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F. Lemarié a,∗, L. Debreu b A.F. Shchepetkin a J.C. McWilliams a

aInstitute of Geophysics and Planetary Physics, University of California, 405 Hilgard
Avenue, Los Angeles, CA 90095-1567, United States

bINRIA, MOISE Project-Team and Laboratoire Jean Kuntzmann, 51 rue des
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Abstract

Ocean models usually rely on a tracer mixing operator which diffuses along isoneutral di-
rections. This requirement is imposed by the highly adiabatic nature of the oceanic interior,
and a numerical simulation needs to respect these small levels of dianeutral mixing to main-
tain physically realistic results. For non-isopycnic models this is however non-trivial due to
the non-alignment of the vertical coordinate isosurfaces with local isoneutral directions, ro-
tated mixing operators must therefore be used. This paper considers the numerical solution
of initial boundary value problems for the harmonic (Laplacian) and biharmonic rotated dif-
fusion operators. We provide stability criteria associated with the conventional space-time
discretizations of the isoneutral Laplacian operator currently in use in general circulation
models. Furthermore, we propose and study possible alternatives to those schemes. A new
way to handle the temporal discretization of the rotated biharmonic operator is also intro-
duced. This scheme requires only the resolution of a simple one-dimensional tridiagonal
system in the vertical direction to provide the same stability limit of the non-rotated opera-
tor. The performance of the various schemes in terms of stability and accuracy is illustrated
by idealized numerical experiments of the diffusion of a passive tracer along isoneutral
directions.
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1 Introduction

Most ocean numerical models employ isoneutral 1 mixing operators either to parameterize the effect
of unresolved mesoscale eddies (Gent and McWilliams, 1990; Smith and Gent, 2004), or more basically
to control dispersive errors (Lemarié et al., 2012). It is thus very common for non-isopycnic models to
implement a rotation of the diffusion tensor in a direction non-aligned with the computational grid. The
benefits of a rotated mixing operator in simulating large scale flows are undeniable (e.g., Danabasoglu
et al. (1994), Lengaigne et al. (2003)). Much of the improvements brought by the Gent and McWilliams
(1990) parameterization of mesoscale eddies in coarse resolution models are also generally attributed to
the orientation of lateral diffusive transport to be along isoneutral directions (Gent, 2011).

Redi (1982) provided the continuous form of the rotation tensor; however additional efforts were re-
quired to proceed to the actual implementation at the discrete level. Several works (Cox, 1987; Danaba-
soglu and McWilliams, 1995; Griffies et al., 1998; Mathieu et al., 1999; Beckers et al., 1998, 2000) tackled
this problem that turned out to be more tedious than expected. The discretization in space raises difficulties
to properly conserve the monotonicity (Mathieu and Deleersnijder, 1998; Beckers et al., 2000) and global
tracer variance dissipation (Griffies et al., 1998) properties of the continuous operator once the problem is
discretized. Moreover, due to the small vertical, relative to horizontal, grid distance typically used in nu-
merical models the vertical and cross terms of the tensor can impose a severe restriction on the time step
when explicit-in-time methods are used to advance the rotated operator. This stability problem is alleviated
by the use of a standard backward Euler scheme for the vertical component of the tensor (Cox, 1987), at
the expense of splitting errors 2 and associated errors in the balance between the active tracer isoneutral
diffusive fluxes (Griffies, 2004, Chap. 16). This approach is used in all the state-of-the-art ocean climate
models. The existing work on the isoneutral diffusion has been essentially carried out on the second-order
(Laplacian) operator and under the small slope approximation (Cox, 1987; Gent and McWilliams, 1990).

Although very few studied so far, a rotated biharmonic operator may be of interest for high resolu-
tion simulations due to its known property of scale selectivity. A biharmonic operator non-aligned with
the direction of the computational grid is used in Marchesiello et al. (2009) and Lemarié et al. (2012),
and discussed in Griffies (2004) (Chap. 14). Because global climate models are now targeting increas-
ingly higher horizontal resolution, the question of the viability of such an operator is not only relevant
for the regional modeling community but also for the ocean climate community. As an illustration, Hecht
(2010) shows that for a 0.10 resolution global model the use of a Lax-Wendroff scheme with an intrinsic
numerically-induced diffusion aligned with the horizontal direction leads to too much of a spurious dia-
neutral mixing in the Equatorial Pacific. This result suggests that even for eddy-resolving simulations an
isoneutral mixing operator could be required. This motivates the design of a scale-selective (high-order)
rotated operator. This is however not straightforward to maintain the stability of such an operator which
can produce undesirable effects like overshooting/undershooting (Delhez and Deleersnijder, 2007) and
spurious cabelling processes (Griffies, 2004, Chap. 14). To our knowledge, the current implementations of

1 Throughout the paper we use the terminology ”isoneutral direction” (sometimes referred as to ”epineutral di-
rection” or simply ”neutral direction” in the literature) which is tangent to the locally-referenced potential density
surface and whose definition is purely local (McDougall, 1987), rather than ”isopycnal direction” which more gen-
erally refers to the direction tangent to a potential density surface referenced to an arbitrary fixed pressure.
2 In the context of this paper, splitting errors are associated with the splitting of the isoneutral Laplacian operator
into a time-explicit part (the horizontal components and cross-derivative terms) and a time-implicit part (the vertical
component).
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rotated biharmonic operators are based on an explicit Euler scheme in time with ad-hoc tapering or clip-
ping of the neutral slopes to maintain good stability properties (Marchesiello et al., 2009). This approach
has however the undesirable effect to allow spurious dianeutral mixing even at places where the slopes are
modest and satisfy the small slope approximation.

