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Abstract A quantitative analysis of shapes of facial surfaces can play an important role in
biometric authentication. The main difficulty in comparing shapes of surfaces is the lack of a
canonical system to represent all surfaces. This paper overcomes that problem by proposing
a specific coordinate system, on facial surfaces, that enables comparisons of geometries of
faces. In this system, a facial surface is represented as a path on the space of closed curves,
called facial curves, where each curve is a level curve of distance function from the tip of the
nose. Defining H to be the space of paths on the space of closed curves, the paper studies the
differential geometry of H and endows it with a Riemannian. Using numerical techniques,
it computes geodesic paths between elements of H that represent individual facial surfaces.
This Riemannian analysis of faces is then used to: (i) find an optimal deformation from
one face to another, (ii) define and compute an average face for a given set of faces, and
(iii) compute distances between faces to quantify differences in their shapes. Experimental
results are presented to demonstrate and support these ideas.

1 Introduction

There has been an increasing interest in recent years in analyzing shapes of 3D objects.
Advances in shape estimation algorithms, 3D scanning technology, hardware-accelerated
3D graphics, and related tools, are enabling access to high quality 3D data. As technologies
continue to improve, the need for automated methods for analyzing shapes of 3D objects will
also grow. In terms of characterizing 3D objects, for detection, classification, and recognition,
their shape is naturally an important feature. It already plays important roles in areas such
as medical diagnostics, object designs, database search, and biometrics. Focusing on the
last topic, our goal in this paper is to develop a framework for analyzing shapes of facial
surfaces. Shape analysis involves computing metrics and “optimal deformations” between
any two given objects in a manner that is invariant to certain similarity transformations.
Typically, similarity transformations consists of the (rigid) translations and rotations, and
the (non-rigid) uniform scalings of the objects involved. For the problem of shape analysis
of facial surfaces, we have chosen the similarity group to consist only of translations and
rotations; changes in scale of a facial surface will change the resulting deformations and the
metrics. Restating our goals, we want to develop a mathematical framework for representing
and comparing shapes of facial surfaces using metrics that are invariant to rotations and
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translations. In this process, we will also define and compute optimal deformations of facial
surfaces, from one into another. Our mathematical representations of surfaces will be such
that the ensuing face comparisons are stable with respect to deformations of facial surfaces
that occur during changes in facial expressions. This is an important advantage of this
representation, especially when it is used for recognizing people using shapes of their facial
surfaces.

What is the main difficulty in comparing shapes of two surfaces? Shape analysis should
ideally be invariant to the choice of parameterizations, i.e. one should get the same compar-
ison irrespective of parametrization of the two surfaces. To highlight this issue, consider the
problem of analyzing shapes of curves in R

n. In this case, there is a fixed ordering of points
along the curves which helps us in parameterizing them (even though the parametrization
is not unique). Therefore, one directly works with the parameterized curves and develops
metrics that are invariant to re-parameterizations. For instance, if the curves are assumed
to be parameterized by s ∈ [0, 1], then the space of automorphisms of [0, 1] can be iden-
tified with the space of all possible re-parameterizations of curves. (An automorphism is
a smooth, invertible map from a set to itself.) So, one seeks a method to compare shapes
of any two curves that is invariant to re-parametrization of one or both curves. Although
seemingly difficult, this issue has been resolved by several authors [15,11,10,12,16,21]. The
key idea is that there exists an efficient computational solution, namely the dynamic pro-
gramming algorithm, that can find the optimal re-parametrization for matching any two
curves, at arbitrarily fine samplings. Returning to the problem of comparing facial surfaces,
this problem is made difficult by the fact that there is no natural ordering of points on
a surface. Therefore, the space of all possible re-parameterizations of a surface is a larger
set, i.e. the automorphisms of [0, 1]2, and an efficient analysis of shapes that is invariant
to all re-parameterizations remains elusive. As explained later, our solution is to impose a
natural hierarchy (or ordering) of points on a surface, using the idea of facial curves. This
additional structure results in dividing the re-parameterizations into two smaller sets, each
consisting of automorphisms of [0, 1], each of which is relatively easier to solve using dynamic
programming.

1.1 Current Approaches

– 3D Face Analysis: There has been a number of papers in recent years in 3D shape
matching. A common theme in this literature has been to represent facial surfaces by
certain feature sets that are geometrical, such as the convex parts, areas with high
curvatures, saddle points, etc [3], [2]. Although such feature definitions are intuitively
meaningful, the computation of curvatures involves numerical approximation of second
derivatives and is very susceptible to observation noise. Other approaches, such as those
based on shape distribution [13] and conformal geometry [19], have also been proposed.
Most of those works compare 3D shapes by comparing some corresponding features while
our goal is to compare the facial surfaces themselves. One exception is Glaunes et al. [5]
where the authors have studied diffeomorphic matching of a given pair of distributions
(of points) in a general setting, with applications to various matching problems including
curves, surfaces, and unlabeled points-sets.

