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Abstract

Ocean models usually rely on a tracer mixing operator which diffuses along neutral sur-

faces. This requirement is imposed by the highly adiabatic nature of the oceanic interior,

and a numerical simulation needs to respect these small levels of diapycnal mixing to main-

tain physically realistic results. For non-isopycnal models this is however non-trivial due

to the non-alignment of the vertical coordinate isosurfaces with neutral surfaces. This pa-

per considers the numerical solution of initial boundary value problems for harmonic and

biharmonic rotated diffusion operators. We provide stability criteria associated with the

conventional space-time discretizations of the isoneutral diffusion currently in use in gen-

eral circulation models. Furthermore, we propose and study possible alternatives to those

schemes. A new way to handle the temporal discretization of the rotated biharmonic opera-

tor is also introduced. This scheme requires only the resolution of a simple one-dimensional

tridiagonal system in the vertical direction to provide the same stability limit than the non-

rotated operator. The performance of the various schemes in terms of stability and accuracy

is illustrated by idealized numerical experiments of the diffusion of a passive tracer along

sloping isopycnals.

Key words: Isoneutral Mixing, Diffusion Equations, Time Schemes, Von-Neumann

stability analysis, Initial-Boundary Value Problems

1 Introduction

Most ocean numerical models employ neutral mixing operators either to parameterize the effect of

unresolved mesoscale eddies (Gent and McWilliams, 1990; Smith and Gent, 2004), or more basically

to control dispersive errors (Lemarié et al., 2012). It is thus very common for non-isopycnic models to

implement a rotation of the diffusion tensor in a direction non-aligned with the computational grid. The

benefits of a rotated mixing operator in simulating large scale flows are undeniable (e.g., Danabasoglu

et al. (1994), Lengaigne et al. (2003)). Much of the improvements brought by the Gent and McWilliams
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(1990) parameterization of mesoscale eddies in coarse resolution models are also generally attributed to the

adiabatic mixing component of the parameterization which takes the form of a diffusion along isopycnal

surfaces (Gent, 2011).

Redi (1982) provided the continuous form of the rotation tensor; however additional efforts were re-

quired to proceed to the actual implementation at the discrete level. Several works (Cox, 1987; Danaba-

soglu and McWilliams, 1995; Griffies et al., 1998; Mathieu et al., 1999; Beckers et al., 1998, 2000) tackled

this problem that turned out to be more tedious than expected. The discretization in space raises difficulties

to properly conserve the monotonicity (Mathieu and Deleersnijder, 1998; Beckers et al., 2000) and global

tracer variance dissipation (Griffies et al., 1998) properties of the continuous operator once the problem

is discretized. Moreover, due to the small vertical, relative to horizontal, grid distance typically used in

numerical models the vertical and cross terms of the tensor can impose a severe restriction on the time

step when explicit-in-time methods are used to advance the rotated operator. This stability problem is al-

leviated by the use of a standard backward Euler scheme for the vertical component of the tensor (Cox,

1987), at the expanse of splitting errors and associated errors in the balance between the active tracer neu-

tral diffusive fluxes (Griffies, 2004). This approach is used in all the state-of-the-art ocean climate models.

The existing work on the neutral diffusion has been essentially carried out on the second-order (laplacian)

operator and under the small slope approximation (Cox, 1987; Gent and McWilliams, 1990).

Although very few studied so far, a rotated biharmonic may be of interest for high resolution simula-

tions due to its known property of scale selectivity. A biharmonic operator non-aligned with the direction

of the computational grid is used in Marchesiello et al. (2009) and Lemarié et al. (2012), and discussed in

Griffies (2004). Because global climate models are now targeting increasingly higher horizontal resolution,

the question of the viability of such an operator is not only relevant for the regional modeling community

but also for the ocean climate community. As an illustration, Hecht (2010) shows that for a 0.10 resolution

global model the use of a Lax-Wendroff scheme with an implicit diffusion aligned with the horizontal di-

rection leads to too much of a spurious diapycnal mixing in the Equatorial Pacific. This result suggests that

even for eddy-resolving simulations an isoneutral mixing operator could be required. This motivates the

design of a scale-selective (high-order) rotated operator. This is however not straightforward to maintain

the stability of such an operator which can produce undesirable effects like overshooting/undershooting

(Delhez and Deleersnijder, 2007) and spurious cabelling processes (Griffies, 2004). To our knowledge,

the current implementations of rotated biharmonics are based on an explicit Euler scheme in time with

ad-hoc tapering or clipping of the isoneutral slopes to maintain good stability properties (Marchesiello

et al., 2009). This approach has however the undesirable effect to allow spurious dianeutral mixing even

at places where the slopes are modest and satisfy the small slope approximation.

The aim of this paper is to study a set of space-time discretizations of the rotated harmonic and bi-

harmonic mixing, and to assess them in terms of accuracy, stability and monotonicity violations. One

additional constraint we impose to ourselves is accuracy relative to large grid slope ratios (defined as the

ratio between the isoneutral slope and the aspect ratio of the computational grid) in order to make the

scheme adequate for use in a terrain-following σ-coordinate model. Indeed, problems with σ models are

generally more pernicious than with z-level models because it is not unusual that the slope between the

computational grid and the isoneutral direction steepens to be greater than the grid aspect ratio. The paper

is organized as follows. In Sec. 2 we introduce the formulation of the isopycnal-mixing problem as well as

three different ways to discretize the problem in space. Then Sec. 3 and 4 are respectively dedicated to the

temporal discretization of the rotated laplacian and biharmonic operators. Sec. 5 provides the useful de-

tails to proceed to the actual implementation of the different schemes in ocean models. Finally, numerical

experiments are designed to illustrate the properties of various space-time discretizations in Sec. 6.
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2 Isopycnal-Mixing Problem Formulation

2.1 Continuous Formulation

In this section we briefly introduce the continuous form of the problem under investigation throughout

the paper. The three spatial directions are labeled x1, x2 for the horizontal coordinates, and x3 for the

vertical coordinate. We note q the tracer of interest, ∇ the three-dimensional gradient operator and ∂m =

∂xm
(m = 1, 3). Following Redi (1982) a mixing operator D2 leading to diffusion along isopycnals ρ with

a diffusivity κ can be defined as

D2 = ∇ · (R∇q) =
3∑

m=1

∂m

(
3∑

n=1

rmn∂nq

)
, R = [rmn]1≤m,n≤3 , (2.1)

with R the following rotation tensor

rmn = κ

(
δmn −

(∂mρ)(∂nρ)

‖∇ρ‖2
)
, (2.2)

where δmn is the conventional Kronecker delta. This form of the tensor shows that the matrix R is

symmetric positive semi-definite (rmm ≥ 0 and |rmn| ≤ √
rmmrnn) and thus defines a diffusion ten-

sor. Moreover, by construction, the diffusive flux which takes the form F = (F (1), F (2), F (3)) with

F (m) =
3∑

n=1

rmn∂nq satisfies the orthogonality condition F · ρ⊥ = 0, with ρ⊥ the unit vector in the

diapycnal direction. In the limit that horizontal density gradients are much more smaller than vertical gra-

dients (i.e.,
√
(∂1ρ)2 + (∂2ρ)2/∂3ρ ≪ 1), a simpler form of the tensor, preserving the isopycnal form of

mixing, can be devised (Cox, 1987; Gent and McWilliams, 1990). This assumption corresponds to the

so-called small slope approximation, and reduces the tensor (2.2) to





rmn = κ δmn (1 ≤ m,n ≤ 2)

rm3 = r3m = −κ ∂mρ/∂3ρ (1 ≤ m ≤ 2)

r33 = κ ((∂1ρ)
2 + (∂2ρ)

2) /(∂3ρ)
2

(2.3)

This formulation of the rotated diffusion under the small slope approximation had also been derived early

by Solomon (1971) in a two-dimensional (x1, x3) case. Throughout this paper we consider the small slope

approximation and we allow an anisotropy in the diffusivities (i.e. κ1 6= κ2), the corresponding matrix

form of the tensor is

R =




κ1 0 κ1α1

0 κ2 κ2α2

κ1α1 κ2α2 κ1α
2
1 + κ2α

2
2




(2.4)

with α = (α1, α2, 0) = −(∂1ρ, ∂2ρ, 0)

∂3ρ
the neutral slope vector. It is straightforward to check that this

form of the tensor preserves the symmetry as well as the semi-positive definiteness of the full tensor (2.2).

For a laplacian diffusion of a tracer field q in an unbounded domain Ω = R
3, we can cast the corresponding

evolution problem over a time interval [0, T ] under a conservative form
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∂tq = D2(q) = ∇ · (R∇q) = ∇ · F in Ω× [0, T ],

q|t=0 = q0(x1, x2, x3) in Ω,
(2.5)

with q0 a given initial condition, and

F =




F (1)

F (2)

F (3)




=




κ1 (∂1q + α1∂3q)

κ2 (∂2q + α2∂3q)

α1F1 + α2F2



. (2.6)

This problem is here temporarily defined on an unbounded spatial domain in order to facilitate the theo-

retical study in sections 3 and 4. For bounded domains, we provide the necessary boundary conditions in

Sec. 5. Using the notations previously defined, the problem for the rotated biharmonic operator reads





∂tq = D4(q) = −D2(Ψ), with Ψ = D2(q), in Ω× [0, T ],

q|t=0 = q0(x1, x2, x3) in Ω,
(2.7)

For the biharmonic case, the diffusivities κ1 and κ2 in (2.4) must be replaced by
√
B1 and

√
B2 with B1 and

B2 the hyper-diffusivities. Following Griffies (2004) (Chap. 14), we formulate the biharmonic operator as

the composition of two rotated laplacian with coefficients
√
Bm (m = 1, 2) because this form ensures

that, at the continuous level, the variance of q is strictly dissipated. In the remainder of the paper we focus

on the initial value problems (2.5) and (2.7) with the tensor of rotation defined in (2.4).

Unless explicitly said differently, we will use throughout the paper the subscript m to denote the hori-

zontal directions, m = (1, 2).

2.2 Spatial Discretization of the Rotated Diffusion Operator

2.2.1 Semi-Discrete Considerations

The spatial discretization of the isopycnal mixing operator is a difficult problem which have been

thoroughly tackled by Cox (1987); Beckers et al. (1998, 2000); Griffies et al. (1998). We, first, briefly

introduce the delicacies associated with the implementation of the operator D2. Because the x1 and x2

directions are independent when adopting the small slope approximation, we consider only the problem

defined in the (x1, x3) plane. As derived in Beckers et al. (2000), the continuous formulation of the rotated

laplacian can be formulated as

D2(q) = ∂1

(
κ1

J1(q, ρ)

∂3ρ

)
− ∂3

(
κ1

∂1ρ

∂3ρ

J1(q, ρ)

∂3ρ

)

where J1(q, ρ) = ∂1q∂3ρ−∂1ρ∂3q is a Jacobian determinant. The main difficulty resides in the evaluation

of the J1(q, ρ)/∂3ρ term on a staggered grid. This term has to be evaluated at the cell interfaces referred

as to u-points and w-points in Fig. 1. Note that, usually, the isoneutral slope ∂1ρ/∂3ρ used in practice

is not the result of a discretization scheme only, but additional ad-hoc constraints taking the form of a

smoothing, tapering, or clipping procedure are applied; more details concerning this point are given in

Sec. 5. Defining the arithmetic average operators · (1) in the horizontal and · (3) in the vertical, and noting

that the natural position of the ∂1q and ∂1ρ (resp. ∂3q and ∂3ρ) terms is at u-points (resp. w-points),

4



several linear discretizations of the Jacobian determinant can be proposed using a semi-discrete view of

the problem:

• A simple discrete analog of the Jacobian J1 has been implemented in the early versions of the MOM-

GFDL 1 model (Cox, 1987; Danabasoglu and McWilliams, 1995), at u-points and w-points the dis-

cretization reads





J u
1 (q, ρ) = ∂3ρ


∂1q − ∂1ρ

∂3q
(3,1)

∂3ρ
(3,1)




J w
1 (q, ρ) = ∂3ρ

(
∂1q

(3,1) − ∂1ρ
(3,1) ∂3q

∂3ρ

) (2.8)

where q and ρ are subject to a double averaging in the x3 and x1 directions before differencing, which

makes this approach prone to a computational mode (Griffies et al., 1998). Note that the ∂3ρ in front of

the parenthesis has a passive role here because this is formally J1(q, ρ)/∂3ρ that we aim at discretizing.

• An other way to compute the Jacobian is by differencing before averaging, as proposed in Griffies et al.

(1998). In this case we have





J u
1 (q, ρ) = ∂3ρ


∂1q − ∂1ρ

[
∂3q

∂3ρ

](1,3)


J w
1 (q, ρ) = ∂3ρ

(
∂1q

(1,3)
− ∂1ρ

(1,3)
[
∂3q

∂3ρ

])
,

(2.9)

where the term in brackets could be simply replaced by ∂q/∂ρ, however we keep ∂3ρ explicitly to

clearly identify the isoneutral slopes.

