

∫ tj+1

tj

dv2

∫ tj

0
dv1 cos(−xWsi,tj ) cos(−xWu1,v2)

+ E

N−1∑

i=0

M−1∑

j=0

sin(−xWsi,tj )
2sitj(si+1 − si)(tj+1 − tj)

+E

∫ 1

0
du1

∫ u1

0
du2

∫ 1

0
dv2

∫ v2

0
dv1 sin(−xWu1,v2)

2

−2E

N−1∑

i=0

M−1∑

j=0

∫ si+1

si

du1

∫ si

0
du2

∫ tj+1

tj

dv2

∫ tj

0
dv1 sin(−xWsi,tj) sin(−xWu1,v2).

We will obtain, using the well-known trigonometric formulas sin2(x) + cos2(x) = 1 and
sin(x) sin(y) + cos(x) cos(y) = cos(x+ y)

E |TN,M (x̂)− ξ(x̂)|2 = E

N−1∑

i=0

M−1∑

j=0

sitj(si+1 − si)(tj+1 − tj) +

(∫ 1

0
udu

)2

−2E
N−1∑

i=0

M−1∑

j=0

sitj

∫ si+1

si

du1

∫ tj+1

tj

dv2 cos
(
x(Wsi,tj −Wu1,v2)

)
.

Since Wsi,tj −Wu1,v2 with si < u1 and tj < v2 is a centered Gaussian random variable with
variance u1v2 − sitj we get

E cos
(
x(Wsi,tj −Wu1,v2)

)
= e−

x2(u1v2−sitj)

2

and therefore

E |TN,M (x̂)− ξ(x̂)|2 =
N−1∑

i=0

M−1∑

j=0

sitj(si+1 − si)(tj+1 − tj) +

(∫ 1

0
udu

)2

−2

N−1∑

i=0

M−1∑

j=0

sitj

∫ si+1

si

du1

∫ tj+1

tj

dv2e
−x2(u1v2−sitj)

2 .
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We can write

E |TN,M − ξ|2H−r(R;R) = E

∫

R

|TN,M (x̂)− ξ(x̂)|2 (1 + x2)−rdx

=

∫

R

dx(1 + x2)−r




N−1∑

i=0

M−1∑

j=0

sitj(si+1 − si)(tj+1 − tj) +

(∫ 1

0
udu

)2



−2

∫

R

dx(1 + x2)−r




N−1∑

i=0

M−1∑

j=0

sitj

∫ si+1

si

du1

∫ tj+1

tj

dv2e
−x2(u1v2−sitj)

2




By a Riemmann sum convergence, it is clear that

N−1∑

i=0

si(si+1 − s1) →N→∞

∫ 1

0
udu,

M−1∑

j=0

tj(tj+1 − tj) →M→∞

∫ 1

0
vdv

and for every fixed x ∈ R

N−1∑

i=0

M−1∑

j=0

sitje
x2sitj

2

∫ si+1

si

du1

∫ tj+1

tj

dv2e
−x2u1v2

2 →N,M→∞

∫ 1

0

∫ 1

0
uvdudve

−x2uv
2 e

x2uv
2 =

(∫ 1

0
udu

)2

and this implies that for every x ∈ R the sequence E |TN,M (x̂)− ξ(x̂)|2 converges to zero as
N,M → ∞. The convergence of E |TN,M − ξ|2H−r(R;R) to zero follows from the dominated
convergence theorem since

(1 + x2)−r




N−1∑

i=0

M−1∑

j=0

sitj

∫ si+1

si

du1

∫ tj+1

tj

dv2

(
1− e−

x2(u1v2−sitj)

2

)


≤ (1 + x2)−r




N−1∑

i=0

M−1∑

j=0

sitj

∫ si+1

si

du1

∫ tj+1

tj

dv2




≤ (1 + x2)−r

which is integrable for every r > 1
2 .