– Shape Analysis of Curves: There has been a significant amount of research in ana-
lyzing shapes of open and closed curves, especially in a plane [15,11,10,12,16,21]. The
common theme has been to represent an infinite-dimensional moduli space of curves,
with curves being represented in one of many possible ways, and to study the differen-
tial geometry of this space modulo the space of re-parameterizations. In case of closed
curves, one uses an additional constraint to ensure closure; this results in the set of rele-
vant curves being a nonlinear sub-manifold inside a larger Hilbert space. To compare any
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two curves, one imposes a Riemannian structure on the quotient space, and computes
geodesic paths under the chosen metric. The choice of a metric is important and different
authors have advocated different metrics.

– Facial Surfaces Using Facial Curves: An important line of work in face analysis
has been to use shapes of curves that lie on facial surfaces. Similar ideas have been
pursued in brain surface analysis: shapes of sulcal curves have been used to study shapes
of brain surfaces [8]. Curves on surfaces are usually defined using level sets of functions
on these surfaces. For example, one can use the curvature tensor on a surface to obtain
parabolic and ridge curves [6], or use surface gradients to extract crest lines[20]. However,
computations of gradients and curvatures both involve higher order derivatives and, as
mentioned above, are numerically unstable. In an attractive approach, Bronstein et al. [1]
use a surface distance function to define level curves that are invariant to rigid motions.
In [14], Samir et al. suggested the use of level sets of the height function (z coordinates) as
curves of interest for face analysis. For comparing shapes of two facial surfaces, the basic
idea is to extract level curves of the height function on each surface and to compare
the corresponding curves using techniques from planar shape analysis [10]. Although
the resulting metrics were reasonably successful in recognizing faces, there are some
fundamental limitations with this representation. Firstly, the definition of level curves
changes with the global orientation of a face and, therefore, this shape analysis is not
completely invariant to rotation. Secondly, this work was intended for face recognition
only and not for a Riemannian analysis of facial surfaces. In other words, it lacked a
formal definition of a space of facial surfaces and a proper Riemannian structure that
can lead to formal geodesic paths (or optimal deformations) between faces. Consequently,
interesting statistical quantities such as the mean face are neither defined nor computed.

1.2 Our Approach

Our approach is to represent facial surfaces as an indexed collection of closed curves on
faces, termed facial curves, and to apply tools from shape analysis of curves. This paper is
an extension of the framework introduced in [14] in two ways: (i) the representations,
metrics, and analysis is now completely invariant to rigid rotations and translations of the
facial surfaces, and (ii) there is a formal Riemannian analysis on space representing facial
surfaces, with precise mathematical definitions for spaces, metrics, geodesics, and statistics
of facial surfaces. The representation of a facial surface is based on facial curves, as in [14],
but the definition of facial curves is now different. Facial curves are defined here as level
curves of a surface distance function. This function, at a point on the surface, is defined to
be the length of the shortest path between that point and a fixed reference point (taken to
be the tip of the nose) along the facial surface. Shapes of level curves of this function are
invariant to rotation and translation of the facial surface. Visually these curves seem to be
full of facial features that can prove to be important in face classification and recognition.
Bronstein et al. [1] have argued that these level curves are stable with respect to changes
in facial expressions and, hence, are useful in classification. These are closed curves in R

3

while the curves used in [14] are planar. An indexed collection of such curves will be used to
mathematically represent the corresponding facial surface. Denoting this indexed collection
as a parameterized path on the space of closed curves in R

3, we formalize a mathematical
representation of facial surfaces and focus on the space of all such representations. Choosing
a Riemannian metric, we endow this space with a Riemannian structure and derive an
algorithm for computing geodesic paths between given facial surfaces on this space. This
tool for computing geodesic is shown to be useful in finding optimal deformations between
faces, for registering points of facial surfaces, and for computing “average faces”.
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Table 1 List of symbols and their definitions used in this paper.