• To obtain more symmetry between the u and w points we can define the following quantity at the corners

of the grid cells (sometimes referred as to Ψ-points)

J Ψ
1 (q, ρ) = ∂3ρ


∂1q

(3) − ∂1ρ
(3)

[
∂3q

∂3ρ

](1)


which gives

J u
1 (q, ρ) = J Ψ

1 (q, ρ)
(3)
, and J w

1 (q, ρ) = J Ψ
1 (q, ρ)

(1)
.

This discretization has the interesting property to define the isoneutral slopes at Ψ-points only, which

makes it more convenient to handle the tapering, clipping, or smoothing procedure. Indeed, for the

schemes (2.8) and (2.9) this procedure has to be done twice, at u and w points. However this discretiza-

tion has the major drawback not to reduce to the classical (1,−2, 1) stencil when the isoneutral slopes

vanish, which disqualifies it.

• We can suggest a last approach which would consist in providing more flexibility to the discretization by

introducing two sets of weights νn and µn in the problem. We define the operator · (ν) as the weighted

average of the four w-points surrounding a u-point, and · (µ) as the weighted average of the four u-

points surrounding a w-point. A generalization of scheme (2.9) is

1 Geophysical Fluid Dynamics Laboratory
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J u
1 (q, ρ) = ∂3ρ


∂1q − ∂1ρ





[
∂3q

∂3ρ

](ν)





J w
1 (q, ρ) = ∂3ρ

(
∂1q

(µ) − ∂1ρ
(µ)

[
∂3q

∂3ρ

])
,

(2.10)

The parameters νn and µn are set by requiring additional properties of the discretization scheme. An ex-

ample is the LINEAR1 scheme of Beckers et al. (2000) which sets the νn and µn coefficients to get the

most compact stencil in the cross-isopycnal direction to reduce the amount of spurious dianeutral mix-

ing. This scheme reduces to a (1,-2,1) stencil in the diagonal when the angle between the computational

grid and the isoneutral direction is ±45 degrees; this property is not satisfied by (2.9).

To our knowledge, three different schemes are currently in use in ocean models. The Nucleus for Euro-

pean Modeling of the Ocean (NEMO, Madec (2008)) and Coupled Large-scale Ice Ocean (CLIO, Goosse

et al. (2008); Mathieu et al. (1999)) models use the Cox (1987) discretization (2.8). In NEMO, an horizon-

tal two-dimensional laplacian acting to smooth the isopycnal slopes provides the extra diffusion needed

to stabilize the scheme (Cox, 1987; Mathieu and Deleersnijder, 1998; Griffies et al., 1998). In the Mod-

ular Ocean Model (MOM, Griffies (2010)) and Parallel Ocean Program (POP, Smith et al. (2010)) the

discretization (2.9) based on the tracer/density triads formalism (Fig. 1) is used. A triad is defined as an

elementary computational stencil of the rotated operator (Griffies et al., 1998). In MOM, an extra vertical

smoothing of the ∂3ρ term is used. Finally, even if not explicitly documented, the scheme (2.10) is imple-

mented in the σ-coordinate Regional Oceanic Modeling System (ROMS, Shchepetkin and McWilliams

(2005)) and is routinely used so far to rotate along geopotentials the explicit diffusion in the sponge lay-

ers near the open boundaries. We describe below the procedure to compute the weighted averages, and

we show that this scheme can also be expressed in a tracer triads formalism. In the present study, the

MOM/POP discretization is referred as to TRIADS, the NEMO/CLIO discretization as to COX, and the

ROMS discretization as to SW-TRIADS (SW stands for switching).

From our experience, besides the instability identified by Griffies et al. (1998), the TRIADS and

COX schemes provide very similar results. The differences are greater between the TRIADS and the

SW-TRIADS schemes, we thus focus our study on those two schemes only.

2.2.2 Discrete Fluxes

We define δ1qi+ 1
2
,j,k = qi+1,j,k − qi,k and δ3qi,j,k+ 1

2
= qi,j,k+1 − qi,j,k. The metric terms (∆x2)i+ 1

2
,j

and (∆x3)i+ 1
2
,j,k are the horizontal and vertical measures of the corresponding grid-box interfaces and

(∆x1)i+ 1
2
,j is the distance between qi+1,j,k and qi,j,k. The vertical index k varies from k = 1 for the first

grid cell next to the ocean floor to k = N at the surface, N corresponds to the number of vertical levels of

the discretization.

The interfacial F (1) flux discretized using the TRIADS scheme reads

F
(1,triads)

i+ 1
2
,j,k

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k




δ1qi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

−
δ1ρi+ 1

2
,j,k

(∆x1)i+ 1
2
,j

· 1
4





δ3qi,j,k− 1
2

δ3ρi,j,k− 1
2

+
δ3qi+1,j,k+ 1

2

δ3ρi+1,j,k+ 1
2

+
δ3qi+1,j,k− 1

2

δ3ρi+1,j,k− 1
2

+
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2






 .

(2.11)
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(i+ 1,k+ 1)

(i+ 1,k)

(i+ 1,k− 1)

(i,k+ 1)

(i− 1,k+ 1)

(i− 1,k)

(i− 1,k− 1)

(i,k− 1)

(i,k)

8

3

11

64

12

5

27 1

10
9

u points

w points

ρ,q points

Fig. 1. Grid stencil, constructed upon 12 triads, involved in the computation of the rotated laplacian in the (x1,x3)

plane. Each triad has an associated quarter cell (gray shaded areas). The zonal F (1) and vertical F (3) components of

the neutral diffusive flux are computed at the cell interfaces surrounding the (i, k) location (dark grey shaded points).

The numbering of the triads is meant to be consistent with the one used in Griffies (2004) (Chap. 16).

Using the notations introduced in Fig. 1, we see that the TRIADS scheme uses the four triads labelled

2,4,5, and 6 with the same weight w = 1/4. The derivatives in the x1-direction are computed along the

horizontal segment of a triad while the derivatives in the x3-direction are computed along the vertical

segment. Alternatively, the spirit of the LINEAR1 scheme introduced in Beckers et al. (2000) is to weight

those triads depending on the orientation of the slope by keeping only two of them. If we assume a stable

stratification (i.e. δ3ρi,j,k+ 1
2
< 0, ∀k), the SW-TRIADS scheme reads

F
(1,sw-triads)

i+ 1
2
,j,k

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k




δ1qi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

− 1

2





w+
i+ 1

2
,j,k

(∆x1)i+ 1
2
,j



δ3qi,j,k− 1

2

δ3ρi,j,k− 1
2

+
δ3qi+1,j,k+ 1

2

δ3ρi+1,j,k+ 1
2




+
w−

i+ 1
2
,j,k

(∆x1)i+ 1
2
,j



δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

+
δ3qi+1,j,k− 1

2

δ3ρi+1,j,k− 1
2








 .

(2.12)

with

w+
i+ 1

2
,j,k

= max(δ1ρi+ 1
2
,j,k, 0), w−

i+ 1
2
,j,k

= min(δ1ρi+ 1
2
,j,k, 0). (2.13)

Depending on the orientation of the slope, either triads 4 and 5 are selected, or triads 2 and 6. This results

in a compact four point stencil for the discretization of the F
(1,sw-triads)

i+ 1
2
,j,k

interfacial flux. The cancellation

of the contribution of cross-isopycnal points with the SW-TRIADS scheme tends to reduce the amount of

spurious diapycnal mixing associated with discretization errors. This point will be exemplified in Sec. 6.

The discretization of the vertical flux F (3) does not raise any additional difficulty for the TRIADS scheme

and can be found in Griffies et al. (1998). We show in the next subsection a way to construct the vertical
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flux F
(3,sw-triads)

i,j,k+ 1
2

so that the SW-TRIADS scheme satisfies a globally diminishing tracer variance.

2.3 Global Tracer Variance Dissipation

As shown in Griffies et al. (1998), the TRIADS scheme has been constructed to ensure that the dis-

cretized operator globally satisfies the tracer variance dissipation property of the continuous operator. This

scheme is designed on the basis of the variational principle. A weak form of the problem under investiga-

tion can be defined through

G [q] = −1

2

∫

Ω
∇q · (R∇q) dΩ (2.14)

where G [q] is a functional whose Frèchet derivative δG [q]/δq gives the diffusion operator. Due to the

symmetric positive semi-definite property of the diffusion tensor R, G is negative semi-definite. This

property implies that the corresponding operator acts to decrease the total tracer variance, indeed Griffies

et al. (1998) showed that ∂t

∫

Ω
q2 dΩ = 4G [q]. Unlike the COX scheme, the TRIADS scheme provides

a negative semi-definite functional at the discrete level, thus ensuring that the corresponding discretized

operator is globally strictly dissipative (Griffies et al., 1998; Smith and Gent, 2004; Griffies, 2004). The

reader is referred to Griffies (2004) (Chap. 16) for more details about the foundations for the dissipation

functional and its discretization.

Consistent with the notations introduced in Griffies (2004) (Chap. 16) the discretization of the func-

tional G , in the (x1, x3) plane, is given by

G (x1−x3)[q] = −1

2

∑

i,k

12∑

n=1

A(n)V (n)

[
δ1q(n)

∆x1(n)
+ α1(n)

δ3q(n)

∆x3(n)

]2
≡
∑

i,k

(
12∑

n=1

L
(n)
i,k

)
, (2.15)

where the subscripts (i, k) run over all the cells of the computational domain. In (2.15), A(n) is the diffu-

sivity associated with triad n, V (n) is the volume of quarter-cell n, ∆x1(n) and ∆x3(n) are respectively

the length of the horizontal and vertical segments of triad n. For a given cell (i, k), the contribution to

the discrete functional is given by
12∑

n=1

L
(n)
i,k which corresponds to 12 nonpositive components associated

with 12 quarter cells, built in such a way that there is a unique volume V (n) and diffusivity A(n) for

each quarter-cell (represented as light gray shaded areas in Fig. 1). This procedure ensures that G (x1−x3)[q]

is negative semi-definite. For example, the contribution of triad 1 to the discretized diffusion operator is

given by

δL
(1)
i,k

δqi,k
= −A(1)V (1)

(
δ1q(1)

∆x1(1)
+ α1(1)

δ3q(1)

∆x3(1)

)



1

∆x1(1)︸ ︷︷ ︸
contribution to F (1)

− α1(1)

∆x3(1)︸ ︷︷ ︸
contribution to F (3)




(2.16)

which shows that when a triad is used to compute F (1), the same triad is used to compute F (3). The only

difference between the TRIADS and the SW-TRIADS schemes lies in the weighting of the 12 triads, the

SW-TRIADS scheme simply cancels the contribution of certain triads depending on the orientation of the
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isoneutral slope α1, which is equivalent to set A(n) to zero for those triads. This means that once a triad

n is rejected during the computation of F (1,sw-triads) it can’t be used again to compute F (3,sw-triads) because

the diffusivity A(n) associated with this triad is zero. If we follow this simple rule, we find that there is a

unique way to define the vertical interfacial flux F
(3,sw-triads)

i,j,k+ 1
2

:

F
(3,sw-triads)

i,j,k+ 1
2

= κ1

(∆x3)i,j,k+ 1
2

δ3ρi,j,k+ 1
2




w−

i− 1
2
,j,k

(∆x1)i− 1
2
,j




δ1ρi− 1
2
,j,k

(∆x1)i− 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi− 1

2
,j,k

(∆x1)i− 1
2
,j




+
w−

i+ 1
2
,j,k+1

(∆x1)i+ 1
2
,j



δ1ρi+ 1

2
,j,k+1

(∆x1)i+ 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi+ 1

2
,j,k+1

(∆x1)i+ 1
2
,j




+
w+

i− 1
2
,j,k+1

(∆x1)i− 1
2
,j



δ1ρi− 1

2
,j,k+1

(∆x1)i− 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi− 1

2
,j,k+1

(∆x1)i− 1
2
,j




+
w+

i+ 1
2
,j,k

(∆x1)i+ 1
2
,j




δ1ρi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi+ 1

2
,j,k

(∆x1)i+ 1
2
,j




× 1

W

(2.17)

where W corresponds to the number of selected triads, i.e. the number of nonzero w± terms. For W = 2,

it is easy to check that the rotated operator discretized with the SW-TRIADS scheme is based on exactly

six triads and is consistent with the functional discretization (2.15) where the contribution of the six other

triads is rejected by setting their associated diffusivities to zero. As illustrated in Fig. 2, we have W = 2

for the common situations encountered in ocean models. There are however some degenerated cases (Fig.

2, e) and f) ) for which W 6= 2. In those very specific cases, the scheme does not satisfy the functional

discretization because some triads are used to compute F (3) with a different weight than it is used to

compute F (1). We can show easily that when the stratification has a 2∆x1 mode, as studied in Griffies

et al. (1998), the SW-TRIADS schemes ensure a global tracer variance reduction.

The SW-TRIADS scheme is a special instance of the TRIADS scheme, it thus makes the implementa-

tion of this scheme as straightforward. When spatially variable diffusion coefficients are used, each triad

must be weighted by the corresponding coefficient. Usually, those coefficients are computed at the hori-

zontal interfacial u points. In this case, in (2.17) the constant diffusivity κ1 should be dropped and each

coefficient w± must be multiplied by the corresponding diffusivity. Because each triad crosses exactly one

u point (Fig. 1) there is a unique diffusivity associated with a given triad.