6 Multidimensional 2D-currents

Newt we study in this parts d -dimensional stochastic currents over a Wiener sheet. Let
W =

(
W (1),W (2), ...,W (d)

)
be a d-dimensional Brownian sheet. That means, for every

i = 1, .., d, the component W (i) = (W
(i)
s,t )s,t∈[0,1] is a Wiener sheet and the components of

W are mutually independent.
We will defined the d -dimensional current over the Wiener sheet as follows.
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Definition 2 The 2D- stochastic current over W in R
d is given by the mapping

x ∈ R
d → ξ(x) = (ξi,j)i,j=1,..,d :=

(
δi(u1,v1)

δ
j
(u2,v2)

(
∆(x−Wu1,v2)1[0,u1](u2)1[0,v2](v1)

))
i,j=1,..,d

.

Consequently ξ(x) is, for every x ∈ R
d, a d× d matrix whose components are distributions

in Sobolev-Watanabe spaces. The notation δi refers to the divergence integral with respect
to the component W (i) for every i = 1, .., d.

At this point, we will introduce some notation. Let us denote, for every i, j = 1, .., d,
by

∆i,j(x−Wu,v) :=

d∏

k=1;k 6=i,j

∆(xk −W (k)
u,v ) ∀u, v ∈ [0, 1].

Therefore, we can formally write

∆ (x−Wu,v) = ∆i,j(x−Wu,v)∆(xi −W (i)
u,v)∆(xj −W (j)

u,v). (20)

We have the following result.

Theorem 5 The stochastic current x → ξ(x) introduced in Definition (2) belongs to the
Sobolev space H−r(Rd;Rd) for every r > d

2 .

Proof: Let us consider i 6= j. Using (20) and the general chaos expansion formula (10)
for the delta Dirac functional, the component ξi,j can be decomposed as follows

ξi,j(x) = δi(u1,v1)
δ
j
(u2,v2)

(
∆i,j(x−Wu1,v2)1[0,u1](u2)1[0,v2](v1)

)

×
∑

mi≥0

axi
mi

(u1, v2)I
i
mi

(
1⊗mi

[0,u1]×[0,v2]

) ∑

mj≥0

a
xj
mj (u1, v2)I

j
mj

(
1
⊗mj

[0,u1]×[0,v2]

)
.

Here Iim denotes the multiple integral of order m with respect to the Wiener sheet W (i).
We will get, after symmetrization, for every i, j = 1, .., d, i 6= j

ξi,j(x) =
∑

mi≥0

∑

mj≥0

1

mi + 1

1

mj + 1

Iimi+1I
j
mj+1




mi+1∑

k=1

mj+1∑

l=1

axi
mi

(ak, dl)a
xj
mj (ak, dl)∆i,j(x−Wak ,dl)

1⊗mi

[0,ak ]×[0,dl]

(
(a1, b1), ..., (ak , bk), ..., (ami+1, bmi+1)

)
1[0,ak](cl)1[0,dl](bk)

1
⊗mj

[0,ak ]×[0,dl]

(
(c1, d1), ..., (cl , dl), ..., (cmj+1, dmj+1)

))
.

Let us comment on the above expression. The multiple integral Iimi+1 acts with respect

to the variables (a1, b1), (a2, b2), ...(ami+1, bmi+1). The multiple integral Ijmj+1 acts with
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respect to the variables (c1, d1), (c2, d2), ..., (cmj+1, dmj+1). Due to the independence of the

components W (i), i = 1, .., d, the term ∆i,j(x−Wak,dl), although stochastic, can be viewed

as a deterministic integrand for both multiple Wiener-Itô integrals Iimi+1 and Ijmj+1. Also

the integrals Iimi+1 and Ijmj+1 plays the role of a deterministic integrand one for the other.
Let us compute the Fourier transform of ξi,j, for 1 ≤ i, j ≤ d, i 6= j. We recall that

the Fourier transform is taken with respect to the variable x ∈ R
d.

ξ̂i,j(x) =
∑

mi,mj≥0

1

mi + 1

1

mj + 1
ax̂i
mi

(ak, dl)a
x̂j
mj (ak, dl)

Iimi+1I
j
mj+1




mi+1∑

k=0

mj+1∑

l=0

∆i,j(x̂−Wak,dl)

1⊗mi

[0,ak ]×[0,dl]

(
(a1, b1), ..., (ak , bk), ..., (ami+1, bmi+1)

)
1[0,ak](cl)1[0,dl](bk)

1⊗mi

[0,ak ]×[0,dl]

(
(c1, d1), ..., (cl , dl), ..., (cmj+1, dmj+1)

))
(21)

where ax̂i
mi

denotes the Fourier transform of the function x → axi
mi

and ∆i,j(x̂ − Wak,dl)
means the Fourier transform of the function

(x1, .., xi, .., xj, .., xd) ∈ R
d−2 → ∆i,j(x−Wak,dl).