Symbol Definition /Explanation

S an observed facial surface
dist length of the shortest path on S between any two points
λ a variable for the value of dist

cλ (s) level curve of dist on S at the level λ, parameterized by s such that dcλ

ds
(s) =constant.

lλ the length of the curve cλ.
pλ the starting point of the curve cλ, pλ = cλ(0)

vλ (s) the scaled velocity vector, vλ(s) = 1
lλ

dcλ

ds
(s)

v0 the velocity function of a unit circle in X − Y plane, v0(s) = s

(a, b) the Euclidean inner product in R
3

C the set of all closed curves in R
3,

C = {v|v : [0, 1] 7→ S
2,
∫ 1

0
v(s)ds = 0, (v(s), v(s)) = 1, ∀s}

TvC the space of all tangents to C at v
It is given by {f |f : [0, 2π] 7→ R

3, ∀s, (f(s), v(s)) = 0 }

〈f1, f2〉 the Riemannian metric on C,
∫ 2π

0
f1(s)f2(s)ds

φt(v1, v2) a geodesic path in C, from v1 to v2, parameterized by t ∈ I ≡ [0, 1]
φ0(v1, v2) = v1, φ1(v1, v2) = v2

α an indexed collection of closed curves in R
3

α : [0, L] 7→ R
3 × C × R+, α(λ) = (pλ, vλ, lλ)

H the space of all parameterized paths in R
3 × C × R+

H = {α : [0, L] 7→ (R3 × C × R+), α(0) = (r, v0, 0)}
TαH the tangent space of H at α

{(u,w, x)|u(λ) ∈ R
3, w(λ) ∈ Tα(λ)C, x(λ) ∈ R}

〈〈(u1, w1, x1), (u2, w2, x2)〉〉 Riemannian metric on H

=
∫ L

0
((u1(λ), u2(λ)) + 〈w1(λ), w2(λ)〉 + x1(λ)x2(λ)) dλ

P the space of all paths β in H
ψt(α1, α2) the geodesic path in H from α1 to α2 parameterized by t.

The rest of this paper is organized as follows. A mathematical representation of a facial
surface is introduced in Section 2, with examples on how to generate these representations.
Towards the goal of imposing Riemannian structures, Section 3 studies the structure of the
space of facial curves and Section 4 studies a similar structure for the space of facial surfaces.

2 Mathematical Representation of a Facial Surface

Consider a facial surface S to be a two-dimensional smooth connected manifold with a genus
zero. We assume that holes on S associated with eyes, nose, and mouth have already been
patched smoothly. In practice S will be a triangulated mesh with a collection of connected
edges and vertices, but we start by assuming that it is a continuous surface. One can view it
as a smooth embedding of the upper unit hemisphere S

2
+ in R

3. Some pictorial examples of
S are shown in Figure 1 where 2D images and their corresponding facial surfaces associated
with six facial expressions (neutral, smile, frown, angry, squint, scared) of the same person
are displayed.

As mentioned earlier, the biggest challenge in analyzing the shape of S is to represent
it in a way that allows for efficient comparison of faces. Our approach is to represent a
facial surface as an indexed collection of curves, or as a parameterized path in the space of
closed curves; that allows the breaking of a 2D registration problem into two independent
1D registration problems, as described next. Let r be a prominent reference point on S that
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Fig. 1 2D images and their corresponding facial surfaces of same person under different facial
expressions: neutral, smile, frown, angry, squint, and scared.

is easily detectable. In this paper, we have chosen r as the tip of the nose. Then, define
a function dist to be the surface distance function from r to any point on the facial
surface. In other words, dist(r, q) is the length of the shortest path connecting r and q while
staying on S. Using this function, one can define facial curves as the level sets of dist:

cλ = {q ∈ S|dist(r, q) = λ} ⊂ S , λ ∈ [0,∞). (1)

For large values of λ, the set cλ can be expected to be empty. On the other hand, for λ = 0,
the set cλ is the singleton {r}. For values of λ in between those two extremes, we expect cλ

to capture of certain local geometry of the surface S. So far cλ is just a collection of points
but they can be ordered easily and we consider cλ(s) as a parameterized, closed curve that
is parameterized by constant speed over the interval [0, 1], i.e. dcλ

ds
(s) = constant. Three sets

of variables describe this curve:

– Initial Position: We will denote the starting point on this curve by pλ ∈ R
3, i.e.

cλ(0) = pλ.
– Length: Let lλ denote the length of the curve cλ.
– Direction function: The unit velocity vector vλ(s) ≡ 1

‖
dcλ

ds
(s)‖

dcλ

ds
(s). Note that vλ(s) ∈

S
2.

We will represent the original curve cλ(s) by the triple (pλ, vλ, lλ). For λ = 0, cλ collapses
into the point r and we will use the convention that c0(s) = (r, v0(s), 0) where v0(s) =
[− sin(s) cos(s) 0]′ is the velocity function of a unit circle in the X − Y plane. We will
choose an upper bound L of λ so that cλ for λ ≤ L is a continuous, smooth, closed curve in
R

3. This helps in cropping some erroneous and unreliable data at the boundaries.

Next we need to specify the space in which these representations take values. Define a
set:

C = {v : [0, 1] 7→ S
2|

∫ 1

0

v(s)ds = 0, (v(s), v(s)) = 1, ∀s} .

C is the set of all velocity functions that correspond to constant-speed, closed curves in R
3.