It is worth mentioning that the tracer variance diminishing property should not be confused with the

total variation diminishing (TVD) property which is monotonicity preserving. As we show in Sec. 6, the

rotated operators discretized with the TRIADS or the SW-TRIADS scheme do not preserve monotonicity

(Mathieu and Deleersnijder, 1998; Beckers et al., 2000).

Because the rotated biharmonic corresponds to two successive rotated Laplacian, it does not raise any

additional difficulties as long as the spatial discretization is concerned. In the two following sections we

consider the time integration of the rotated operators, and we assume that the slope vector α is spatially

constant and that the grid is uniform to make the stability analysis tractable. For a constant slope, the

discrete approximation D̃2 of the rotated operator at the position (i, j, k) is given by

9



gρ�

ρ0

x1

a) b)

c) d)

e) f)

Fig. 2. Computational stencil, represented as triads (black lines), involved in the computation of the rotated lapla-

cian with the SW-TRIADS scheme for different orientations between the computational grid (dashed lines) and the

isoneutral direction which corresponds to horizontal lines in the (x1,gρ′/ρ0) frame. In cases a) to d), 6 triads are

selected while 8 triads are selected in e) and 4 in f).
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(
D̃2

)
i,j,k

=
F

(1)

i+ 1
2
,j,k

− F
(1)

i− 1
2
,j,k

∆x1∆x2∆x3

+
F

(2)

i,j+ 1
2
,k
− F

(2)

i,j− 1
2
,k

∆x1∆x2∆x3

+
F

(3)

i,j,k+ 1
2

− F
(3)

i,j,k− 1
2

∆x3

=
1∑

p=−1

1∑

l=−1

µ
(1)
p,l qi+p,j,k+l +

1∑

p=−1

1∑

l=−1

µ
(2)
p,l qi,j+p,k+l,

(2.18)

with

[µ
(m)
p,l ]−1≤p,l≤1 =

κm

∆x2
m




(βm − 1)
sm
2

sm(sm − βm) (1 + βm)
sm
2

1− smβm −2(1 + s2m) + 2smβm 1− smβm

(1 + βm)
sm
2

sm(sm − βm) (βm − 1)
sm
2




(2.19)

where sm =
∆xm

∆x3

αm is the grid slope ratio, βm ≡ 0 gives the TRIADS scheme and βm = Sign(1, αm)

2 the SW-TRIADS scheme. The rotated Laplace operator in the xm-direction is thus discretized on a

centered 9-point stencil if βm = 0 and on a more compact 7-point stencil if |βm| = 1. As far as the rotated

Biharmonic is concerned, the discretization is based on a 25-point stencil with the TRIADS and a 19-point

stencil with the SW-TRIADS. We do not investigate this possibility in this study, but the parameter βm

could be used as a degree of freedom to derive alternative properties of the discretization.

The grid slope ratio sm, introduced in (2.19), is a key dimensionless parameter that will be used

throughout this paper. This parameter corresponds to the ratio between the isoneutral slope αm and the

aspect ratio ∆x3/∆xm. We thus have sm = ±1 for a ±45 degrees slope. Values of |sm| greater than 1

generally lead to a degradation of the accuracy of the rotated diffusion due to the need for extrapolation to

compute the isoneutral direction. For typical applications with a coarse resolution global climate model,

|sm| can reach O(10) values (e.g.; sm = 10 for αm = 5× 10−3, ∆x1 = 100 km, and ∆x3 = 50 m). Note

that the use of slope clipping or tapering sets an upper bound on sm which can’t be arbitrarily large in this

case. Large grid slope ratios should not be confused with large isoneutral slopes, meaning that large values

of sm can exist even under the small slope approximation. In the context of a σ to geopotentials rotation,

as in Marchesiello et al. (2009), sm corresponds to the so-called hydrostatic inconsistency number.

3 Time Discretization of the Isoneutral Laplacian

3.1 Proposed Schemes

The overall objective of this section is to derive a time-integration scheme whose stability limit is

imposed by the horizontal components of the tensor. In this case the constraint on the time step ∆t

of the temporal discretization would be equivalent between the rotated and the non-rotated operators.

Moreover, because we are considering a diffusive process, we do not feel necessary to strive to design a

high-order scheme in time, the aim is to keep the study as simple as possible. The rotated laplacian D2,

with neutral slopes αm and diffusivities κm, can be linearly decomposed into a sum of three functions

D2(q) =
∑3

m=1 Gm(q), where

2 The Sign transfer function is defined as Sign (x, y) = |x| if y ≥ 0 and −|x| if y < 0.
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Gm(q) = ∂m (κm [∂mq + αm∂3q]) + ∂3 (αmκm∂mq) (m = 1, 2),

G3(q) = ∂3
([
κ1α

2
1 + κ2α

2
2

]
∂3q

)
.

(3.1)

We consider that the piece G0(q) = G1(q)+G2(q) is always treated explicitly in time-integration schemes,

whereas G3 represent a stiff and unidirectional contribution that can be treated implicitly, if needed. The

integration of the G0 term in an implicit manner would require the solution of a complicated implicit sys-

tem in the horizontal direction which would be laborious to implement in parallel and would significantly

affect the performances of the numerical model. The common practice in climate models is to use a stan-

dard backward Euler scheme to advance the vertical G3 component of the tensor (Cox, 1987). Using the

time step ∆t > 0, we note qn the approximation qn ≈ q(tn), with tn = n∆t. The semi-discretized version

of the scheme introduced by Cox (1987) is

qn+1 = qn +∆t
{
G0(q

n) +G3(q
n+1)

}
. (3.2)

In the following this scheme will be referred as to (IMP) scheme. Moreover the fully explicit version, i.e.

with G3(q
n) instead of G3(q

n+1) in (3.2), will be denoted by (EXP).

Following the work of Douglas (1962), Andreev (1967) or Craig and Sneyd (1988) (see also in ’t

Hout and Welfert (2009) for a review), split schemes such as alternating direction implicit (ADI) have

proved valuable in the approximation of the solutions of multi-dimensional parabolic problems with mixed

derivatives. This type of scheme is usually implemented with unidirectional implicit corrector steps in

each spatial direction to pursue an unconditional stability. Alternatives to this scheme allowing one or

more spatial directions to be treated explicitly can be found in Douglas and Gunn (1964); van der Houwen

and Verwer (1979) or Hundsdorfer (2002). Those authors propose a multi-stage method : at the first stage,

a consistent (explicit) approximation of the operator is evaluated, while all succeeding stages serve to

improve the stability. This scheme has been called Method of Stabilizing Corrections (referred as to (MSC)

hereafter) in van der Houwen and Verwer (1979) and seems particularly well suited for our problem

because it provides a consistent, efficient and easy-to-implement scheme with degrees of freedom to ensure

good stability properties. Moreover, we see in Sec. 4 that this approach can be extended to the time-

integration of the rotated biharmonic. For the diffusion problem (2.5), the (MSC) scheme reads





q⋆ = qn +∆t {G0(q
n) +G3(q

n)}

qn+1 = q⋆ + θ∆t {G3(q
n+1)−G3(q

n)}
(3.3)

where θ > 0 is a real parameter. Note that for our purpose we only allow a stabilizing correction in the

vertical direction. In (3.3), θ = 0 gives the (EXP) scheme and θ = 1 the (IMP) scheme. In the next

section we study the stability range of the (EXP), (IMP) and (MSC) methods subject to the TRIADS or

SW-TRIADS discretizations in space.

3.2 Important Results

We give here the important results of our study on the laplacian operator, the associated proof is pro-

vided in Sec. 3.3. Those results are given in terms of the parabolic Courant number σm = κm∆t/∆x2
m.

In numerical models, the value of this parameter usually depends on the time-scheme used to handle the

hyperbolic terms. Let us consider a flow-dependent diffusivity κm = γ|um|∆xm, with um the velocity
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component in the xm-direction and γ a constant; we get σm = γ|u|∆t/∆xm. For example, if the temporal

integration is done using a Leap-frog third-order Adams-Moulton (LF-AM3) predictor-corrector method,

as in ROMS, the theoretical stability limit is |u1|∆t/∆x1 + |u2|∆t/∆x2 ≤ 1.587/π ≈ 0.5 (Shchepetkin

and McWilliams, 2005) which leads to σ1 + σ2 . 0.5γ. As an illustration, it can be shown that γ = 1/2

provides a diffusive term equivalent to the implicit diffusion of the first-order upwind advection scheme,

and would correspond to σ1 + σ2 ≈ 1/4.

Non-Rotated Laplacian

When using an Euler forward scheme, the stability limit of the two-dimensional horizontal laplacian,

discretized on a five-point stencil 3 , is

σ1 + σ2 ≤
1

2
. (3.4)

Rotated Laplacian

• TRIADS discretization

· The (EXP) scheme is stable for

σ1(1 + s21) + σ2(1 + s22) ≤
1

2
(3.5)

which is always more restrictive than (3.4).

· The stability limit of the (IMP) scheme is given by (3.4).

· The same stability constraint (3.4) is obtained for the (MSC) scheme when θ is chosen such that

(s21σ1 + s22σ2)θ =
1

2
max

{
−1 + 2∆t

[
σ1(1 + s21) + σ2(1 + s22)

]
, 0
}
. (3.6)

The value of θ ranges from θ = 0 when the (EXP) scheme is stable to θ = 1 when σ1 + σ2 = 1/2.

The amount of implicit diffusion is thus always smaller with the (MSC) scheme compared with the

(IMP) scheme.

3 A nine-point discrete Laplacian operator would provide a stability criterion which is somewhat less restrictive

than for the usual five-point one.
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• SW-TRIADS discretization

· The (EXP) scheme is stable for

σ1 max
{
s21, 1

}
+ σ2 max

{
s22, 1

}
≤ 1

2
(3.7)

which shows that for s21 ≤ 1 and s22 ≤ 1 the stability constraint is the same than the non-rotated

operator.

· As for the TRIADS case, the (IMP) scheme is stable if condition (3.4) is satisfied.

· The stability condition (3.4) applies to the (MSC) scheme for

θ = max

{
|s1| − 1

|s1|
,
|s2| − 1

|s2|
, 0

}
(3.8)

We now provide the methodology to derive those stability conditions.

3.3 Proof Through Linear Stability Analysis

We first assume that the tracer q can be Fourier decomposed as

q(x1, x2, x3, t) =
∑

k

Ak(t) exp

(
i

3∑

m=1

kmxm

)
, i =

√
−1 (3.9)

with k = (k1, k2, k3) the three-dimensional wave-vector. Substitution in (2.5) leads to the linear damping

equation

dq

dt
= −ηq, with η =

2∑

m=1

κm(km + αmk3)
2, (3.10)

and subsequently

q(tn+1 = tn +∆t) = exp (−η∆t) q(tn) = λ q(tn). (3.11)

λ = e−η∆t provides the exact damping obtained with a “perfect” discretization. We can derive the approx-

imate damping λ̃ provided by the space-time discretization

q(tn+1) = λ̃(z11, z22, z33, z31, z13, z32, z23)q(tn) (3.12)

where the zmn terms are all real and obtained by substitution of discrete Fourier modes in (2.18) and

multiplication by ∆t:

zmm = −2σm(1− cosφm) m = 1, 2

z33 = −2(s21σ1 + s22σ2)(1− cosφ3)

zm3 = z3m = −smσm [sinφm sinφ3 − βm(1− cosφm)(1− cosφ3)] m = 1, 2

(3.13)
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with φm = km∆xm (|φm| ≤ π) the normalized Fourier frequencies. Using those notations, we obtain

η∆t =
∑2

m=1 σm (φm + smφ3)
2

in (3.11).

The response function of the (MSC) time scheme (3.3) subject to the spatial discretization (2.18-2.19)

is

λ̃ = 1 +
z0 + z33
1− θz33

, z0 =
2∑

m=1

(zmm + zm3 + z3m). (3.14)

Stability of the scheme under investigation is obtained for |λ̃| ≤ 1.

In the subsequent paragraphs we first show that the condition λ̃ ≤ 1 is satisfied whatever the value of θ,

and whatever the spatial discretization. Then, we show that the TRIADS scheme always provides a more

restrictive stability range than the SW-TRIADS scheme. Eventually, we derive the requirements to satisfy

the constraint λ̃ ≥ −1 which ensures that the corresponding scheme is stable.

Upper Bound on λ̃

To emphasize the fact that the zmm terms are negative, we define ym =
√
2σm(1− cosφm), and y3 =√

y231 + y232 ( with y3m =
√
2s2mσm(1− cosφ3) ) so that zmm = −y2m. Moreover, we introduce the vector

vm = (sinφm, δm(1− cosφm)), with δm such that βm = −δmδ3 and |δm| ≤ 1. We can easily show that

zm3 = z3m = −smσm(vm · v3) (3.15)

and for m = 1, 2 (thanks to the condition |δm| ≤ 1)

σm‖vm‖2 ≤ σm

{
sin2 φm + (1− cosφm)

2
}
= y2m, (3.16)

where ‖ • ‖ defines the ℓ2-norm. (3.15) and (3.16) imply that

−z33 −
2∑

m=1

(zmm + zm3 + z3m) = y21 + y22 + y23 + 2s1σ1(v1 · v3) + 2s2σ2(v2 · v3)

≥
2∑

m=1

σm‖vm‖2 + s2mσm‖v3‖2 + 2smσm(vm · v3)

=
2∑

m=1

σm‖vm + smv3‖2 ≥ 0.