The aim of this paper is to study a set of space-time discretizations of the rotated harmonic and bi-
harmonic mixing, and to assess them in terms of accuracy, stability and monotonicity violations. One
additional constraint we impose to ourselves is accuracy relative to large grid slope ratios (defined as
the ratio between the neutral slope and the aspect ratio of the computational grid) in order to make the
scheme adequate for use in a terrain-following σ-coordinate model. Indeed, problems with σ models are
generally more pernicious than with z-level models because it is not unusual that the slope between the
computational grid and the isoneutral direction steepens to be greater than the grid aspect ratio. The paper
is organized as follows. In Sec. 2 we introduce the formulation of the isoneutral mixing problem as well
as three different ways to discretize the problem in space. Then Sec. 3 and 4 are respectively dedicated to
the temporal discretization of the rotated Laplacian and biharmonic operators. Sec. 5 provides the useful
details to proceed to the actual implementation of the different schemes in ocean models. Finally, numeri-
cal experiments are designed to illustrate the properties of various space-time discretizations in Sec. 6. For
clarity, the important notations used throughout the paper are given in Tab. 1.

An alternative approach to the use of isoneutral mixing operators is the design of a vertical coordinate
system following the isopycnals (e.g., Hallberg and Adcroft, 2009; Hofmeister et al., 2010; Leclair and
Madec, 2011). The present paper is a complementary effort in exploring the merits of different approaches
to representing the nearly adiabatic flow in the oceanic interior.

2 Isoneutral Mixing Problem Formulation

2.1 Continuous Formulation

This section briefly introduces the continuous form of the problem under investigation throughout the
paper. The three spatial directions are labeled x1, x2 for the horizontal coordinates, and x3 for the vertical
coordinate. We note q the tracer of interest,∇ the three-dimensional gradient operator and ∂m = ∂xm(m =

1, 3). Following Redi (1982) a mixing operator D2 leading to diffusion along isoneutral directions with a
diffusivity κ can be defined as

D2 = ∇ · (R∇q) =
3∑

m=1

∂m

(
3∑

n=1

rmn∂nq

)
, R = [rmn]1≤m,n≤3 , (2.1)

with R the following rotation tensor

rmn = κ

(
δmn −

(∂mρ)(∂nρ)

‖∇ρ‖2

)
, (2.2)

where δmn is the conventional Kronecker delta and ρ is the locally referenced potential density. This form
of the tensor shows that the matrix R is symmetric positive semi-definite (rmm ≥ 0 and |rmn| ≤

√
rmmrnn)

and thus defines a diffusion tensor. Moreover, by construction, the diffusive flux which takes the form

F = (F (1), F (2), F (3)) with F (m) = −
3∑

n=1

rmn∂nq satisfies the orthogonality condition F · ρ⊥ = 0, with
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State variables

q Three dimensional tracer (can be temperature or salinity)

ρ Three dimensional density field

Coordinates and spatial operators

x1, x2 Horizontal coordinates

x3 Vertical coordinate, pointing upward.

∆xm Measure of the grid-box interface in the xm direction

∆t Time-step for the temporal discretization

∂m = ∂xm Partial derivative in the xm direction

D2 Isoneutral Laplacian operator, defined in (2.1)

D4 Isoneutral biharmonic operator, defined in (2.8)

F = (F (1), F (2), F (3)) Diffusive flux, defined in (2.7) at a continuous level and in (2.13), (2.14), and (2.19) at a discrete level

Jm(q, ρ) Jacobian determinant, defined as ∂mq∂3ρ− ∂mρ∂3q

δmq Discrete differentiation in the xm direction, defined in (2.12) (for δmρ a particular instance of differentiation to allow com-
putation of isoneutral directions is presented in Sec. 5.5)

Parameters

κm Diffusivity in the xm direction

Bm Hyperdiffusivity in the xm direction

α = (α1, α2, 0) Neutral slope vector, defined in (2.5)

sm grid slope ratio, defined in (2.22)

βm Parameter controlling the stencil of the spatial discretization of isoneutral mixing operators, defined in (2.21)

w± Switches to select the computational stencil depending on the orientation of neutral slopes, defined in (2.15)

θ Stabilizing parameter for the Method of Stabilizing Corrections, defined in (3.3)

κ̃ Stabilizing diffusivity for the Method of Stabilizing Corrections, defined in (4.1)

σm Parabolic Courant number in the xm direction, defined in (3.4)

σ
(4)
m Square root of the biharmonic Courant number in the xm direction, defined in (4.2)

zmn Discrete Fourier modes multiplied by ∆t, defined in (3.14)

φm Normalized Fourier frequency (|φm| ≤ π) in the xm direction

λ Exact amplification factor of the isoneutral Laplacian (Sec. 3) and biharmonic (Sec. 4) operators

λ̃ Approximate amplification factor obtained after space-time discretization of the isoneutral Laplacian (Sec. 3) and biharmonic
(Sec. 4) operators

µ2 Ratio between the maximum time-steps allowed for stability of the horizontal and the isoneutral Laplacian operators dis-
cretized using a forward Euler scheme, defined in (3.33)

µ4 Same as µ2 for the biharmonic operator, defined in (4.14)

Table 1
Important notations for the three-dimensional analysis of the isoneutral mixing operators, where m = (1, 2, 3)

denotes the three spatial direction.