For a given triple (p, v, l), one can re-construct the curve using c(τ) = p + l
∫ τ

0
v(s)ds.

Before we proceed, we illustrate some computational steps needed to extract cλ from
a given observation of S. We summarize the extraction and the parametrization of facial
curves in the following algorithm:
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Algorithm 1 : Facial curve extraction and parametrization

Given a facial surface S, the cλs are determined as follows:

1- Preprocess the surface according to Section 2.1.
2- Calculate dist value on all the vertices of the mesh according to Section 2.2.
3- Crop the mesh at dist value L.
4- Extract the level set of dist (collection of unordered points) at the level λ ∈ [0, L] according to
Section 2.3.
5- Order these points and smooth the resulting curve cλ.
6- Uniformly resample cλ.
7- Compute the tangent vector function vλ(s) and the curve length lλ; and set the parametrization
cλ = (pλ, vλ, lλ).

2.1 Surface Pre-Processing

The extraction part involves several steps to ensure robustness. Firstly, we remove discon-
nected parts so that the surface distance function dist is well defined. Secondly, we fill holes
by applying a linear interpolation, and then make the meshes regular by fixing the length
of all edges equal to a standard value, resulting in a Delaunay triangulation. Finally, we
increase the number of vertices while keeping the mesh regular so that the surface is smooth
and the resolution is finer. Shown in the top row of Figure 2 is an illustration of prepro-
cessing a facial surface. Note that the hole on the nose was filled and the mesh has been
regularized. Shown in the bottom row are examples of refining a non-uniform mesh into a
dense, uniform mesh.

2.2 Surface Distance Function

Once the facial surface is pre-processed, the tip of the nose can be easily detected. Denote
this point as r ∈ R

3. A surface distance function dist : S → R+ is then defined as the length
of the shortest path (on S) from r to any vertex q in the mesh. This function has been used
previously in many surface matching methods. For instance, Hilaga [7] used this function
to construct a Reeb graph and Bronstein et al. [1] used it to crop facial surfaces at their
boundaries. Several methods have been proposed to compute dist on S; a summary and
comparison of those methods is presented in [18]. We will use the Dijkstra’s algorithm [4]
to compute dist that has a computational cost of O(n) with n being the number of vertices
in the mesh. The resulting dist is invariant to rigid rotations and translations. As verified
experimentally later, it is also relatively robust to the deformations resulting from changes
in facial expressions.

2.3 Facial Curves Extraction

For a λ ∈ [0, L], we seek the level set cλ in a given surface S. For practical purposes, we
modify the definition of cλ to consist of all the points whose distance dist from r is in
[λ−δ, λ+δ], where δ is a pre-determined error value. A smaller value of δ ensures continuity
and smoothness of the extracted curves. Shown in Figure 3 are examples of extracted facial
curves corresponding to two different value of δ, the left picture is for a larger δ while the
right one is for a smaller δ. Figure 4 shows more examples of extracted facial curves. The
top row shows some facial curves drawn on the facial surface while the bottom row shows
increasing number of curves extracted from a facial surface.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 2 (a), (b): An example of facial surface before pre-processing and (c) same surface after pre-
processing. (d) A facial surface, (e) its corresponding nonuniform mesh before regularization,(f)
uniform mesh after regularization, (g) a part of that mesh enlarged to show uniformity.

Fig. 3 Left: extracted level set on an irregular mesh. Right: an extracted level set on the regular
mesh after refinement.

2.4 Representations Using Facial Curves

Now we are ready to state our mathematical representation of a facial surface. Consider a
path α : [0, L] 7→ (R3 × C × R+), such that α(λ) = (pλ, vλ, lλ) for λ ∈ [0, L]. Additionally,
fix the starting point of α to be (r, v0, 0). Let H be the set of all such paths, i.e.

H = {α : [0, L] 7→ (R3 × C × R+)|α(0) = (r, v0, 0)} . (2)
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Fig. 4 Top: An example of facial surface (left), an extracted level set curve drawn on the surface.
Bottom: Increasing number of facial curves extracted from the surface in the left panel.

We will represent facial surfaces and analyze them as elements of H. Shown in Figure 5
are examples of a facial surface represented using a large number of facial curves. The top
picture shows the original surface S while the bottom row shows a rendering of cλs for an
increasing number of λs as we go from left to right. From an implementation point of view,
one has to settle for a finite number of curves in representing S. The actual choice of which
and how many curves are used in the analysis will ultimately depend on the application.

We note the following properties of this representations:

1. Invariance to Rotation and Translation: A good representation of S should be
invariant to translation and rotation of S. The choice of the surface distance function
dist to define facial curves ensures the invariance of level curves cλ. Since α is simply a
collection of facial curves cλs, it is also invariant to these transformations.