(3.17)

This result is sufficient to show that λ̃ ≤ 1, indeed thanks to (3.14) we have

λ̃ = 1−
{
−z33 −

∑2
m=1(zmm + zm3 + z3m)

1 + θy23

}
≤ 1, (3.18)

because we showed that the term in curly brackets is positive. Note that this result is valid whatever |βm| ≤
1 and hence whatever the spatial discretization. This result means that stability of the time discretization

is obtained for λ̃ ≥ −1. In the following we first show that if this condition is satisfied by the TRIADS

scheme the same applies to the SW-TRIADS scheme.
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Fig. 3. Optimized values θ⋆ (for σ2 = 0) of the stabilizing parameter θ obtained with the TRIADS scheme (left) and

the SW-TRIADS scheme (right) with respect to σ1 and s1.

Effect of the Cross-Terms

As shown in (3.13), the difference between the two spatial discretizations under consideration appears

only in the z3m terms. The definition of the slope dependent parameter βm for the SW-TRIADS scheme is

such that for all sm, βmsm = |sm|. Substitution in (3.13) leads to

− z3m = σm [sm sinφm sinφ3 − |sm|(1− cosφm)(1− cosφ3)] ≤ σmsm sinφm sinφ3. (3.19)

This inequality shows that the cross-terms discretized using the SW-TRIADS scheme always provide a

less restrictive stability constraint than when using the TRIADS scheme (which corresponds to βm = 0 in

(3.13)). It means that the condition λ̃ ≥ −1 is more difficult to satisfy with the TRIADS discretization.

We thus consider in the remainder of this section the most ”dangerous” case βm = 0. We provide in App.

B the results obtained for a non-zero value of βm with the SW-TRIADS discretization.

Stability Conditions

Starting from (3.14), stability is obtained for

λ̃ ≥ −1 ⇔
2∑

m=1

ϕm − 2(1 + θy23) ≤ 0, ϕm = y2m + y23m − z3m − zm3. (3.20)

Taking sm = 0 (i.e. y3m=z3m=0) and θ = 0 in (3.20) we find the stability constraint y21 + y22 ≤ 2 which

corresponds to the usual constraint (3.4) obtained when the horizontal laplacian is integrated using an

Euler explicit scheme. Ideally, this is the stability constraint we are targeting for the general case sm 6= 0

so that the rotated Laplace operator does not involve the use of a smaller time step than the non-rotated

Laplace operator. The stability condition (3.20) can be more conveniently written as

ϕθ
1 + ϕθ

2 ≤ 2, with ϕθ
m = ϕm − 2θy2m3. (3.21)
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The stability analysis therefore requires the derivation of a proper upper bound for the ϕθ
m functions. For

clarity, we describe the computation of such an upper bound in App. A, and we recall here only the final

result :

ϕθ
1 + ϕθ

2 ≤ 2σ1M (θ, s1) + 2σ2M (θ, s2) (3.22)

where

M (θ, sm) = 1 + s2m(1− 2θ) +
√
(1 + s2m) (1 + s2m(1− 2θ)2). (3.23)

Combining (3.21) and (3.22) we get the following criteria for stability,

2σ1M (θ, s1) + 2σ2M (θ, s2) ≤ 2. (3.24)

In the fully-explicit (EXP) case (i.e. θ = 0) we get M (0, sm) = 2(1+ s2m), the associated stability criteria

reads

σ1(1 + s21) + σ2(1 + s22) ≤
1

2
. (3.25)

This result leads to the stability condition (3.5) and is consistent with the result found in Mathieu et al.

(1999) (eqn. 31). Furthermore, for θ = 1 (i.e.; the (IMP) scheme), we get M (1, sm) = 2 and thus σ1+σ2 ≤
1/2 which corresponds to the stability limit of the non-rotated operator. This result shows that by treating

implicitly the vertical component of the tensor there is no additional constraint arising from the cross-

terms. Finally, for the (MSC) scheme the optimal value of θ providing a minimum of implicit diffusion is

solution of the equation σ1M (θ, s1) + σ2M (θ, s2) = 1. However, the analytical solution of this equation

is extremely complex and would be impractical anyway for real applications. We, therefore, proceed in a

more conservative way by noting that for θ ≤ 1

M (θ, sm) ≤ M ‡(θ, sm) = 2(1 + s2m)− 2θs2m. (3.26)

It is now straightforward to determine the analytical solution θ⋆ of the equation σ1M
‡(θ, s1)+σ2M

‡(θ, s2) =

1 :

(s21σ1 + s22σ2)θ
⋆ =

1

2
max

{
−1 + 2(1 + s21)σ1 + 2(1 + s22)σ2, 0

}
. (3.27)

We can check that θ⋆ = 0 if the (EXP) scheme is stable and θ⋆ = 1 for σ1 + σ2 = 1/2. In Fig. 3 we

show the values of the stabilizing parameter θ⋆ associated with the TRIADS scheme as well as the values

of the stabilizing parameter obtained in App. B with the SW-TRIADS. In general, we see that the value

of θ required to maintain stability of the scheme can be smaller than 1 in numerous cases and hence that

splitting errors associated with the (IMP) scheme could be reduced.

3.4 Non-oscillatory Scheme

Throughout the previous subsection we have considered the requirement |λ̃| ≤ 1 which is a necessary

condition for stability. However a more severe condition 0 ≤ λ̃ ≤ 1 may be required to ensure a non-

oscillatory behavior of the temporal integration (Mathieu et al., 1999). This corresponds to the so-called

”no flip-flop” condition, as opposed to the condition |λ̃| ≤ 1 which allows a flip-flop behavior in time

unlike the exact solution of the problem under investigation (Cushman-Roisin and Beckers, 2011, Chap.
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5). Indeed, we see in (3.12) that negative values of λ̃ would allow the solution to oscillate at each time step

because λ̃, λ̃2, λ̃3, ... would change sign. It is straightforward to extend the results described in Sec. 3.3 to

the ”no flip-flop” case. In the non-rotated case, (3.4) reduces to

σ1 + σ2 ≤ 1/4, (3.28)

which means that the time step must be divided by two. In the rotated case, the (EXP) scheme satisfies the

condition λ̃ ≥ 0 for

σ1(1 + s21) + σ2(1 + s22) ≤
1

4
. (3.29)

For the (IMP) scheme, the absence of flip-flop requires

σ1

(
1 +

√
1 + s21

)
+ σ2

(
1 +

√
1 + s22

)
≤ 1

2
(3.30)

which is the condition used in the CLIO model to set ∆t (Mathieu et al., 1999). The inequality (3.30)

shows that the no flip-flop condition is satisfied under a stability constraint more restrictive than (3.28). In

the case of the (MSC) scheme, the no flip-flop condition is achieved if (3.28) is satisfied and if θ is chosen

such that

(s21σ1 + s22σ2)θ
⋆ =

1

2
max

{
−1 + 4(1 + s21)σ1 + 4(1 + s22)σ2, 0

}
. (3.31)

For this value of θ the scheme satisfies the ”no flip-flop” condition if the horizontal terms do, which

reduces to (3.28). In (3.31), the value of θ⋆ varies from θ⋆ = 0 when (3.29) is satisfied to θ⋆ = 2 when

σ1 + σ2 = 1/4. The aim here is not to claim that flip-flops shouldn’t be allowed. Indeed, the widely used

horizontal laplacian advanced with a forward Euler scheme allows flip-flops for 1/4 ≤ σ1 + σ2 ≤ 1/2

and it didn’t turn out to be problematic in practice. This paragraph was meant to illustrate that, unlike

the (IMP) scheme which is restricted by the cross-terms, the (MSC) scheme is general enough to ensure

additional properties of the time discretization like the absence of flip-flops.

3.5 Comments

The literature on multi-dimensional parabolic problems with mixed derivatives has been focused on

demonstrating the stability of the method of stabilizing corrections (and/or the ADI method). To our

knowledge, there are no systematic studies on the impact of the stabilizing step on the accuracy of the

solution. This point is discussed in this section and turns out to be very helpful to anticipate the behavior

of the scheme in practical situations.

3.5.1 Spatial Discretization

In Fig. 4 we show the amplification factor obtained when the (EXP) scheme is stable. Because in

this case there are no splitting errors, this figure is indicative of the differences between the two spatial

discretizations under consideration. To make the interpretation of the results easier, and because we saw

earlier that the advective terms are likely to impose the condition σ1 + σ2 < 1/4, we consider the no

flip-flop case. In the figure, we can’t formally identify the direction of the computational grid because it

represents a wavenumber space, but it is instructive to look at the amplification factor in several directions.

Using (3.9), we find that ∇q and (k1, k3) are collinear. Moreover it is straightforward to see that the

dianeutral direction and ρ⊥ = (−α1, 1) are collinear too, as well as the isoneutral direction and ρ‖ =
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SW-TRIADS, s1 = 1/2, σ1 = 1/5 SW-TRIADS, s1 = 2, σ1 = 1/20

TRIADS, s1 = 2, σ1 = 1/20TRIADS, s1 = 1/2, σ1 = 1/5

EXACT, s1 = 1/2, σ1 = 1/5 EXACT, s1 = 2, σ1 = 1/20

Fig. 4. Exact amplification factor in the (φ1, φ3) plane for σ1 = 1/4(1 + s21) (i.e.; when the (EXP) scheme is stable)

with s1 = 1/2 (top. left) and s1 = 2 (top,right) in the two-dimensional (x1,x3) case (i.e. κ2 = 0). Amplification

factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle, right for s1 = 2)

and with the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2) for the same values

of σ1. The thick black line is D1 = 0, the thick gray line is D2 = 0.
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(1, α1). We specifically look at two directions in the (φ1, φ3) plane corresponding to two different angles

between ∇q and the isoneutral/dianeutral direction :

• D1 = φ1 + s1φ3 = 0 (i.e.; ∇q · ρ‖ = 0) corresponds to the direction along which ∇q is perpendicular

to the isoneutral direction. In this case, q is constant in the isoneutral direction (because the iso-q lines

are perpendicular to ∇q). Because an isoneutral mixing operator should not affect a tracer constant in

the neutral direction, we expect the amplification factor λ to be equal to one along this line, otherwise

it would indicate that the slope is computed in an inaccurate way and that diapycnal mixing occurs.

• A perpendicular to D1 is D2 = φ3 − s1φ1 = 0 (i.e.; ∇q · ρ⊥ = 0) which corresponds to the direction

along which ∇q is aligned with the isoneutral direction. In this case, we see from Fig. 4 (top panels)

that the exact amplification factor is equivalent to the one of a one-dimensional laplacian, indeed we

would have η∆t = σ1(1 + s21)
2φ2

1.

Along the line D1 = 0, the SW-TRIADS always provide a damping in better agreement with the exact

one, compared to the TRIADS scheme, thus indicating a more accurate computation of the direction of

diffusion for s1 = 1/2 as well as s1 = 2. We see that, for φ3 = 0, all the discretizations have the same

behavior and that the mode |φ1| = π is effectively damped. This was expected because the difference

between the TRIADS and SW-TRIADS schemes lies in the cross-terms which vanish for φ3 = 0. Unlike

the SW-TRIADS, the TRIADS scheme has also the property to efficiently damp the checkerboard mode

(|φ1|, |φ3|) = (π, π), whatever the grid slope ratio (Fig. 4). The lack of damping associated with the SW-

TRIADS is not problematic to solve the initial value problem (2.5) because we assume some regularity of

the initial condition, and the checkerboard mode isn’t present in this case. However, when advective terms

are considered, they can allow the creation and accumulation of dispersive errors which are expected to be

controlled by diffusive processes. We usually do not rely on the rotated operator to damp small scale noise

in the vertical direction because the vertical mixing parameterization does it efficiently (otherwise grid-

scale noise would arise when an horizontal laplacian is used). In the horizontal direction, those operators

are generally the only source of numerical filtering, and we thus expect them to control small-scales noise.

For example, for s1 = 1/2, the TRIADS scheme does it pretty efficiently while the SW-TRIADS scheme

damps the 2∆x1 mode (|φ1| = π) only for well-resolved scales in the vertical (|φ3| ≤ π/2). Note that it is,

however, expected that the 2∆x3 mode (|φ3| = π) is already significantly damped by the vertical mixing

scheme. The weak damping with the SW-TRIADS scheme can be seen also along the line D2 = 0. In this

direction, the exact amplification factor and the TRIADS scheme ensure a monotonic damping, indeed

λ monotonically decreases when we go from well-resolved to poorly-resolved scales (i.e. when |φ1| or

|φ3| increase). This property is not satisfied by the operator discretized with the SW-TRIADS. We thus

expect the TRIADS to provide a better control of numerical noise and the SW-TRIADS to provide a more

accurate computation of the direction of diffusion. Because spurious diapycnal mixing corresponds to an

irreversible mixing error, this type of error can be considered as more harmful than dispersive errors.