ρ⊥ the unit vector in the dianeutral direction. In the limit that horizontal density gradients are much more
smaller than vertical gradients (i.e.,

√
(∂1ρ)2 + (∂2ρ)2/∂3ρ� 1), a simpler form of the tensor, preserving

the isoneutral form of mixing, can be devised (Cox, 1987; Gent and McWilliams, 1990). This assumption
corresponds to the so-called small slope approximation, and reduces the tensor (2.2) to


rmn = κ δmn (1 ≤ m,n ≤ 2)

rm3 = r3m = −κ ∂mρ/∂3ρ (1 ≤ m ≤ 2)

r33 = κ ((∂1ρ)2 + (∂2ρ)2) /(∂3ρ)2

(2.3)
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This formulation of the rotated diffusion under the small slope approximation had also been derived early
by Solomon (1971) in a two-dimensional (x1, x3) case. Throughout this paper we consider the small slope
approximation and we allow an anisotropy in the diffusivities (i.e. κ1 6= κ2), the corresponding matrix
form of the tensor is

R =


κ1 0 κ1α1

0 κ2 κ2α2

κ1α1 κ2α2 κ1α
2
1 + κ2α

2
2

 , (2.4)

with

α = (α1, α2, 0) = −(∂1ρ, ∂2ρ, 0)

∂3ρ
, (2.5)

the neutral slope vector. It is straightforward to check that this form of the tensor preserves the symmetry
as well as the semi-positive definiteness of the full tensor (2.2). For a laplacian diffusion of a tracer field
q in an unbounded domain Ω = R3, we can cast the corresponding evolution problem over a time interval
[0, T ] under a conservative form


∂tq = D2(q) = ∇ · (R∇q) = −∇ · F in Ω× [0, T ],

q|t=0 = q0(x1, x2, x3) in Ω,
(2.6)

with q0 a given initial condition, and

− F =


−F (1)

−F (2)

−F (3)

 =


κ1 (∂1q + α1∂3q)

κ2 (∂2q + α2∂3q)

−α1F
(1) − α2F

(2)

 . (2.7)

This problem is here temporarily defined on an unbounded spatial domain in order to facilitate the theo-
retical study in sections 3 and 4. For bounded domains, we provide the necessary boundary conditions in
Sec. 5. Using the notations previously defined, the problem for the rotated biharmonic operator reads


∂tq = D4(q) = −D2(Ψ), with Ψ = D2(q), in Ω× [0, T ],

q|t=0 = q0(x1, x2, x3) in Ω,
(2.8)

For the biharmonic case, the diffusivities κ1 and κ2 in (2.4) must be replaced by
√
B1 and

√
B2 withB1 and

B2 the hyper-diffusivities. Following Griffies (2004) (Chap. 14), we formulate the biharmonic operator as
the composition of two rotated Laplacian operators with coefficients

√
Bm (m = 1, 2) because this form

ensures that, at the continuous level, the variance of q is strictly dissipated. In the remainder of the paper
we focus on the initial value problems (2.6) and (2.8) with the tensor of rotation defined in (2.4).

Unless explicitly said differently, we will use throughout the paper the subscript m to denote the hori-
zontal directions, m = (1, 2).
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2.2 Spatial Discretization of the Isoneutral Diffusion Operator

2.2.1 Semi-Discrete Considerations

The spatial discretization of the isoneutral diffusion operator is a difficult problem which have been
thoroughly tackled by Cox (1987); Beckers et al. (1998, 2000); Griffies et al. (1998). We, first, briefly
introduce the delicacies associated with the implementation of the operator D2. Because the x1 and x2

directions are independent when adopting the small slope approximation, we consider only the problem
defined in the (x1, x3) plane. As derived in Beckers et al. (2000), the continuous formulation of the rotated
Laplacian operator can be formulated as

D2(q) = ∂1

(
κ1

J1(q, ρ)

∂3ρ

)
− ∂3

(
κ1
∂1ρ

∂3ρ

J1(q, ρ)

∂3ρ

)
where J1(q, ρ) = ∂1q∂3ρ−∂1ρ∂3q is a Jacobian determinant. The main difficulty resides in the evaluation
of the J1(q, ρ)/∂3ρ term on a staggered grid. This term has to be evaluated at the cell interfaces referred
as to u-points and w-points in Fig. 1. Note that, usually, the neutral slope ∂1ρ/∂3ρ used in practice is not
the result of a discretization scheme only, but additional ad-hoc constraints taking the form of a smoothing,
tapering, or clipping procedure are applied; more details concerning this point are given in Sec. 5. Defin-
ing the arithmetic average operators · (1) in the horizontal and · (3) in the vertical, and noting that the
natural position of the ∂1q and ∂1ρ (resp. ∂3q and ∂3ρ) terms is at u-points (resp. w-points), several linear
discretizations of the Jacobian determinant can be proposed using a semi-discrete view of the problem:

• A simple discrete analog of the Jacobian J1 has been implemented in the early versions of the MOM-
GFDL 3 model (Cox, 1987; Danabasoglu and McWilliams, 1995), at u-points and w-points the dis-
cretization reads 

J u
1 (q, ρ) = ∂3ρ

∂1q − ∂1ρ
∂3q

(3,1)

∂3ρ
(3,1)


J w

1 (q, ρ) = ∂3ρ

(
∂1q

(3,1) − ∂1ρ
(3,1) ∂3q

∂3ρ

) (2.9)

where q and ρ are subject to a double averaging in the x3 and x1 directions before differencing, which
makes this approach prone to a computational mode (Griffies et al., 1998). Note that the ∂3ρ in front of
the parenthesis has a passive role here because this is formally J1(q, ρ)/∂3ρ that we aim at discretizing.
• An other way to compute the Jacobian is by differencing before averaging, as proposed in Griffies et al.