2. Surface Reconstruction: In representing S by α, have we lost any information about
S? For an arbitrary point p ∈ S, there exists a λ such that p lies on the curve cλ.
Therefore, all points on S are present in α on one level curve or another. The facial
curves cλs are non-overlapping and, hence, no point p is represented twice in α. Thus,
each point p is present once and only once in the set α. Therefore, considered as a
collection of points S and α are identical. Shown in Figure 5 are some examples of α
associated with several faces. Each face in this figure is of the same person but at different
facial expression. Can we reconstruct a facial surface using its representation α ∈ H? To
reconstruct, we first generate the Delaunay triangulation of the set of points contained
in α and, then, use this triangulation to render a surface. An example is shown in Figure
6 which pictorially shows an α or a collection of facial curves (left), the corresponding
mesh generated using a delaunay triangulation (middle), and the resulting smooth facial
surface (right).

We have represented facial surfaces as elements of H. The next step is to impose a
Riemannian structure on H and to compute geodesic paths between observed facial surfaces.
Towards that goal, we first study the differential geometry of C and present algorithms for
computing geodesics between given facial curves.
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Fig. 5 Facial surfaces of the same person under different facial expressions, their correspondents
representations in H.

(a) (b) (c) (d)

Fig. 6 Reconstruction example: (a) an original facial surface, (b) its representation as a large col-
lection of curves in H, (c) a dense triangulated mesh formed from curves, and (d) the reconstructed
surface.

3 Riemannian Analysis of Facial Curves

A facial curve defined in the previous section is represented by: (i) a starting point p ∈ R
3,

(ii) a velocity function v ∈ C, and (iii) a length l ∈ R+. Given two such facial curves, we
address the question: How to form a geodesic path between them in an appropriate space of
curves under a chosen Riemannian metric? While the parts dealing with the starting points
and the lengths are simple, the main difficulty lies in computing a geodesic path between
the velocity functions of the two given curves in C. This exact problem has been solved in
Klassen et al. [9], and we will adapt their solution to the study of facial curves. For the
benefit of readers, the main idea behind that approach has been summarized in this section.

To develop a geometric framework for analyzing elements of C, it is important understand
its tangent bundle and to impose a Riemannian structure on it. Recall that v(s) ∈ S

2 and,
consequently, v is a curve on S

2; a vector f tangent to C at v can also be viewed as a field
of vectors tangent to S

2 along v. The space of all such tangent vectors, denoted by Tv(C),
is given by:

Tv(C) = {f |f : [0, 1] 7→ R
3,∀s (f(s) · v(s)) = 0,

∫ 1

0

f(s)ds = 0 } . (3)
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To impose a Riemannian structure on C, we will assume the following inner product on
Tv(C): for f, g ∈ Tv(C),

〈f, g〉 =

∫ 1

0

(f(s) · g(s))ds . (4)

For any two closed curves, denoted by v0 and v1 in C, we are interested in finding a
geodesic path between them in C under the metric given in Eqn. 3. This is accomplished
using a path-straightening approach presented in [9]. The basic idea is to start with any path
φ(t) connecting v0 and v1. That is φ : [0, 1] 7→ C such that φ(0) = v0 and φ(1) = v1. Then,
one iteratively “straightens” φ until it achieves a local minimum of the energy:

Ec(φ) ≡
1

2

∫ 1

0

〈

dφ

dt
(t),

dφ

dt
(t)

〉

dt , (5)

over all paths from v0 to v1. The iteration is performed using a gradient approach, i.e. up-
date φ iteratively in the direction of negative gradient of E till the gradient becomes zero.
It has been shown in [17] that a critical point of E is a geodesic on C. Shown in Figure 7 is
an example of the geodesic path between two facial curves and the evolution of Ec during
path straightening.

Remark: One major difference between the framework in [9] and here is that the starting
point on the individual facial curves are kept fixed here. In [9], the variability due to different
placements of starting points, on a closed curve, was modeled using the action of unit circle
S

1 on C and the geodesics were actually computed in the quotient space C/S
1. However, in

the current paper, we use the vertical plane containing the bridge of the nose to determine
the starting points on each facial curve, and we fix them. Hence, the geodesics here are
computed in C and not in the quotient space C/S

1. In computational terms, this involves
less work than was done to find geodesics in [9].

4 Riemannian Analysis of Faces on H

Next, we describe our approach to construct an ”optimal” deformation from one facial sur-
face to another. Since facial surfaces are represented as elements of H, a natural formulation
of ”optimal” is to consider the two corresponding elements in H and to construct a geodesic
path connecting them in H. The definition of geodesic is with respect to a Riemannian
metric that measures bending of facial surfaces. To actually compute geodesics, we need to
study the differential geometry of H and to explain our choice of a Riemannian structure
on it. The tangent space of H is given by:

Tα(H) = {(u,w, x)| ∀λ ∈ [0, L], u(λ) ∈ R
3, w(λ) ∈ Tvλ

(C), x(λ) ∈ R} , (6)

where Tvλ
(C) is as specified in Eqn. 3. H is an infinite non linear manifold, and to impose

a Riemannian structure on it, we define the Riemannian metric as follows:

〈〈(u1, w1, x1), (u2, w2, x2)〉〉 =

∫ L

0

((u1(λ), u2(λ)) + 〈w1(λ), w2(λ)〉 + x1(λ)x2(λ)) dλ . (7)

The inner product on tangent spaces of C is defined in Eqn. 4.
Let S0 and S1 be any two given facial surfaces, and α0 and α1 be the correspond-

ing elements in H, respectively. Our goal is to construct a geodesic path Ψ(t) in H, pa-
rameterized by time t, such Ψ(0) = α0 and Ψ(1) = α1. For each λ ∈ [0, L], we have
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Fig. 7 The geodesic path between two facial curves c1λ and c2λ, and the corresponding evolution of
the energy Ec.

αi(λ) = (pi,λ, vi,λ, li,λ) ∈ (R3 × C × R+). For each of the components we compute the
geodesic paths independently by defining:

Ψ(t) = {Ψλ(t), λ ∈ [0, L]}, where Ψλ(t) = (Ψp
λ(t), Ψv

λ(t), Ψ l
λ(t)) . (8)

Ψλ is the geodesic path between the corresponding facial curves; it is composed of three
components. Ψp

λ is the geodesic on the initial position component, Ψv
λ is over the shape com-

ponent, and Ψ l
λ is over the length component. These individual components are computed

as follows:

1. Shape of Curves: Let Ψv
λ(t) be a geodesic path in C, constructed using path straight-

ening [9], such that Ψv
λ(0) = v0,λ and Ψv

λ(1) = v1,λ. This is accomplished as described in
Section 3.

2. Initial Position: The geodesic path between the starting points p0,λ and p1,λ in R
3 is

given by a straight line in R
3. That is, Ψp

λ : [0, 1] → R
3, t 7→ tp1,λ + (1 − t)p0,λ.

3. Length: The geodesic path between the lengths l0,λ and l1,λ in R is given by a straight
line in R

+. That is, Ψ l
λ : [0, 1] → R

+, t 7→ tl1,λ + (1 − t)l0,λ.

Proposition 1 The path Ψ defined in Eqn. 8 is a geodesic in H, such that Ψ(0) = α0 and

Ψ(1) = α1.

Proof: For a fixed λ, the three components (Ψp
λ , Ψv

λ , Ψ l
λ) are individually geodesics in spaces

R
3, C, and R+, respectively, by construction. Thus, Ψλ is a geodesic in the product space

with respect to the metric given in Eqn. 7. As shown in Appendix, the full set of such
geodesics Ψ is a geodesic if each one of Ψλ is a geodesic.

Next, we summarize the main steps required in computation of a geodesic path between
given two facial surfaces.

We performed a number of experiments using facial surfaces of same and different persons
under a variety of facial expressions, and studied the resulting geodesic paths. Some examples
are shown in Figures 8 - 11. Figures 8(a),(b) show facial surfaces S1 and S2 of the same
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Given two different surfaces S1 and S2, this algorithm summarizes computational steps to construct
a geodesic path between their representations in H.

1- Extract level curves c1λ and c2λ, for each λ, using Algorithm 1.
2- Represent each surface as an element of H and denote them by α0 and α1, respectively.
3- Compute the geodesics Ψλ(t), at each level λ ∈ [0, L], in R × C × R+.
4- Combine these geodesic paths to form a path Ψ(t) in H.
5- Reconstruct a facial surface for finitely spaced samples of t ∈ [0, 1], using the collection
{Ψλ(t), λ ∈ [0, L]}.

person under neutral expression and smiling, respectively. Figure 8(c) shows the geodesic
path between S1 (shown in far left) and S2 (shown in far right). Drawn in between are facial
surfaces denoting equally spaced points along the geodesic path. In terms of the Riemannian
metric chosen, these paths denote the optimal deformations in going from the first face to
the second and the path lengths quantify the amount of deformations. In Figure 9(a), we
show two examples of geodesic paths between facial surfaces of the same people under
different facial expressions.In Figure 9(b), we show two examples of geodesic paths between
facial surfaces of the same different people. Figures 9(a) show geodesic path between the
same person under different expressions, while the figures 9(c) show geodesic paths between
different persons. Each of the path has been shown from two different views.