3.5.2 Space-Time Discretization

We show in Fig. 5 the amplification factor for s1 = 1/2 and s1 = 2 when the (MSC) scheme is used

with values of θ chosen such that there are no flip-flops in time. If we note ∆tρ the time step of the (EXP)

scheme and ∆t0 the time step of the (MSC) scheme, we get the ratio µ2 defined as

µ2 =
∆t0
∆tρ

= 1 + s21.
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SW-TRIADS, s1 = 1/2, σ1 = 1/4 SW-TRIADS, s1 = 2, σ1 = 1/4

TRIADS, s1 = 2, σ1 = 1/4TRIADS, s1 = 1/2, σ1 = 1/4

EXACT, s1 = 1/2, σ1 = 1/4 EXACT, s1 = 2, σ1 = 1/4

Fig. 5. Same as Fig. 4 for the (MSC) scheme with σ1 = 1/4 (i.e.; when the (EXP) scheme does not satisfy the no

flip-flop condition).
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For s1 = 1/2, we have µ2 = 5/4, and µ2 = 5 for s1 = 2. When µ is close to one, like for s1 = 1/2,

splitting errors are very small. We see that the left panels in Fig. 5 are very similar to the left panels in Fig.

4. For µ2 = 5, the damping along the line D1 = 0 increases which indicates that the computation of the

direction of diffusion become less and less accurate (Fig. 5, right panels). The space-time discretization is

also relatively inaccurate along the line D2 = 0 and the SW-TRIADS scheme suffers from non-monotonic

damping. However, the schemes still perform well as long as the vertical scales are well-resolved (i.e.

|φ3| < π/2).

Note that the (MSC) scheme with the TRIADS discretization is particularly interesting either when

the absence of oscillations in time is required, or when spatially variable diffusion coefficients are used,

otherwise if the diffusivities are constant everywhere and such that σm = 1/2, the (MSC) scheme is

equivalent to the (IMP) scheme.

4 Time Discretization of the Isoneutral Biharmonic

4.1 Proposed Scheme

As mentioned in the paper’s introduction, the isoneutral biharmonic operator has never been thoroughly

studied in the literature so far. One possible explanation is that people working on rotated operators were

mainly interested in large-scale flows for which the scale-selectivity property is not a priority. Moreover,

a very drastic reduction of the time step is required to maintain stability of such an operator. The aim of

the present section is to tackle this last point by deriving a time integration scheme enabling an efficient

and easy implementation of a rotated biharmonic. To our knowledge, no alternative to the usual explicit

Euler scheme has been proposed. It is of course feasible to mimic the (IMP) scheme used for the rotated

Laplacian but it would require the solution of a penta-diagonal system, and additional constraints would

arise from the cross terms anyway. Indeed, an implicit vertical biharmonic can’t stabilize the second order

terms in x3. Even if it is relatively counter-intuitive we show in the remainder of this section that it is

possible to stabilize a biharmonic operator by means of a simple laplacian. An alternative approach could

be to use a combination of an implicit laplacian and an implicit biharmonic in the vertical to stabilize

separately the second-order and fourth-order terms, but it would increase substantially the complexity of

the scheme.

In the same spirit as the method of stabilizing corrections introduced in Sec. 3.1, we thus propose to

integrate the rotated biharmonic D4 in the following way :





q⋆ = qn +∆tD4(q
n)

qn+1 = q⋆ +∆t ∂3 {κ̃∂3qn+1 − κ̃∂3q
n} ,

(4.1)

In (4.1), an explicit and consistent approximation of the operator is first computed, followed by a second

stage aiming at improving the stability. For the aforementioned reasons, we decided to use a second-order

diffusive operator for this second stage. Instead of the stabilizing parameter θ used in the previous section,

we use here a stabilizing vertical diffusivity κ̃.
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4.2 Important Results

We first provide the results and prove them in Sec. 4.3. We keep the notations from the previous

section but now with σm replaced by σ(4)
m =

√
∆tBm/∆x2

m, where Bm is the hyperdiffusivity in the xm

direction. As in Sec. 3.2 for the laplacian, we can determine an order of magnitude for σm. If we assume

that Bm = γ|um|∆x3
m and an LF-AM3 time-scheme we get

(
σ
(4)
1

)2
+
(
σ
(4)
2

)2
. 0.5γ. The implicit

hyperdiffusion associated with a third-order upwind scheme corresponds to γ = 1/12 (e.g.; Lemarié et al.,

2012) which leads to
(
σ
(4)
1

)2
+
(
σ
(4)
2

)2 ≈ 1/24, and
(
σ
(4)
1 + σ

(4)
2

)2 ≈ 1/12 if we assume that σ
(4)
1 = σ

(4)
2 .

Non-Rotated Biharmonic

When using an Euler forward scheme, the stability limit of the two-dimensional horizontal biharmonic,

is

(
σ
(4)
1 + σ

(4)
2

)2 ≤ 1

8
. (4.2)

This result is also given in Griffies (2004) (Chap. 18).

Rotated Biharmonic

• TRIADS discretization

· The (EXP) scheme is stable for

(
σ
(4)
1 (1 + s21) + σ

(4)
2 (1 + s22)

)2 ≤ 1

8
. (4.3)

· The stability constraint of the (MSC) scheme is the same as the stability limit (4.2) for

κ̃ = 8

(
∆x2

3

∆t

)(
σ
(4)
1 s21 + σ

(4)
2 s22

) (
(1 + s21)σ

(4)
1 + (1 + s22)σ

(4)
2

)
(4.4)

• SW-TRIADS discretization

· The (EXP) scheme is stable for

(
σ
(4)
1 max

{
s21, 1

}
+ σ

(4)
2 max

{
s22, 1

})2 ≤ 1

8
. (4.5)

· The stability constraint of the (MSC) scheme is given by (4.2) for

κ̃ = 8

(
∆x2

3

∆t

)(
S1σ

(4)
1 + S2σ

(4)
2

) (
(1 + S1)σ

(4)
1 + (1 + S2)σ

(4)
2

)
, (4.6)

with Sm = max
{
s2m − |sm|, 0

}
.

Note that, if we take Sm = s2m in (4.6), we retrieve (4.4). Using the notations introduced in Sec. 2.2,

we could write in a generic way Sm = sm(sm − βm), thus showing that Sm corresponds to the weight of
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the vertical points (i, j, k + 1) and (i, j, k − 1) in the stencil (2.19). We now give the proof of the stability

results.

4.3 Linear Stability Analysis

We, first, define a vertical Courant number σ̃ = κ̃∆t/∆x2
3 associated with the stabilizing stage in (4.1),

and we introduce ỹ3 =
√
2σ̃(1− cosφ3). The aim of this stability analysis is to determine a value of σ̃

(and hence κ̃) ensuring that the stability constraint of the rotated biharmonic is imposed by the horizontal

components of the operator. Note that the exact amplification factor is now given by λ = exp (−η∆t) with

η =
2∑

m=1

Bm(km + αmk3)
4, while the amplification factor after discretization is

λ̃ = 1− (y21 + y22 + y23 − z13 − z31 − z23 − z32)
2

1 + ỹ23
= 1− (ϕ1 + ϕ2)

2

1 + ỹ23
, (4.7)

where ϕm is defined in (3.20). It is straightforward to check that λ̃ ≤ 1, stability is thus obtained for

λ̃ ≥ −1; this condition is equivalent to

(ϕ1 + ϕ2)
2 − 2ỹ23 ≤ 2. (4.8)

We can first easily check that the stability limit of the horizontal biharmonic (i.e., with sm = 0) is given

by (y21 + y22)
2 ≤ 2, leading to

(
σ
(4)
1 + σ

(4)
2

)2 ≤ 1/8. Furthermore, using the upper bound on ϕm found in

App. A, we can derive the stability constraint for the forward Euler scheme (i.e., κ̃ = 0),

(ϕ1 + ϕ2)
2 ≤ 4

(
σ
(4)
1 M (0, s1) + σ

(4)
2 M (0, s2)

)2
= 16

(
σ
(4)
1 (1 + s21) + σ

(4)
2 (1 + s22)

)2 ≤ 2, (4.9)

where M is defined in (3.23); (4.9) leads to the expected result (4.3). As an illustration, this stability

constraint implies that for s1 = s2 = 2, the time step used with the horizontal biharmonic should be

reduced by a factor of 25 when using the rotated biharmonic.

In the general case κ̃ 6= 0, we again use the upper bound on ϕm to get

(ϕ1 + ϕ2)
2 − 2ỹ23 ≤ B(θ) = 4

(
σ
(4)
1 M (θ, s1) + θy213 + σ

(4)
2 M (θ, s2) + θy223

)2 − 2ỹ23, (4.10)

stability is obtained for B(θ) ≤ 2. For simplicity, we take θ = 1 (i.e. M = 2)

B(θ = 1) = 16
(
σ
(4)
1 + σ

(4)
2 + (σ

(4)
1 s21 + σ

(4)
2 s22)(1− cosφ3)

)2 − 4σ̃(1− cosφ3)

= 16
(
σ
(4)
1 + σ

(4)
2

)2
+ (1− cosφ3)

{
16(σ

(4)
1 s21 + σ

(4)
2 s22)

[
2(σ

(4)
1 + σ

(4)
2 ) + (σ

(4)
1 s21 + σ

(4)
2 s22)(1− cosφ3)

]

(4.11)

The stability constraint B(θ = 1) ≤ 2 thus reduces to
(
σ
(4)
1 + σ

(4)
2

)2 ≤ 1/8 if the term in curly brackets

in (4.11) is negative or zero. This requirement is satisfied for

σ̃ ≥ σ⋆ = 8(σ
(4)
1 s21 + σ

(4)
2 s22)

(
(1 + s21)σ

(4)
1 + (1 + s22)σ

(4)
2

)
, (4.12)
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SW-TRIADS, s1 = 1/2, σ
(4)
1 = 1/5 SW-TRIADS, s1 = 2, σ

(4)
1 = 1/20

TRIADS, s1 = 2, σ
(4)
1 = 1/20TRIADS, s1 = 1/2, σ

(4)
1 = 1/5

EXACT, s1 = 1/2, σ
(4)
1 = 1/5 EXACT, s1 = 2, σ

(4)
1 = 1/20

Fig. 6. Exact amplification factor in the (φ1, φ3) plane for σ
(4)
1 =

√
1/16(1 + s21)

2 (i.e.; when the (EXP) scheme

is stable) with s1 = 1/2 (top, left) and s1 = 2 (top,right) in the two-dimensional (x1,x3) case (i.e. κ2 = 0).

Amplification factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle,

right for s1 = 2) and with the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2)

for the same values of σ1.The thick black line is D1 = 0, the thick gray line is D2 = 0.
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which demonstrates (4.4). Less conservative values of σ̃ could be derived (like the one used in Lemarié

et al. (2012)), however the algebra becomes very quickly complicated and tedious. The optimal value (4.6)

of the stabilizing parameter σ̃ obtained with the SW-TRIADS scheme is provided in App. B.

Non-Oscillatory Scheme

As for the laplacian, we can derive the necessary constraints to satisfy λ̃ ≥ 0 instead of λ̃ ≥ −1. In this

case, 1/8 should be replaced by 1/16 in (4.2), (4.3), and (4.5). Furthermore, if the stabilizing diffusivity

(4.4) is multiplied by two, the (MSC) scheme satisfies the ”no flip-flop” condition for
(
σ
(4)
1 + σ

(4)
2

)2 ≤
1/16.

4.4 Comments

We show in Fig. 6 and 7 the amplification factor obtained with a rotated biharmonic for s1 = 1/2 and

s1 = 2 with the (EXP) and the (MSC) schemes in the no flip-flop case. We can draw the same remarks as

for the laplacian: the SW-TRIADS computes more accurately the direction of diffusion, however it suffers

from a lack of damping of the checkerboard mode. The ratio µ4 between the time step of the (MSC)

scheme and the one of the (EXP) scheme is given by

µ4 = (1 + s21)
2. (4.13)

For s1 = 1/2, we get µ4 ≈ 1.56. In this case, the results are very similar between the (MSC) and the

(EXP) schemes. For s1 = 2, the ratio becomes stiffer with µ4 = 25. However, the scheme behaves in a

similar manner (Fig. 7, right panels) than the (EXP) scheme (Fig. 6, right panels).

4.5 Partial Conclusion and Limitations of Our Approach

We have shown so far that the laplacian and biharmonic rotated operators can be made stable by com-

bining an explicit-in-time evaluation with a semi-implicit stabilizing step. This approach has the advantage

to be extremely easy to implement because it requires only the inversion of a simple tridiagonal system in

the vertical. For quite large grid slope ratios (s1 = 2) the scheme performs relatively well but as the slope

steepens to s1 = 10 (Fig. 8) it can suffer from a lack of damping of the smallest resolved scales, espe-

cially for the rotated biharmonic. This behavior is reminiscent of the Crank-Nicolson scheme for which

the small scale structures are not damped in the limit of large time-steps (Manfredi and Ottaviani, 1999).