(1998). In this case we have
J u

1 (q, ρ) = ∂3ρ

∂1q − ∂1ρ

[
∂3q

∂3ρ

](1,3)


J w
1 (q, ρ) = ∂3ρ

(
∂1q

(1,3) − ∂1ρ
(1,3)

[
∂3q

∂3ρ

])
,

(2.10)

where the term in brackets could be simply replaced by ∂q/∂ρ, however we keep ∂3ρ explicitly to
clearly identify the neutral slopes.
• To obtain more symmetry between the u andw points we can define the following quantity at the corners

of the grid cells (sometimes referred as to Ψ-points)

3 Geophysical Fluid Dynamics Laboratory
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J Ψ
1 (q, ρ) = ∂3ρ

∂1q
(3) − ∂1ρ

(3)

[
∂3q

∂3ρ

](1)
which gives

J u
1 (q, ρ) = J Ψ

1 (q, ρ)
(3)
, and J w

1 (q, ρ) = J Ψ
1 (q, ρ)

(1)
.

This discretization has the interesting property to define the neutral slopes at Ψ-points only, which makes
it more convenient to handle the tapering, clipping, or smoothing procedure. Indeed, for the schemes
(2.9) and (2.10) this procedure has to be done twice, at u and w points. However this discretization
has the major drawback not to reduce to the classical (1,−2, 1) stencil when the neutral slopes vanish,
which disqualifies it.
• We can suggest a last approach which would consist in providing more flexibility to the discretization

by introducing two sets of weights νun and νwn in the problem. We define the operator · (νu) as the
weighted average of the four w-points surrounding a u-point, and · (νw) as the weighted average of the
four u-points surrounding a w-point. A generalization of scheme (2.10) is

J u
1 (q, ρ) = ∂3ρ

∂1q − ∂1ρ


[
∂3q

∂3ρ

](νu)



J w
1 (q, ρ) = ∂3ρ

(
∂1q

(νw) − ∂1ρ
(νw)

[
∂3q

∂3ρ

])
,

(2.11)

The parameters νun and νwn are set by requiring additional properties of the discretization scheme. An
example is the LINEAR1 scheme of Beckers et al. (2000) which sets the νun and νwn coefficients to get
the most compact stencil in the dianeutral direction to reduce the amount of spurious dianeutral mixing.
This scheme reduces to a (1,-2,1) stencil in the diagonal when the angle between the computational grid
and the isoneutral direction is ±45 degrees; this property is not satisfied by (2.10).

To our knowledge, three different schemes are currently in use in ocean models. The Nucleus for Euro-
pean Modeling of the Ocean (NEMO, Madec (2008)) and Coupled Large-scale Ice Ocean (CLIO, Goosse
et al. (2008); Mathieu et al. (1999)) models use the Cox (1987) discretization (2.9). In NEMO, an hori-
zontal two-dimensional Laplacian operator acting to smooth the neutral slopes provides the extra diffusion
needed to stabilize the scheme (Cox, 1987; Mathieu and Deleersnijder, 1998; Griffies et al., 1998). In the
Modular Ocean Model (MOM, Griffies (2010)) and Parallel Ocean Program (POP, Smith et al. (2010)) the
discretization (2.10) based on the tracer/density triad formalism (Fig. 1) is used. A triad is defined as an
elementary computational stencil of the jacobian J1(q, ρ), and therefore of the rotated operator (Griffies
et al., 1998). In MOM, an extra vertical smoothing of the ∂3ρ term is used (Griffies, 2010, Chap. 16).
Finally, even if not explicitly documented, the scheme (2.11) is implemented in the σ-coordinate Regional
Oceanic Modeling System (ROMS, Shchepetkin and McWilliams (2005)) and is routinely used so far to
rotate along geopotentials the explicit diffusion in the sponge layers near the open boundaries. We de-
scribe below the procedure to compute the weighted averages, and we show that this scheme can also be
expressed in a tracer triad formalism. In the present study, the MOM/POP discretization is referred as to
TRIADS, the NEMO/CLIO discretization as to COX, and the ROMS discretization as to SW-TRIADS
(SW stands for switching).

From our experience, besides the instability identified by Griffies et al. (1998), the TRIADS and
COX schemes provide very similar results. The differences are greater between the TRIADS and the
SW-TRIADS schemes, we thus focus our study on those two schemes only.
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2.2.2 Discrete Fluxes

We define

δ1qi+ 1
2
,j,k = qi+1,j,k − qi,k and δ3qi,j,k+ 1

2
= qi,j,k+1 − qi,j,k. (2.12)

The metric terms (∆x2)i+ 1
2
,j and (∆x3)i+ 1

2
,j,k are the horizontal and vertical measures of the correspond-

ing grid-box interfaces and (∆x1)i+ 1
2
,j is the distance between qi+1,j,k and qi,j,k. The vertical index k varies

from k = 1 for the first grid cell next to the ocean floor to k = N at the surface, N corresponds to the
number of vertical levels of the discretization. The methodology to compute the δmρ terms to obtain the
isoneutral directions is given explicitly later in Sec. 5.5 and differs from the formula (2.12).