To give more details about the deformation of facial surfaces, figures 9(b,d) display a path
of facial surfaces from different viewpoints, it can be shown in 9(b) that strong deformations
are obtained near the mouth that start to be close and then slowly opened during the path.
However, the figure 9(d) shows strong deformations near eyes, mouth, nose and chin. Figures
10 and 11 show many more examples of these geodesic paths.

Experiments show that the proposed geodesic distance is relatively stable to changes
in facial expressions. That is, the deformation caused by changes in expressions is much
smaller in terms of the geodesic distances, when compared to the distances between faces of
different people. Shown in Figure ?? are two examples of such experiments. Each of 12× 12
the matrix shows pairwise distances between 12 facial surfaces, where the first six belong
to the same person (under different expressions) and the next six belong to six different
persons. The resulting distances are shown as a matrix in Figure ??. In this visualization
of the matrix, the lightness of each element (i; ) is proportional to the magnitude of the
distances between faces i and j. That is, each row and column represent the distances for a
face when compared to all 12 faces. Darker elements represent better matches, while lighter
elements indicate worse matches. The larger values of distances (lighter elements) involving
the last six faces confirms that geodesic distances are smaller when the faces of the same
person are involved.

5 Karcher Means of Facial Surfaces

For future statistical analysis, we are interested in defining a notion of “mean” for a given
set of facial surfaces. The Riemannian structure defined on H enables us to perform such
statistical analysis for computing faces mean and variance. There are at least two ways of
defining a mean value for a random variable that takes values on a nonlinear manifold. The
first definition, called extrinsic mean, involves embedding the manifold in a larger vector
space, computing the Euclidean mean in that space, and then projecting it down to the
manifold. The other definition, called the intrinsic mean or the Karcher mean utilizes the
intrinsic geometry of the manifold to define and compute a mean on that manifold. It is
defined as follows: Let d(Si, Sj) denote the length of the geodesic from Si to Sj in H. To
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Fig. 8 (a) and (b): Facial surfaces S1 and S2 of the same person under neutral and smile, respec-
tively. (c): The geodesic paths between S1 far left and S2 far right; drawn in between are facial
surfaces denoting equally spaced point along this geodesic path. (d): The evolution of the path
energy as a function of straightening iterations.

calculate the Karcher mean of facial surfaces {S1, ..., Sn} in H, define the variance function:

V : H → R,V(S) =

n
∑

i=1

d(Si, Sj)
2 (9)

The Karcher mean is then defined by:

S = arg min
µ∈H

(V(µ)) (10)

Since H is complete, the intrinsic mean as defined above always exist. However, it may not
be unique, i.e. there may be a set of points in H for which the minimizer of V is obtained.
To interpret geometrically, S is an element of H, that has the smallest deformation from all
the given facial shapes.

We present a commonly used algorithm for finding Karcher mean for a given set of facial
surfaces. This algorithm uses the gradient of V, in the space Tµ(H), to update the current
mean µ. If the points {S1, ..., Sn} are clustered fairly close together it has been proven that

Algorithm 2 : Gradient search

Set k = 0. Choose some time increment ǫ ≤ 1
n
. Choose a point µ0 ∈ H as an initial guess of the

mean. (For example, one could just take µ0 = S1.)

1- For each i = 1, ..., n choose the tangent vector fi ∈ Tµk
(H) which is tangent to the geodesic

from µk to Si, and whose norm is equal to the length of this shortest geodesic. The vector
g =

∑i=n

i=1 fi is proportional to the gradient at µk of the function V.
2- Flow for time ǫ along the geodesic which starts at µk and has velocity vector g. Call the point
where you end up µk+1, i.e. µk+1 = Ψ(µk; ǫ; g).
3- Set k = k + 1 and go to step 1.
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(a)

(b)

(c)

(d)

Fig. 9 Geodesic Paths between: (a) same person under different facial expressions, viewed from
different viewpoints in (b). Different persons in (c) viewed from different viewpoints in (d).

the Karcher mean exists, is unique, and can be found by the above algorithm.

An example of using Karcher mean to compute the average face is shown in Figure 14.
Here the sample set consists of six facial surfaces of the same person under different facial
expressions, and the mean face is shown in the far right panel. We have magnified the display
of Karcher mean to study the features retained by this surfaces from the original set. Figure
15 shows the Karcher mean face for six facial surfaces of different persons. Note that the
facial surfaces of the same person, under different facial expressions, which are close to each
other in terms of geodesic distances, are quite close to their Karcher mean. For a clustering
or an identification purposes, they could be accurately been represented by their Karcher
mean. However, the Karcher mean of faces of different people is far, in term of geodesic
distance, to each of the faces, and appears to be a blurred version of the individual faces.
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Fig. 10 Geodesic Paths between facial surfaces of same people under different expressions.