This problem thus arises when the time step used with the (MSC) scheme is significantly larger than the

stability limit of the (EXP) scheme, i.e.; when µ4 or µ2 are large (for s1 = 10 we have µ4 ≈ 10000). This

lack of damping affects only the vertical direction. The horizontal terms of the tensor, which are advanced

explicitly, are still ”active“. Because the TRIADS scheme requires a larger value of κ̃ to stabilize the time-

integration, this lack of damping is generally more pronounced with this scheme. This issue is also more

obvious when we try to suppress the flip-flops in time by increasing the value of κ̃ (Fig. 8).

The fact that we restrict ourselves to implicit integrations only in the vertical direction reduces signifi-

cantly the range of possible methods to try to mitigate this problem. If steep grid slope ratios are expected

and accuracy matters, we could combine the (MSC) with a time-splitting approach, not to penalize the all

model. When using an Euler explicit scheme, if s1 reaches O(10) values we should decrease the time step

by a factor 104 compared to the time step of the horizontal biharmonic (indeed, µ4 ≈ 10000 for s1 = 10).
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SW-TRIADS, s1 = 1/2, σ
(4)
1 = 1/4 SW-TRIADS, s1 = 2, σ

(4)
1 = 1/4

TRIADS, s1 = 2, σ
(4)
1 = 1/4TRIADS, s1 = 1/2, σ

(4)
1 = 1/4

EXACT, s1 = 1/2, σ
(4)
1 = 1/4 EXACT, s1 = 2, σ

(4)
1 = 1/4

Fig. 7. Same as Fig. 6 for the (MSC) scheme with σ
(4)
1 = 1/4 (i.e.; when the (EXP) scheme does not satisfy the no

flip-flop condition).
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Fig. 8. Amplification factor of the rotated laplacian along the line D1 = 0 (top, left) and D2 = 0 (top, right),

and of the rotated biharmonic along D1 = 0 (bottom, left) and D2 = 0 (bottom,right) for s1 = 10, σ1 = 1/4

and σ
(4)
1 = 1/4. The gray lines (resp. black lines) are obtained with a stabilizing diffusivity preventing flip-flops

(resp. allowing flip-flops) with the (MSC) scheme. The results obtained with the TRIADS (resp. SW-TRIADS)

discretization are represented with thick lines (resp. thick dashed lines). The thin black lines correspond to the exact

amplification.

Several sub-steps of the (MSC) scheme to advance the rotated operator from time n to n+1 would still be

significantly more computationally efficient than using an explicit Euler scheme. The use of a small num-

ber of sub-step clearly improves the damping properties of the rotated biharmonic which smoothes more

efficiently the poorly resolved scales (Fig. 9). Based on the results shown in Fig. 9 we can recommend

the use of 4 sub-steps to maintain a good accuracy of the rotated operator for steep grid slope ratios. We

checked that for very large values of s1 (s1 = 106), 4 sub-steps are still sufficient to damp the smallest

scales (not shown). Note that an even number of sub-steps ensures the absence of flip-flops.

5 Implementation of the Proposed Schemes in Existing Models

In this section, we provide additional information required for the implementation of the various

schemes introduced in the previous sections.
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nmsc = 1

nmsc = 2

nmsc = 4

nmsc = 8

nexp = (101)2

Fig. 9. Amplification factor of the rotated biharmonic along the line D2 = 0, for s1 = 10. The results are shown for

the TRIADS scheme when a sub-stepping of the operator is used with nmsc = 1, 2, 4 or 8 sub-steps of the (MSC)

scheme, and with nexp = (1 + s21)
2 sub-steps of the (EXP) scheme. The case nmsc = 1 corresponds to σ

(4)
1 = 1/4.

5.1 Time-Scheme for Diffusive Processes

As mentioned earlier, the majority of the global ocean climate models makes use of a rotated laplacian

advanced with the (IMP) scheme. For those models, the implementation of the (MSC) scheme is straight-

forward and does not require any additional global array for storage. In numerical models like ROMS

or MitGCM 4 using a predictor-corrector scheme where provisional values qn+
1
2 are given by a predic-

tor step (e.g. a Leapfrog-Adams-Moulton interpolation in ROMS or an Adams-Bashforth extrapolation in

MitGCM), the (MSC) scheme and the implicit vertical diffusion can be combine with the corrector step in

the following way :





qn+1,⋆ = qn + ∆t RHSn+ 1
2 +∆t D4(q

n)−∆t ∂3 [κ̃∂3q
n]

qn+1 = qn+1,⋆ + ∆t ∂3 [(K3 + κ̃)∂3q
n+1] ,

(5.1)

where K3 is the vertical eddy-diffusivity given by an appropriate parameterization of the sub-grid scale

vertical mixing, and RHS contains all the terms other than diffusive terms. For models using a Leapfrog

scheme, like NEMO or POP, the diffusive terms in (5.1) must be evaluated at time n− 1 instead of n, and

∆t must be replaced by 2∆t (Madec, 2008; Smith et al., 2010).

5.2 Boundary Conditions

We have considered so far a model problem defined on an unbounded domain. For realistic applications,

the specification of boundary conditions is required and is based upon two requirements : the mixing

operator conserves the tracer content and reduces the global tracer variance. Conservation of the tracer

being diffused imposes F (3) = 0 at x3 = ζ (with ζ the free-surface) and x3 = H (with H the depth of

the water column). To ensure that the boundary conditions are consistent with the global tracer variance

4 Massachusetts Institute of Technology General Circulation Model, mitgcm.org

29

mitgcm.org


diminishing property it is convenient to use the tracer/density triads formalism defined in Sec. 2.3. Using

the notations introduced in Fig. 1, we consider that the grid cell (i, k) is located at the ocean floor. The

no-flux boundary condition requires F
(3)

i,k− 1
2

= 0 which involves that the triads 3,4,11 and 12 cancel. More

generally, each time a given triad crosses the boundary the diffusivity A(n) associated with this triad in

the discrete functional (2.15) should be zero, and this triad can’t participate in the computation of the F (1)

interfacial fluxes in the grid-cell next to a boundary. At the bottom (i.e. for k = 1) we have

F
(1,triads)

i+ 1
2
,j,1

=
κ1

2
(∆x2)i+ 1

2
,j(∆x3)i+ 1

2
,j,k ·

1

2




δ1qi+ 1
2
,j,1

(∆x1)i+ 1
2
,j

−
δ1ρi+ 1

2
,j,1

(∆x1)i+ 1
2
,j

δ3qi+1,j, 3
2

δ3ρi+1,j, 3
2

+
δ1qi+ 1

2
,j,1

(∆x1)i+ 1
2
,j

−
δ1ρi+ 1

2
,j,1

(∆x1)i+ 1
2
,j

δ3qi,j, 3
2

δ3ρi,j, 3
2


 ,

(5.2)

and

F
(1,sw-triads)

i+ 1
2
,j,1

=
κ1

2
(∆x2)i+ 1

2
,j(∆x3)i+ 1

2
,j,k




δ1qi+ 1
2
,j,1

(∆x1)i+ 1
2
,j

−
w+

i+ 1
2
,j,1

(∆x1)i+ 1
2
,j

δ3qi+1,j, 3
2

δ3ρi+1,j, 3
2

−
w−

i+ 1
2
,j,1

(∆x1)i+ 1
2
,j

δ3qi,j, 3
2

δ3ρi,j, 3
2


 .

(5.3)

This approach can be seen as a diffusivity tapering because κ1 is divided by two in the bottom most grid

box. An other way to specify a boundary condition is to consider that F
(3)

i,j, 1
2

= 0 because (δ3ρi,j, 1
2
)−1 = 0

at the bottom. In this case we get

F
(1,triads)

i+ 1
2
,j,1

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k




δ1qi+ 1
2
,j,1
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2
,j

−
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2
,j,1
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2
,j

· 1
4
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2
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2

+
δ3qi,j, 3

2

δ3ρi,j, 3
2






 (5.4)

and

F
(1,sw-triads)

i+ 1
2
,j,1

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k
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2
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 .

(5.5)

This second approach is recommended only if a specific procedure is used to ensure that (∂3ρ)
−1 goes

smoothly to zero as a boundary is approached. The same remarks apply at the surface. For realistic ap-

plications, the direction of diffusion is generally progressively aligned with the horizontal direction when

approaching the surface. This “boundary rotation” is generally done to avoid the rotated operator to inter-

act with the parameterization of sub-grid scale vertical mixing and also to stay consistent with the small

slope limit in the well mixed surface layer. If this type of procedure is used, it is safe to consider that

(∂3ρ)
−1 varies smoothly in the boundary layer and cancels at the surface. We describe in the next section

how to handle the transition from isoneutral to horizontal mixing.

In the horizontal, homogeneous Neumann boundary conditions (i.e., ∂1q = ∂1ρ = 0) are imposed

through masking at the coast. Again, because the biharmonic corresponds to two successive laplacian, the

specification of the boundary conditions does not imply additional difficulties, and the second boundary

condition at the coast required for this operator is simply ∂3
1q = ∂3

1ρ = 0. It is straightforward to extend the

results of this paragraph to the x2-direction. The boundary condition for the stabilizing step in the (MSC)
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scheme is an homogeneous Neumann condition to ensure conservation of the tracer content.

5.3 Diffusion Slope Limit

A major difficulty when rotating the diffusion in the isoneutral direction is to maintain the numeri-

cal integrity of the scheme in poorly stratified regions, including boundary layers and convective regions.

Here, the notion of numerical integrity encompasses several aspects : stay consistent with the small slope

approximation, smoothly satisfy the boundary condition when conditions (5.4) and (5.5) are used, avoid

any infinite slopes and associated infinite fluxes which would introduce numerical instabilities, and avoid

any spurious recirculation in the surface layer when an eddy-induced velocity is used. Because the eddy-

induced velocity, parameterizing the effect of mesoscale eddies, is usually defined with respect to the

vertical derivative of the isoneutral slopes, the type of boundary rotation adopted in the surface layer inter-

acts with the parameterization (Gent and McWilliams, 1990). For this reason, a linear clipping, ensuring a

constant eddy-induced velocity in the surface layer, is usually applied to the isoneutral slopes between the

base of the surface boundary layer and the surface (Gnanadesikan et al., 2007; Madec, 2008). However,

recent advances in the understanding of the role of eddy fluxes in the mixed layer have led to a redesign

of the function responsible for the boundary rotation (Ferrari et al., 2008; Fox-Kemper et al., 2008; Colas

et al., 2012).

In a more general view, when considering the rotated diffusion independently of the eddy-induced

velocity, the important term to keep under control is (∂3ρ)
−1. The use of a specific procedure to control

this term to stay consistent with the small slope limit will de facto suppress the possibility of infinite

slopes. We first define the quantity

(∂1ρ)
max
i,j,k+ 1

2
= max




|δ1ρi− 1

2
,j,k|

(∆x1)i− 1
2
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and the maximum slope αmax allowed. The value of (δ3ρ)
−1 defined at a cell vertical interface that can be

used in practice to compute the isoneutral slopes is given by

(
δ3ρi,j,k+ 1

2

)−1
= max



−

F (x3) · αmax

(∆x3)i,j,k+ 1
2
(∂1ρ)max

i,j,k+ 1
2

,min
{
−ε,

(
δ3ρi,j,k+ 1

2

)−1
}
 (5.6)

In the case of an unstable stratification the enforcement of a minimum stratification ε rotates the diffusion

along the computational grid. In the case of a stable stratification but with large slopes, the slope is bounded

by a maximum value αmax. The procedure (5.6) ensures that the limiting of (δ3ρ)
−1 is ”felt“ the same

way when the slopes are computed at u and w points. The analytical function F in (5.6) enables the

implementation of a boundary rotation. The value of this function is typically 1 in the oceanic interior and

decreases to 0 when approaching the boundaries.

Based on those prescriptions to handle poorly stratified regions and on the ROMS Pacific configuration

described in Lemarié et al. (2012), we show in Fig. 10 the maximum value, for each water column, of the

quantity µ4 =
1
4
((1 + s1)

2 + (1 + s22))
2

corresponding to the ratio between the time step of the non-rotated

biharmonic operator and the time step of the rotated biharmonic operator when the (EXP) scheme is used

along with B1 = B2. As mentioned earlier, it is not unusual to get very stiff stability conditions (typically

µ4 > 10000) especially in shallow areas, including coastal regions, and in the Kuroshio extension. The

maximum value of µ4 is generally found either at the depth of the thermocline (green shaded area in Fig.
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10, bottom panel) or at the bottom (blue shaded area in Fig. 10, bottom panel). To generate the figure we

used αmax = 4/100 and F (x3) = (x3/hbl)
2 [3− 2(x3/hbl)] for x3 ≤ hbl (F (x3) = 1 otherwise) where

hbl is the depth of the surface boundary layer given by the parameterization of the vertical mixing. The

maximum value of µ4 we show in Fig. 10 is generally not obtained for αm = αmax but for places where

high vertical resolution coincides with sloping isopycnals. A decrease of the parameter αmax (e.g. from

4/100 to 1/100) would give very similar values for µ4. Because it is not unusual to get very large values of

µ4 in realistic configurations, it makes it challenging to maintain a good accuracy of the rotated operator

under all circumstances when the time step is set by the stability condition of the non-rotated operator.