The interfacial F (1) flux discretized using the TRIADS scheme reads

−F (1,triads)
i+ 1

2
,j,k

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k

 δ1qi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

−
δ1ρi+ 1

2
,j,k

(∆x1)i+ 1
2
,j

· 1

4

 δ3qi,j,k− 1
2

δ3ρi,j,k− 1
2

+
δ3qi+1,j,k+ 1

2

δ3ρi+1,j,k+ 1
2

+
δ3qi+1,j,k− 1

2

δ3ρi+1,j,k− 1
2

+
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2


 .

(2.13)
Using the notations introduced in Fig. 1, we see that the TRIADS scheme uses the four triads labelled
2,4,5, and 6 with the same weight w = 1/4. The derivatives in the x1-direction are computed along the
horizontal segment of a triad while the derivatives in the x3-direction are computed along the vertical
segment. Alternatively, the spirit of the LINEAR1 scheme introduced in Beckers et al. (2000) is to weight
those triads depending on the orientation of the slope by keeping only two of them. The LINEAR1 scheme
was originally derived for a constant slope, we extend this scheme to the case with spatially variable
neutral slopes to obtain the more general SW-TRIADS scheme. If we assume a stable stratification (i.e.
δ3ρi,j,k+ 1

2
< 0, ∀k), this scheme reads

−F (1,sw-triads)
i+ 1

2
,j,k

= κ1(∆x2)i+ 1
2
,j(∆x3)i+ 1

2
,j,k

 δ1qi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

− 1

2

 w+
i+ 1

2
,j,k

(∆x1)i+ 1
2
,j

 δ3qi,j,k− 1
2

δ3ρi,j,k− 1
2

+
δ3qi+1,j,k+ 1

2

δ3ρi+1,j,k+ 1
2


+

w−
i+ 1

2
,j,k

(∆x1)i+ 1
2
,j

 δ3qi,j,k+ 1
2

δ3ρi,j,k+ 1
2

+
δ3qi+1,j,k− 1

2

δ3ρi+1,j,k− 1
2


 .

(2.14)
with

w+
i+ 1

2
,j,k

= max(δ1ρi+ 1
2
,j,k, 0), w−

i+ 1
2
,j,k

= min(δ1ρi+ 1
2
,j,k, 0). (2.15)

Depending on the orientation of the slope, either triads 4 and 5 are selected, or triads 2 and 6. This results
in a compact four point stencil for the discretization of the F (1,sw-triads)

i+ 1
2
,j,k

interfacial flux. The cancellation of
the contribution of cross-isoneutral points with the SW-TRIADS scheme tends to reduce the amount of
spurious dianeutral mixing associated with discretization errors. This point will be exemplified in Sec. 6.
The discretization of the vertical flux F (3) does not raise any additional difficulty for the TRIADS scheme
and can be found in Griffies et al. (1998). We show in the next subsection a way to construct the vertical
flux F (3,sw-triads)

i,j,k+ 1
2

so that the SW-TRIADS scheme satisfies a globally diminishing tracer variance.
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(i + 1,k + 1)

(i + 1,k)

(i + 1,k − 1)

(i,k + 1)

(i − 1,k + 1)

(i − 1,k)

(i − 1,k − 1)

(i,k − 1)

(i,k)

8

3

11

64

12

5

27 1

10
9

u points

w points

ρ,q points

Fig. 1. Grid stencil, constructed upon 12 triads, involved in the computation of the rotated Laplacian operator in
the (x1,x3) plane. Each triad has an associated quarter cell (gray shaded areas). The zonal F (1) and vertical F (3)

components of the isoneutral diffusive flux are computed at the cell interfaces surrounding the (i, k) location (dark
grey shaded points). The numbering of the triads is meant to be consistent with the one used in Griffies (2004) (Chap.
16).

2.3 Global Tracer Variance Dissipation

As shown in Griffies et al. (1998), the TRIADS scheme has been constructed to ensure that the dis-
cretized operator globally satisfies the tracer variance dissipation property of the continuous operator. This
scheme is designed on the basis of the variational principle. A weak form of the problem under investiga-
tion can be defined through

G [q] = −1

2

∫
Ω
∇q · (R∇q) dΩ (2.16)

where G [q] is a functional whose Frèchet derivative δG [q]/δq gives the diffusion operator. Due to the
symmetric positive semi-definite property of the diffusion tensor R, G is negative semi-definite. This
property implies that the corresponding operator acts to decrease the total tracer variance, indeed Griffies
et al. (1998) showed that ∂t

∫
Ω
q2 dΩ = 4G [q]. Unlike the COX scheme, the TRIADS scheme provides

a negative semi-definite functional at the discrete level, thus ensuring that the corresponding discretized
operator is globally strictly dissipative (Griffies et al., 1998; Smith and Gent, 2004; Griffies, 2004). The
reader is referred to Griffies (2004) (Chap. 16) for more details about the foundations for the dissipation
functional and its discretization.