We have from Lemma 1

ax̂i
mi

(ak, dl) =
(−1)mixmi

i

mi!
e−

x2i akdl
2 (22)

and clearly

∆i,j(x̂−Wak ,dl) =
d∏

k=1;k 6=i,j

e
−ixkW

(k)
ak,dl . (23)
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Then, by combining (21), (22), (23)

ξ̂i,j(x) =
∑

mi,mj≥0

1

mi + 1

1

mj + 1

(−i)mi+mj

mi!mj !
xmi

i x
mj

j Iimi+1I
j
mj+1

mi+1∑

k=1

mj+1∑

l=1

e−
x2i akdl

2 e−
x2jakdl

2




d∏

k=1;k 6=i,j

e
−ixkW

(k)
ak,dl




1⊗mi

[0,ak]×[0,dl]

(
(a1, b1), ..., (ak , bk), ..., (ami+1, bmi+1)

)
1[0,ak](cl)

1
⊗mj

[0,ak]×[0,dl]

(
(c1, d1), ..., (cl , dl), ..., (cmj+1, dmj+1)

)
1[0,dl](bk)

=
∑

mi,mj≥0

1

mi + 1

1

mj + 1

(−i)mi+mj

mi!mj !
xmi

i x
mj

j Iimi+1I
j
mj+1

mi+1∑

k=1

mj+1∑

l=1

e−
x2i akdl

2 e−
x2jakdl

2




d∏

k=1;k 6=i,j

e
−ixkW

(k)
ak,dl




1⊗mi

[0,ak]
(a1, .., ak, .., ami+1)1

⊗mj+1

[0,ak ]
(c1, ...., cmj+1)

1mi+1
[0,dl]

(b1, ..., bmi+1)1
mj

[0,dl]
(d1, .., dl, .., dmj+1)

and taking the square mean, we will obtain

E

∣∣∣ξ̂i,j(x)
∣∣∣
2

=
∑

mi,mj≥0

1

(mi + 1)!

1

(mj + 1)!
x2mi

i x
2mj

j

mi+1∑

k=1

mj+1∑

l=1

e−x2
i akdle−x2

jakdl

∫

[0,1]mi+1
da1...dami+1

∫

[0,1]mi+1
db1...dbmi+1

∫

[0,1]mj+1
dc1...dcmj+1

∫

[0,1]mi+1
dd1...ddmj+1

1⊗mi

[0,ak ]
(a1, .., âk, ..., ami+1)1

⊗mi+1
[0,dl]

(b1, ...., bmi+1)

1
⊗mj+1

[0,ak ]
(c1, ...., cmj+1)1

⊗mj

[0,dl]
(d1, .., d̂l, .., dmi+1)

=
∑

mi,mj≥0

1

(mi + 1)!

1

(mj + 1)!
x2mi

i x
2mj

j

mi+1∑

k=1

mj+1∑

l=1

∫ 1

0
dak

∫ 1

0
ddl(akdl)

mi+mj+1e−x2
i akdle−x2

jakdl

=
∑

mi,mj≥0

1

(mi)!

1

(mj)!
x2mi

i x
2mj

j

∫ 1

0
da

∫ 1

0
dbe−(x2

i+x2
j )ab(ab)mi+mj+1.
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Since ∑

mi≥0

1

mi!
(x2i ab)

mi = ex
2
i ab

we get

E

∣∣∣ξ̂i,j(x)
∣∣∣
2
=

∫ 1

0
ada

∫ 1

0
bdbe−(x2

i+x2
j )abex

2
i abex

2
jab =

1

4
.

If i = j it follows from the proof of Theorem 3 that E
∣∣∣ξ̂i,i(x)

∣∣∣
2
= 1

4 for every i = 1, .., d. As
a consequence ∫

Rd

1

(1 + |x|2)rE
∣∣∣ξ̂(x)

∣∣∣
2
dx =

d2

4

∫

Rd

1

(1 + |x|2)r dx

is finite if and only if r > d
2 .
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