Fig. 10. Annual mean of the maximum value of the ratio µ4 between the time step of the non-rotated biharmonic

operator and the time step of the rotated biharmonic operator for each water column (top), and depth of the maximum

(bottom). µ4 is first computed using seasonal averages and is then averaged to get the annual mean.
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Resolution Scheme Time Step Maximum slope parameter (s1) ∆t0/∆tρ

SMALL LARGE TRIADS SW-TRIADS

D2 D4 D2 D4

1024x96 (EXP) ∆tρ 0.08 0.35 1 1 1 1

256x48 (MSC) ∆t0 0.16 0.70 1.5 2.25 1 1

128x48 (MSC) ∆t0 0.32 1.4 2.96 9 1.96 3.84

64x24 (MSC) ∆t0 0.32 1.4 2.96 9 1.96 3.84

32x24 (MSC) ∆t0 0.64 2.8 8.8 77 7.84 61.5

Table 1

Description of the numerical experiments discussed in Sec. 6. Those experiments are carried out using the rotated

laplacian (with κ1 = 5 m2 s−1) and the rotated biharmonic (with B1 = 5 × 10−1 m4 s−1) with either the SW-

TRIADS or the TRIADS spatial discretizations. ∆tρ is given by the stability limit (3.5) for the laplacian operator and

(4.3) for the biharmonic operator. ∆t0 corresponds to the time step restriction arising from the horizontal component

of the rotated operators; i.e. ∆t0 = ∆x21/2κ1 for the diffusion, resp. ∆t0 = ∆x41/8B1 for the hyperdiffusion. The

ratio ∆t0/∆tρ is given for the LARGE experiments with the rotated laplacian D2 and for the rotated biharmonic D4.

6 Numerical Results

In this section, we present a set of idealized experiments to investigate the behavior of the various

space-time dicretization schemes we introduced earlier in the paper.

6.1 Experimental Setup

We have implemented a two-dimensional (x1, x3) testcase defined on the computational domain Ω =

[0, 1]× [0, 1] with a time-independent stratification

ρξ(x1, x3) = − tanh

(
5

{
x3 −

1

4
− ξ 8π3x3

1

[
sin (πx1)−

1

2
sin(2πx1)

]2})
. (6.1)

The slope associated with this stratification is

α1 = −∂1ρξ
∂3ρξ

= ξ ·R(x1), (6.2)

where R(x) = 64π3x2 cos (πx/2) sin (πx/2)5 (2πx+ 4πx cos(πx) + 3 sin(πx)). In (6.1), ξ is a stiffness

parameter used to define the amplitude of the angle between the computational grid and the isopycnal

direction. Choosing two values of ξ, we build two set of experiments which are described in Tab. 1 : a first

one with a small grid slope ratio between the computational grid and the isopycnal direction (hereafter

SMALL) and a second with a large grid slope ratio (hereafter LARGE). The largest value we consider is

s ≈ 3 which, for example, would correspond to α1 = 7.5× 10−4, ∆x1 = 100 km and ∆x3 = 25 m.

The stratification (6.1) is shown in Fig. 11 along with the initial condition
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Fig. 11. Two-dimensional (x1, x3) initial conditions for different experiments of a passive tracer (shaded) diffused

along a density field (contours) with a moderate slope between the computational grid and the isopycnals (top), and

with a large slope (bottom).

q0(x1, x3) =
1

4

[
cos

(
(20 x3 − 5)

π

3

)
+ 1

] [
cos

(
(20 x1 − 5)

π

3

)
+ 1

]
I[1/10,4/10](x1) I[1/10,4/10](x3),

(6.3)

where IΩ(x) is the indicator function 5 . An additional case with a density field with a 2∆x1 structure is

defined to investigate the global tracer variance diminishing property of the various discretizations under

consideration (Fig. 11, top panel). All the simulations described in Tab. 1 are run with the same diffusivity

κ1 = 5 m2 s−1 and hyperdiffusivity B1 = 5× 10−1 m4 s−1.

6.2 Accuracy of the Rotated Operators

The accuracy of different space-time discretizations is checked by computing a high resolution solution

on a 1024x96 grid using an explicit Euler scheme in time. This solution is taken as a solution of reference

for a set of four coarser grids, 256x48, 128x48, 64x24, and 32x24. With the exception of the reference

solution, all the simulations are done using the (MSC) scheme with the stabilizing parameters (3.6), (3.8),

(4.4) and (4.6) with κ2 = 0 (resp. B2 = 0). To build this hierarchy of grids we have considered that when

the horizontal resolution is refined by n2 the vertical resolution is refined by n (Tab. 1). This rule is meant

to be quite consistent with the usual practice in climate models. Due to the excessive computational cost

5
IΩ(x) = 1, if x ∈ Ω; IΩ(x) = 0 otherwise.

34



0 5 10 15 20 25

0

0.002

0.004

0.006

0.008

0.01

0 5 10 15 20 25

0

0.005

0.01

0.015

0.02

time [10−3
s] time [10−3

s]

�
2
−
n
o
rm

�
2
−
n
o
rm

256x48

128x48

64x2432x24

32x24

128x48

256x48

64x24

32x24

64x24

32x24

128x48
256x48

64x24

128x48

256x48

SMALL LARGE

Fig. 12. Time history of the error ℓ2-norm for different grid resolutions, in the SMALL experiments (left) and in

the LARGE experiements (right). The black lines correspond to the results obtained with the TRIADS scheme, and

the dashed gray lines to the results obtained with the SW-TRIADS. Note the different vertical axis between the two

panels.

of the explicit-in-time rotated biharmonic on the 1024x96 grid, we use the 256x48 grid as a solution of

reference in this case.

The stratification (6.1) and the initial condition (6.3) are first defined on the reference 1024x96 grid and

then a coarsening procedure is used to provide it to the entire hierarchy of grids. The same coarsening pro-

cedure is then applied to the solution of reference to compute the ℓ2-norm of the error for each grid of the

hierarchy. This procedure ensures that the error is initially zero. The results obtained for the SMALL and

the LARGE experiments are shown in Fig. 12. When using the TRIADS scheme, the error is monotoni-

cally decreasing when the grid is refined. For large grid slope ratios this discretization leads to a significant

amount of spurious diapycnal diffusion due to discretization errors (Fig. 13, g) and i) ). The SW-TRIADS

scheme systematically leads to smaller errors whatever the grid resolution and the grid slope ratio (Fig.

12). However, the evolution of the errors with the resolution is relatively uncommon. For example, in the

LARGE experiments, the error is smaller on the 128x48 grid than on the 256x48 grid. This is explained

by the fact that the errors of discretization associated with the SW-TRIADS scheme do not monotonically

increase when the grid slope ratio s1 increases, as this is the case for the TRIADS scheme. This point

will be further discussed in Sec. 6.4 but it can be seen from (2.19) that the discretization reduces to the

classical 1,-2,1 stencil for s1 = 1, thus explaining why the errors are small for the experiments for which

the grid slope ratio is close to one (e.g., for the 64x24 and 128x48 grids in the LARGE case). As far as the

biharmonic operator is concerned, the results are very consistent with the one obtained with the rotated

laplacian (Fig. 14). The SW-TRIADS performs better than the TRIADS when the grid slope ratio exceeds

one, which is an important asset when considering grid cells with a small aspect ratio ∆x3/∆x1 as it can

happen for a σ-coordinate models in shallow areas. For very large values of s1 the direction of diffusion

becomes less and less accurate ( Fig. 13 j), Fig. 14 h)) and a larger vertical stencil should potentially be

required to lessen the discretization errors.

Monotonicity violations are obvious from Fig. 13 and 14 where the blue-shaded areas correspond to
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Fig. 13. Snapshots of a passive tracer diffused along sloping isopycnals after 25 × 10−3 s of integration in the

LARGE case. Results obtained with the TRIADS scheme (resp. SW-TRIADS scheme) are shown in the left panels

a), c), e), g) and i) (resp. the right panels b), d), f), h) and j)) for different grid resolutions.

negative values whereas the initial condition has positive values only. When the discretization errors are in-

creasing, thus leading to a spurious diapycnal diffusion, the false extrema are significantly moderated. The

biharmonic generates large negative values (Fig. 14), however those min-max violations are not necessar-

ily associated with the rotation of the tensor because the horizontal biharmonic also produces overshoots

with a very similar order of magnitude (not shown).

6.3 Overshootings

Mathieu and Deleersnijder (1998) emphasized the non-monotonic behavior of the discretized rotated

diffusion operator. This can be seen simply by looking at the diffusion of a dirac signal along a direc-

tion non-aligned with the computational grid (Fig. 15). Negative bands are generated on both sides of the

isopycnal along with the Dirac signal is propagating. The rotated biharmonic presents two bands of neg-
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Fig. 14. Snapshots of a passive tracer diffused with a biharmonic operator along sloping isopycnals after 25×10−3 s

of integration in the LARGE case. Results obtained with the TRIADS scheme (resp. SW-TRIADS scheme) are

shown in the left panels a), c), e), and g) (resp. the right panels b), d), f) and h)) for different grid resolutions.

ative values separated by positive values. We can also see from those figures that the cancellation of the

contribution of the cross-isopycnal points to the discretization stencil in the SW-TRIADS scheme leads to

a thin signal elongated in the neutral direction while the TRIADS scheme produces a thicker signal in both

the s1 = 1/2 and s1 = 2 cases. Note that the case s1 = 1/2 corresponds to a maximum of discretization

errors for the SW-TRIADS scheme in the limit that s1 ≤ 1; see discussion in Sec. 6.4.

Monotonicity is verified at a position (i,k) only if all the coefficients in the discretization stencil of the

operator under consideration are positive for points others than (i,k). It can be seen from (2.19) that neither

the TRIADS, nor the SW-TRIADS scheme verifies this property. The continuous form of the rotated lapla-

cian operator has however the property not to amplify existing extrema (Mathieu and Deleersnijder, 1998),

this property is lost at the discrete level due to the discretization of the cross-derivatives. We quantify the

monotonicity violation associated with the SW-TRIADS and TRIADS schemes by computing

εi,k = max(qn+1
i,k − qmax

i,k , 0)−min(qn+1
i,k − qmin

i,k , 0) (6.4)

where
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Fig. 15. Diffusion of a Dirac signal along sloping isopycnals (contours) after t = 2.5×10−4 s : a) and e) with a rotated

laplacian using the TRIADS discretization; b) and f) with a rotated laplacian using the SW-TRIADS discretization;

c) and g) with a rotated biharmonic using the TRIADS discretization; d) and h) with a rotated biharmonic using the

SW-TRIADS discretization. The tracer field is deliberately not smoothed, cell-averaged values are shown. Note that

blue-shaded areas indicate negative values. The grid slope ratio is s1 ≈ 1/2 for panels a),b),c) and d), and s1 ≈ 2

for e),f),g) and h).

q
(min)
i,k = min(qni±c,k±c), q

(max)
i,k = max(qni±c,k±c), (6.5)

with c = 1 for the laplacian operator and c = 2 for the biharmonic. The evolution of the maximum value

of εi,k is shown in Fig. 16 for the diffusion of a Dirac signal. This experiment is done on the 256x48 grid

a diffusivity κ1 and an hyperdiffusivity B1 chosen so that it provides the same dissipative time scale at the

scale of the grid (i.e., B1 = κ1∆x2).
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Fig. 16. Magnitude of min-max violations ε for the rotated laplacian (left) and for the rotated biharmonic (right)

discretized either with the TRIADS scheme (blue and red lines) or the SW-TRIADS scheme (purple and orange

lines). The vertical line at t = 2.5× 10−4 s represents the time corresponding to the plots in Fig. 15.

Fig. 16 shows that the magnitude of the min-max violations is of the same order for the rotated har-

monic and biharmonic operators. Even if Fig. 15 suggests that larger negative values are produced by the

biharmonic operator, this does not mean that the min-max violations are larger in this case, as we see from

Fig. 16. This is explained by the fact that the amount of diapycnal diffusion, associated with discretization

errors, is smaller with the rotated biharmonic than with the rotated laplacian and is insufficient to moderate

the false extrema.

6.4 SW-TRIADS-COMBI Scheme and Scaling of the Discretization Errors

In this paragraph, we borrow the concept of the so-called COMBI scheme, introduced in Beckers et al.

(2000), to assess the evolution of the discretization errors of the SW-TRIADS scheme with respect to sm.

To minimize overshootings, Beckers et al. (2000) propose an inconsistent COMBI scheme which consists

in adding an additional horizontal or vertical diffusion to cancel the negative weights in the stencil (2.19)

and thus to maintain monotonicity. With the TRIADS discretization this is not straightforward because the

negative weights lies systematically in the diagonal direction. For the SW-TRIADS scheme, it is easier to

apply the concept of the COMBI scheme; in (2.19) we see that, for sm positive and sm < 1, it is sufficient

to add a vertical diffusion with a coefficient proportional to sm(1 − sm) and, for sm > 1, it is sufficient

to add an horizontal diffusion with a coefficient proportional to sm − 1. In Fig. 17, we show the diffusion

of a Dirac signal using the SW-TRIADS-COMBI scheme (defined as the SW-TRIADS scheme combined

with the COMBI approach). The scheme seems to behave relatively well for s1 ≈ 2, however the amount

of spurious diapycnal diffusion is larger compared with the SW-TRIADS scheme. For s1 ≈ 1/2, the

orientation of the diffusion is less accurate and the dirac signal is propagated too vertically relative to the

neutral direction. We can show that the extra diffusivity κv used for sm < 1 in the SW-TRIADS-COMBI

scheme is
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Fig. 17. Diffusion of a Dirac signal (shaded) along sloping isopycnals (contours) using the SW-TRIADS-COMBI

scheme : a) for s1 ≈ 1/2; b) for s1 ≈ 2 . The results are shown after 2.5× 10−4 s of integration. Panel a) should be

compared with Fig. 15, b) and panel b) with with Fig. 15, f).