Consistent with the notations introduced in Griffies (2004) (Chap. 16) the discretization of the func-
tional G , in the (x1, x3) plane, is given by
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G (x1−x3)[q] = −1

2

∑
i,k

12∑
n=1

A(n)V (n)

[
δ1q(n)

∆x1(n)
+ α1(n)

δ3q(n)

∆x3(n)

]2

≡
∑
i,k

(
12∑
n=1

L
(n)
i,k

)
, (2.17)

where the subscripts (i, k) run over all the cells of the computational domain. In (2.17), A(n) is the diffu-
sivity associated with triad n, V (n) is the volume of quarter-cell n, ∆x1(n) and ∆x3(n) are respectively
the length of the horizontal and vertical segments of triad n. For a given cell (i, k), the contribution to

the discrete functional is given by
12∑
n=1

L
(n)
i,k which corresponds to 12 nonpositive components associated

with 12 quarter cells, built in such a way that there is a unique volume V (n) and diffusivity A(n) for
each quarter-cell (represented as light gray shaded areas in Fig. 1). This procedure ensures that G (x1−x3)[q]

is negative semi-definite. For example, the contribution of triad 1 to the discretized diffusion operator is
given by

δL
(1)
i,k

δqi,k
= −A(1)V (1)

(
δ1q(1)

∆x1(1)
+ α1(1)

δ3q(1)

∆x3(1)

) 1

∆x1(1)︸ ︷︷ ︸
contribution to F (1)

− α1(1)

∆x3(1)︸ ︷︷ ︸
contribution to F (3)

 (2.18)

which shows that when a triad is used to compute F (1), the same triad is used to compute F (3). The only
difference between the TRIADS and the SW-TRIADS schemes is in the weighting of the 12 triads, the
SW-TRIADS scheme simply cancels the contribution of certain triads depending on the orientation of the
neutral slope α1, which is equivalent to set A(n) to zero for those triads. This means that once a triad n
is rejected during the computation of F (1,sw-triads) it can not be used again to compute F (3,sw-triads) because
the diffusivity A(n) associated with this triad is zero. If we follow this simple rule, we find that there is a
unique way to define the vertical interfacial flux F (3,sw-triads)

i,j,k+ 1
2

:

−F (3,sw-triads)
i,j,k+ 1

2

= κ1

(∆x3)i,j,k+ 1
2

δ3ρi,j,k+ 1
2

 w+
i− 1

2
,j,k

(∆x1)i− 1
2
,j

 δ1ρi− 1
2
,j,k

(∆x1)i− 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi− 1

2
,j,k

(∆x1)i− 1
2
,j


+

w+
i+ 1

2
,j,k+1

(∆x1)i+ 1
2
,j

δ1ρi+ 1
2
,j,k+1

(∆x1)i+ 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi+ 1

2
,j,k+1

(∆x1)i+ 1
2
,j


+

w−
i− 1

2
,j,k+1

(∆x1)i− 1
2
,j

δ1ρi− 1
2
,j,k+1

(∆x1)i− 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi− 1

2
,j,k+1

(∆x1)i− 1
2
,j


+

w−
i+ 1

2
,j,k

(∆x1)i+ 1
2
,j

 δ1ρi+ 1
2
,j,k

(∆x1)i+ 1
2
,j

·
δ3qi,j,k+ 1

2

δ3ρi,j,k+ 1
2

−
δ1qi+ 1

2
,j,k

(∆x1)i+ 1
2
,j

× 1

W

(2.19)

where W corresponds to the number of selected triads, i.e. the number of nonzero w± terms. For W = 2,
it is easy to check that the rotated operator discretized with the SW-TRIADS scheme is based on exactly
six triads and is consistent with the functional discretization (2.17) where the contribution of the six other
triads is rejected by setting their associated diffusivities to zero. As illustrated in Fig. 2, we have W = 2

for the common situations encountered in ocean models. There are however some degenerated cases (Fig.
2, e) and f) ) for which W 6= 2. In those very specific cases, the scheme does not satisfy the functional
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discretization because some triads are used to compute F (3) with a different weight than it is used to
compute F (1). We can show easily that when the stratification has a 2∆x1 mode, as studied in Griffies
et al. (1998), the SW-TRIADS schemes ensure a global tracer variance reduction.

The SW-TRIADS scheme is a special instance of the TRIADS scheme, it thus makes the implementa-
tion of this scheme as straightforward. When spatially variable diffusion coefficients are used, each triad
must be weighted by the corresponding coefficient. Usually, those coefficients are computed at the hori-
zontal interfacial u points. In this case, in (2.19) the constant diffusivity κ1 should be dropped and each
coefficient w± must be multiplied by the corresponding diffusivity. Because each triad crosses exactly one
u point (Fig. 1) there is a unique diffusivity associated with a given triad.

It is worth mentioning that the tracer variance diminishing property should not be confused with the
total variation diminishing (TVD) property which is monotonicity preserving. As we show in Sec. 6, the
rotated operators discretized with the TRIADS or the SW-TRIADS scheme do not preserve monotonicity
(Mathieu and Deleersnijder, 1998; Beckers et al., 2000).