Fig. 11 Geodesic Paths between facial surfaces of different people.
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Fig. 12 Matrix of pairwise distances between 12 facial surfaces in H. The first six belong to the
same person, while the next six belong to six different persons. This matrix shows the stability of
our geodesic distance with respect to changes in facial expressions.
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Fig. 13 The same person, at each row, under six facial expressions in the left panel, and the
corresponding Karcher mean in the right panel.

Fig. 14 Karcher mean (far right) for the six different people in the left panel.
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6 Summary

In this paper we introduce a new computational framework for analyzing shapes of facial
surfaces. The basic idea is to impose a specific coordinate system on facial surfaces using
level curves of the surface distance function (measured from the tip of nose). Then, each
surface can be represented as a path on the space of closed curves in R

3. We focus on the set
of such paths and impose a Riemannian metric on it for defining geodesic paths. The main
tool presented in this paper is the construction of geodesic paths between arbitrary two facial
surfaces in the aforementioned set. There are multiple uses of this geodesic construction. The
length of a geodesic between any two facial surfaces quantifies differences in their shapes;
it also provides an optimal deformation from one to the other. Using Riemannian structure
one can define simple statistics such as the sample mean, as is demonstrated for facial
surfaces in this paper. A future application of this framework is in biometrics, for example
in recognition of humans using shapes of their facial surfaces.

The central idea here is to decompose a surface into an indexed collection of closed curves
and to compute geodesics between the corresponding curves on two faces. This geodesic is
computed using the idea of path-straightening present in [9] which allows only the bending
(and not stretching/compressing) of curves. There are other metrics and methods in the
literature for computing geodesics between closed curves. An important idea is the use of
elastic curves where the curves are allowed to stretch and compress for computing geodesic
paths [12]. In future we propose to apply the framework of elastic curves to analyze facial
curves; it requires extending the notion of elastic curves to curves in R

3.

Appendices

Let C be a Riemannian manifold. Denote by I the unit interval [0, 1]. Denote by F the space
of measurable functions [0, L] → C. F is a manifold; its tangent space is understood as
follows. If α ∈ F , then

TαF =
{

w : [0, L] → TC : ∀λ ∈ [0, L], w(λ) ∈ Tα(λ)C
}

Clearly, this is just the set of first-order deformations of α ∈ F . We now make F into a
Riemannian manifold. If w1, w2 ∈ TαF , define

〈w1, w2〉 =

∫ L

0

〈w1(λ), w2(λ)〉 dλ

Theorem 1 Suppose we are given a path in F represented as φ : [0, L] × I → F . For each

λ ∈ [0, L], define φλ : I → C by φλ(t) = φ(λ, t). Then φ is a geodesic in F if ∀λ ∈ [0, L], φλ

is a geodesic in C.

Proof:

First, we review a useful characterization of geodesics in C. Suppose v0 and v1 are two points
in C. Let B denote the space of all paths in C, parameterized by I, which start at v0 and
end at v1:

B = {γ : I → C | γ(0) = v0 and γ(1) = v1} .

Define an energy functional E : B → R by

E(γ) ≡
1

2

∫ 1

0

〈γ′(t), γ′(t)〉 dt,
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Then, γ is a geodesic in C, connecting v0 and v1, if and only if the gradient of E with respect
to γ is zero. In other words, γ is a critical point of the energy function E [17].

Now suppose that φ̃ : [0, L] × I × (−ǫ, ǫ) → C is an arbitrary variation of φ in the space
of curves in F , i.e., we are assuming that for all λ ∈ [0, L] and t ∈ I, φ̃(λ, t, 0) = φ(λ, t) and
for all λ ∈ [0, L] and h ∈ (−ǫ, ǫ), φ̃(λ, 0, h) = φ(λ, 0) and φ̃(λ, 1, h) = φ(λ, 1). For each value
of h ∈ (−ǫ, ǫ), we calculate the energy of the path φ̃(., ., h) in F as follows:

E(φ̃(., ., h)) =
1

2

∫ 1

0

∫ L

0

〈

∂φ̃

∂t
(λ, t, h) ,

∂φ̃

∂t
(λ, t, h)

〉

dλdt

=
1

2

∫ L

0

∫ 1

0

〈

∂φ̃

∂t
(λ, t, h) ,

∂φ̃

∂t
(λ, t, h)

〉

dtdλ

Differentiating with respect to h at h = 0 gives:

d

dhh=0
E(φ̃(., ., h)) =

1

2

∫ L

0

d

dhh=0

(

∫ 1

0

〈

∂φ̃

∂t̃
(λ, t, h) ,

∂φ̃

∂t̃
(λ, t, h)

〉

dt

)

dλ

If we assume that φλ is a geodesic in C for every λ ∈ [0, L], then it follows immediately that
the function we are integrating over [0, L] in the right hand side of the above expression is
0 for every λ, proving that φ is a geodesic in F .
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