κv = κm

(
∆x3

∆xm

|αm| − α2
m

)
.

The expression of κv is also useful to quantify the discretization errors associated with the SW-TRIADS

scheme. The minimum of the error is obtained for αm = 0, or αm = ∆x3/∆xm (i.e., sm = 1) be-

cause κv cancels in those cases, hence the scheme reduces to the classical 1,-2,1 stencil and is mono-

tonic. The maximum of the discretization error is for αm = ∆x3/2∆xm (i.e., sm = 1/2), which leads to

κmax
v =

κm

4

(
∆x3

∆xm

)2

. For sm > 1, the discretization error scales with sm − 1 (which corresponds to the

background horizontal diffusivity of the SW-TRIADS-COMBI scheme) and thus keeps increasing with

increasing values of sm.

The value of κmax
v can be compared with the background vertical diffusivity associated with the vertical

mixing parameterizations currently in use in ocean models, which is of the order of 10−5m2 s−1 below the

mixed layer. We see that it is not unusual, regarding the typical horizontal and vertical resolutions used by

climate models, that the background vertical diffusion in the oceanic interior is sufficient to significantly

moderate the overshootings associated with the use of a rotated mixing operator discretized with the SW-

TRIADS scheme, as long as the grid slope ratio is smaller than one.
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Conclusion

The use of a mixing operator non-aligned with the computational grid raises difficulties to maintain

several properties of the non-rotated operators : numerical stability, strict global tracer variance dissipation,

monotonicity (in the case of the laplacian), and accuracy when the slopes steepen to greater than the grid

aspect ratio. In this paper, we present a set of conservative space-time discretizations to investigate those

delicacies. Since we do not want the numerical models to be penalized by diffusive processes, we consider

only linear spatial discretizations and first-order accurate temporal integrations. We do not strive to design

higher order schemes because the diffusive terms are used either for numerical or physical closure (or

both) and are thus supposed to vanish anyway for sufficiently high resolution.

In the same spirit as the methods commonly used for multi-dimensional parabolic problems with mixed

derivatives, we introduce a simple time-stepping scheme and we show its relevance to handle the time-

integration of the rotated harmonic and biharmonic operators. This method, which is known as Method of

Stabilizing Corrections (MSC), consists of a multi-stage approach : at the first stage, a consistent (explicit)

approximation of the rotated operator is evaluated, while all succeeding stages serve only to improve the

stability. For both the rotated harmonic and biharmonic operators, the stabilizing step is done using a

vertical laplacian whose diffusivity is chosen through linear stability analysis. The proposed scheme is

made to enable the rotated operators to be advanced with the same time step than the non-rotated ones.

For large grid slope ratios, the scheme can however suffer from a lack of damping of the smallest resolved

scales in the vertical. To alleviate this problem a time-splitting of the diffusion could be used with a few

(typically of the order of 4) small time steps using the (MSC) scheme within a larger baroclinic time

step. This approach would still be significantly more computationally efficient than using an explicit Euler

scheme.

As noted previously in Beckers et al. (2000), all the consistent linear spatial discretizations of the

rotated operators produce false diapycnal mixing and min-max violations. This issue is cumbersome be-

cause, in general, min-max violations are larger for schemes with small inherent diapycnal mixing, and

conversely schemes with a larger diapycnal mixing associated with discretization errors tend to moderate

the overshootings. The rotated biharmonic does not seem to generate significantly larger monotonicity

violations than the rotated laplacian and than the non-rotated biharmonic. Furthermore, we show that dif-

ferent spatial discretizations of the rotated operators can lead to a quite different behavior of the solution

especially for large grid slope ratios. A compact discretization (referred as to SW-TRIADS) whose stencil

adapts to the orientation of the slope provides more accuracy, hence has less spurious diapycnal mixing,

for situations where the isoneutral slope is greater than the vertical to horizontal aspect ratio. However,

this discretization does not damp very efficiently small-scale noise, and dispersive errors could thus go

uncontrolled with this approach. As shown in Beckers et al. (2000), the SW-TRIADS scheme can easily

be made monotonic by adding a vertical background diffusion (as long as the grid slope ratio is less than

one) at the expanse of a larger dianeutral contribution. However, under some circumstances, the order of

magnitude of this background diffusivity is expected to be of the same order as the physically admissible

dianeutral diffusivity.

We show that rotated operators must be used with care if we rely on those operators to efficiently

smooth grid-scale noise along the computational grid. Adding a background vertical, as it is commonly

done through the vertical mixing parameterization, or horizontal diffusion is a way to erase the defi-

ciencies in terms of smoothing but at the expanse of additional numerically-induced spurious diapycnal

mixing. The requirements in terms of noise control are tied to the numerical schemes used to handle the
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tracer advection. When low-order schemes are used, larger dispersive errors are expected and an operator

providing an efficient numerical filtering is crucial. In this case, the TRIADS scheme would be recom-

mended. An unexplored possibility could be to formulate the advection in an isopycnal framework hence

the numerical noise would be prominently in the neutral direction and rotated operators would be more

adequate to control this noise.

Besides the idealized configurations studied in the present paper, it is shown in Lemarié et al. (2012)

that a rotated biharmonic advanced with the (MSC) scheme in time and using the SW-TRIADS discretiza-

tion performs well for a realistic coarse-resolution basin-scale simulation with the Regional Oceanic Mod-

elling System (ROMS, Shchepetkin and McWilliams, 2005) σ-coordinate model. Using this space-time

discretization, we have demonstrated that the use of an isoneutral biharmonic operator significantly im-

proves the conservation of intermediate water properties and leads to a tightening of the thermocline

compared to an iso-σ biharmonic operator. Because the grid slope ratio with a σ-coordinate is generally

larger than with a z-level model we took advantage of the gain of accuracy provided by the SW-TRIADS

scheme.

An alternative approach to the use of rotated mixing operators is the design of a vertical coordinate

system following the isopycnals (Hallberg and Adcroft, 2009; Leclair and Madec, 2011). The present

paper is a complementary effort in exploring the merits of different approaches to representing the nearly

adiabatic flow in the oceanic interior.
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A Upper Bound on ϕθ
m = ϕm − 2θy2m3

The aim of this appendix is to derive an upper bound for the function ϕθ
m introduced in Sec. 3. We

keep the notations previously used in the paper, and for convenience we introduce the parameters Xm =

tan(φm/2), Xm ∈ R (m = 1, 3); so that the expression of ϕθ
m transforms to

ϕθ
m = 2σm

(
[(Xm + smX3)

2 + (1 + s2m)X
2
mX

2
3 ]

(1 +X2
m)(1 +X2

3 )
− 2θs2m

X2
3

1 +X2
3

)
. (A.1)

In the remaining of this section we successively study the behavior of ϕθ
m with respect to Xm and then to

X3. We first get

Sign

(
∂ϕθ

m

∂Xm

)
= Sign

(
smX3(1−X2

m) +Xm(1 +X2
3 )
)
, (A.2)

where the roots of the second order polynomial in Xm are

X(±)
m =

1 +X2
3 ±

√
(1 +X2

3 )
2 + (2smX3)2

2smX3

. (A.3)

∂ϕθ
m

∂Xm

is positive for X(−)
m ≤ Xm ≤ X(+)

m which is sufficient to show that ϕθ
m reaches its maximum either

for Xm = X(+)
m or Xm → −∞. In (A.1), we see that the asymptotic limit of ϕθ

m for Xm going to infinity

either by positive or negative values is the same; the maximum of ϕθ
m is therefore obtained for Xm = X(+)

m .

Substituting Xm by X(+)
m in (A.1) leads to

ϕθ
m ≤ ϕθ

m(X
(+)
m ) = ϕθ

m = 2σm


1 + 2s2m(1− 2θ)

X2
3

1 +X2
3

+

√√√√1 + 4s2m
X2

3

1 +X2
3

(
1−

X2
3

1 +X2
3

)
 .

(A.4)

After some algebra, we find

Sign

(
∂ϕθ

m

∂X3

)
= Sign

(
(1− 2θ)

√
1 + 4s2mX̃3(1− X̃3) + (1− 2X̃3)

)
, X̃3 =

X2
3

1 +X2
3

∈ [0, 1].

(A.5)

This derivative cancels for

X̃3 = X̃
(±)
3 =

1

2


1±

√√√√(1− 2θ)2(1 + s2m)

1 + (1− 2θ)2s2m


 . (A.6)

The maximum of ϕθ
m is reached for X̃3 = X̃

(+)
3 if θ ≤ 1/2 and X̃3 = X̃

(−)
3 otherwise. In both cases the

maximum is the same and provides the following upper bound for ϕθ
m

ϕθ
m ≤ 2σm · M (θ, sm), (A.7)

where
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M (θ, sm) = 1 + s2m(1− 2θ) +
√
(1 + s2m) (1 + s2m(1− 2θ)2). (A.8)

B Stability Analysis With the SW-TRIADS Scheme

In this section, we extend the results found in Sec. 3 and 4 for the TRIADS scheme to the SW-TRIADS

discretization. The function ϕθ
m (with m = 1, 2) defined in (3.21) for βm = 0 (i.e., the TRIADS scheme)

becomes

ϕθ,sw
m = 2σm

(
[(Xm + smX3)

2 + (sm − 1)2X2
mX

2
3 ]

(1 +X2
m)(1 +X2

3 )
− 2θs2m

X2
3

1 +X2
3

)
(B.1)

for βm = 1 (i.e., the SW-TRIADS scheme with sm ≥ 0). In this appendix, we consider only the case

sm ≥ 0, it is straightforward to extend by symmetry the results to the case sm ≤ 0. As we did in App. A

for ϕθ
m, we study here the behavior of ϕθ,sw

m with respect to Xm and X3. After some algebra, we get

Sign

(
∂ϕθ,sw

m

∂Xm

)
= Sign

(
smX3(1−X2

m) +Xm(1 +X2
3 (1− 2sm))

)
, (B.2)

where the roots of the second order polynomial in Xm are

X(±)
m =

1 +X2
3 (1− 2sm)±

√
(1 +X2

3 (1− 2sm))2 + (2smX3)2

2smX3

. (B.3)

We can easily show that the maximum of ϕθ,sw
m is for Xm = X(+)

m which leads to

ϕθ,sw
m ≤ ϕθ,sw

m (X(+)
m ) = ϕθ,sw

m = 2σm


1 + 2(sm(sm − 1)− 2θs2m)

X2
3

1 +X2
3

+

√√√√1 + 4sm(sm − 1)
X2

3

1 +X2
3


 .

(B.4)

The sign of the derivative of this function with respect to X3 reads

Sign

(
∂ϕθ,sw

m

∂X3

)
= Sign

(
(sm − 1)

(
1 +

√
1 + 4sm(sm − 1)X̃3

)
− 2smθ

√
1 + 4sm(sm − 1)X̃3

)
(B.5)

where X̃3 = X2
3/(1 +X2

3 ).

Rotated Laplacian

We recall that the space-time discretization under consideration is stable for ϕθ,sw
1 + ϕθ,sw

2 ≤ 2.

In (B.5), we see that for sm ≤ 1, ∂ϕθ,sw
m /∂X3 is negative, hence the maximum is for X̃3 = 0 which

translates into ϕθ,sw
m ≤ 4σm in (B.4). This shows that, in this case, the scheme is stable for σ1 + σ2 ≤ 1/2

which corresponds to the stability condition of the non-rotated operator. Moreover, for sm > 1, taking

θ = (sm− 1)/sm still ensures that ∂ϕθ,sw
m /∂X3 is negative, and thus leads to the same stability constraint.

This last remark is sufficient to conclude that the stability condition of the rotated laplacian discretized

using the SW-TRIADS scheme in space and the (MSC) scheme in time is equivalent to the stability

condition of the non-rotated laplacian for
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θ = θsw = max

{
|s1| − 1

|s1|
,
|s2| − 1

|s2|
, 0

}
. (B.6)

If |s1| and |s2| are both smaller than 1 we get θ = 0, and for |sm| → ∞, θ → 1 which shows that the

(IMP) scheme is stable as long as the horizontal terms of the tensor are stable.

Rotated Biharmonic

Using (B.6), and following the methodology used in Sec. 4.3 to derive an expression for the stabilizing

diffusivity σ̃sw, we find that

σ̃ = σ̃sw = 8 (S1σ1 + S2σ2) ((1 + S1)σ1 + (1 + S2)σ2) , Sm = max{s2m − |sm|, 0}. (B.7)

Note that σ̃sw vanishes when |s1| and |s2| are smaller than one.
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