Because the rotated biharmonic operator corresponds to two successive rotated Laplacian operators,
it does not raise any additional difficulties as long as the spatial discretization is concerned. In the two
following sections we consider the time integration of the rotated operators, and we assume that the slope
vector α is spatially constant and that the grid is uniform to make the stability analysis tractable. For a
constant slope, the discrete approximation D̃2 of the rotated operator at the position (i, j, k) is given by

(
D̃2

)
i,j,k

= −

F
(1)

i+ 1
2
,j,k
− F (1)

i− 1
2
,j,k

∆x1∆x2∆x3

+
F

(2)

i,j+ 1
2
,k
− F (2)

i,j− 1
2
,k

∆x1∆x2∆x3

+
F

(3)

i,j,k+ 1
2

− F (3)

i,j,k− 1
2

∆x3


=

1∑
p=−1

1∑
l=−1

µ
(1)
p,l qi+p,j,k+l +

1∑
p=−1

1∑
l=−1

µ
(2)
p,l qi,j+p,k+l,

(2.20)

with

[µ
(m)
p,l ]−1≤p,l≤1 =

κm
∆x2

m


(βm − 1)

sm
2

sm(sm − βm) (1 + βm)
sm
2

1− smβm −2(1 + s2
m) + 2smβm 1− smβm

(1 + βm)
sm
2

sm(sm − βm) (βm − 1)
sm
2

 (2.21)

where
sm =

∆xm
∆x3

αm (2.22)

is the grid slope ratio, βm ≡ 0 gives the TRIADS scheme and βm = 1 for sm ≥ 0 (resp. βm = −1 for
sm < 0) the SW-TRIADS scheme. The rotated Laplacian operator in the xm-direction is thus discretized
on a centered 9-point stencil if βm = 0 and on a more compact 7-point stencil if |βm| = 1. As far as
the rotated biharmonic is concerned, the discretization is based on a 25-point stencil with the TRIADS
and a 19-point stencil with the SW-TRIADS. We do not investigate this possibility in this study, but the
parameter βm could be used as a degree of freedom to derive alternative properties of the discretization.

The grid slope ratio sm, introduced in (2.21), is a key dimensionless parameter that will be used
throughout this paper. This parameter corresponds to the ratio between the neutral slope αm and the aspect
ratio ∆x3/∆xm. We thus have sm = ±1 for a ±45 degrees slope. Values of |sm| greater than 1 generally
lead to a degradation of the accuracy of the rotated diffusion due to the need for extrapolation to compute
the isoneutral direction. For typical applications with a coarse resolution global climate model, |sm| can
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gρ�

ρ0

x1

a) b)

c) d)

e) f)

Fig. 2. Computational stencil, represented as triads (black lines), involved in the computation of the rotated Laplacian
operator with the SW-TRIADS scheme for different orientations between the computational grid (dashed lines) and
the isoneutral direction which corresponds to horizontal lines in the (x1,gρ′/ρ0) frame. In cases a) to d), 6 triads are
selected while 8 triads are selected in e) and 4 in f).
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reach O(10) values (e.g.; sm = 10 for αm = 5 × 10−3, ∆x1 = 100 km, and ∆x3 = 50 m). Note that the
use of slope clipping or tapering sets an upper bound on sm which can not be arbitrarily large in this case.
Large grid slope ratios should not be confused with large neutral slopes, meaning that large values of sm
can exist even under the small slope approximation. In the context of a σ to geopotentials rotation, as in
Marchesiello et al. (2009), sm corresponds to the so-called hydrostatic inconsistency number.

3 Time Discretization of the Isoneutral Laplacian Operator

3.1 Proposed Schemes

The overall objective of this section is to derive a time-integration scheme whose stability limit is
imposed by the horizontal components of the tensor. In this case the constraint on the time step ∆t of the
temporal discretization would be equivalent between the rotated and the non-rotated operators. Moreover,
because we are considering a diffusive process, we do not feel necessary to strive to design a high-order
scheme in time, the aim is to keep the study as simple as possible. The rotated Laplacian operator D2,
with neutral slopes αm and diffusivities κm, can be linearly decomposed into a sum of three functions
D2(q) =

∑3
m=1Gm(q), where


Gm(q) = ∂m (κm [∂mq + αm∂3q]) + ∂3 (αmκm∂mq) (m = 1, 2),

G3(q) = ∂3

([
κ1α

2
1 + κ2α

2
2

]
∂3q

)
.

(3.1)

We consider that the pieceG0(q) = G1(q)+G2(q) is always treated explicitly in time-integration schemes,
whereas G3 represent a stiff and unidirectional contribution that can be treated implicitly, if needed. The
integration of the G0 term in an implicit manner would require the solution of a complicated implicit sys-
tem in the horizontal direction which would be laborious to implement in parallel and would significantly
affect the performances of the numerical model. The common practice in climate models is to use a stan-
dard backward Euler scheme to advance the vertical G3 component of the tensor (Cox, 1987). Using the
time step ∆t > 0, we note qn the approximation qn ≈ q(tn), with tn = n∆t. The semi-discretized version
of the scheme introduced by Cox (1987) is

qn+1 = qn +∆t
{
G0(qn) +G3(qn+1)

}
. (3.2)

In the following this scheme will be referred as to (IMP) scheme. Moreover, the fully explicit version, i.e.
with G3(qn) instead of G3(qn+1) in (3.2), will be denoted by (EXP).

Following the work of Douglas (1962), Andreev (1967) or Craig and Sneyd (1988) (see also in ’t
Hout and Welfert (2009) for a review), split schemes such as alternating direction implicit (ADI) have
proved valuable in the approximation of the solutions of multi-dimensional parabolic problems with mixed
derivatives. This type of scheme is usually implemented with unidirectional implicit corrector steps in
each spatial direction to pursue an unconditional stability. Alternatives to this scheme allowing one or
more spatial directions to be treated explicitly can be found in Douglas and Gunn (1964); van der Houwen
and Verwer (1979) or Hundsdorfer (2002). Those authors propose a multi-stage method : at the first stage,
a consistent (explicit) approximation of the operator is evaluated, while all succeeding stages serve to
improve the stability. This scheme has been called Method of Stabilizing Corrections (referred as to (MSC)
hereafter) in van der Houwen and Verwer (1979) and seems particularly well suited for our problem
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because it provides a consistent, efficient, and easy-to-implement scheme with degrees of freedom to
ensure good stability properties. Moreover, we see in Sec. 4 that this approach can be extended to the
time-integration of the rotated biharmonic operator. For the diffusion problem (2.6), the (MSC) scheme
reads


q? = qn +∆t {G0(qn) +G3(qn)}

qn+1 = q? + θ∆t {G3(qn+1)−G3(qn)}
(3.3)

where θ ≥ 0 is a real parameter. Note that for our purpose we only allow a stabilizing correction in the
vertical direction. In (3.3), θ = 0 gives the (EXP) scheme and θ = 1 the (IMP) scheme. For θ = 1/2, we
retrieve the Crank-Nicolson scheme, however we will see later that this scheme is not particularly well-
suited in the context of the isoneutral Laplacian operator because it does not stabilize the cross-derivative
terms as effectively as the (IMP) scheme. In the next section we study the stability range of the (EXP),
(IMP) and (MSC) methods subject to the TRIADS or SW-TRIADS discretizations in space.

3.2 Important Results

We give here the important results of our study on the Laplacian operator, the associated proof is
provided in Sec. 3.3. Those results are given in terms of the parabolic Courant number

σm = κm
∆t

∆x2
m

. (3.4)

Horizontal Laplacian Operator

When using an Euler forward scheme, the stability limit of the two-dimensional horizontal Laplacian
operator, discretized on a five-point stencil 4 , is

σ1 + σ2 ≤
1

2
. (3.5)

4 A nine-point discrete Laplacian operator would provide a stability criterion which is somewhat less restrictive
than for the usual five-point one.

14



Isoneutral Laplacian Operator

• TRIADS discretization
· The (EXP) scheme is stable for

σ1(1 + s2
1) + σ2(1 + s2

2) ≤ 1

2
(3.6)

which is always more restrictive than (3.5).
· The stability limit of the (IMP) scheme is given by (3.5).
· The same stability constraint (3.5) is obtained for the (MSC) scheme when θ is chosen such that

(s2
1σ1 + s2

2σ2)θ =
1

2
max

{
−1 + 2

[
σ1(1 + s2

1) + σ2(1 + s2
2)
]
, 0
}
. (3.7)

The value of θ ranges from θ = 0 when the (EXP) scheme is stable to θ = 1 when σ1 + σ2 = 1/2.
The amount of implicit diffusion is thus always smaller with the (MSC) scheme compared with the
(IMP) scheme.

• SW-TRIADS discretization
· The (EXP) scheme is stable for

σ1 max
{
s2

1, 1
}

+ σ2 max
{
s2

2, 1
}
≤ 1

2
(3.8)

which shows that for s2
1 ≤ 1 and s2

2 ≤ 1 the stability constraint is the same as the non-rotated
operator.
· As for the TRIADS case, the (IMP) scheme is stable if condition (3.5) is satisfied.
· The stability condition (3.5) applies to the (MSC) scheme for

θ = max

{
|s1| − 1

|s1|
,
|s2| − 1

|s2|
, 0

}
(3.9)

Before demonstrating those results, we draw a few remarks :

• As shown in Sec. 3.3, the values of θ given in (3.7) and (3.9) are sufficient conditions for stability. Some
conservative choices have been made during the analysis to simplify the results.
• The value of θ in (3.7) is equal to 1 when σ1+σ2 = 1/2. Consequently, if the diffusivities κm are constant

everywhere and such that σ1 + σ2 = 1/2, the (MSC) scheme is equivalent to the (IMP) scheme. The
(MSC) scheme can, however, be particularly interesting when flow-dependent diffusion coefficients are
used because it minimizes the amount of implicit vertical diffusion required for stability.
• The Crank-Nicolson scheme (i.e. θ = 1/2) does not provide a sufficient condition ensuring that the

isoneutral Laplacian operator can be advanced with the same time step as the horizontal diffusion opera-
tor. Indeed, we show in (3.7) that values of θ larger than 1/2 are required, especially when σ1+σ2 = 1/2.

We now provide the methodology to derive the stability conditions.

15



3.3 Proof Through Linear Stability Analysis

We first assume that the tracer q can be Fourier decomposed as

q(x1, x2, x3, t) =
∑
k

Ak(t) exp

(
i

3∑
m=1

kmxm

)
, i =

√
−1 (3.10)

with k = (k1, k2, k3) the three-dimensional wave-vector. Substitution in (2.6) leads to the linear damping
equation

dq

dt
= −ηq, with η =

2∑
m=1

κm(km + αmk3)2, (3.11)

and subsequently

q(tn+1 = tn +∆t) = exp (−η∆t) q(tn) = λ q(tn). (3.12)

λ = e−η∆t provides the exact damping obtained with a “perfect” discretization. We can derive the approx-
imate damping λ̃ provided by the space-time discretization

q(tn+1) = λ̃(z11, z22, z33, z31, z13, z32, z23)q(tn) (3.13)

where the zmn terms are all real and obtained by substitution of discrete Fourier modes in (2.20) and
multiplication by ∆t:

zmm = −2σm(1− cosφm) m = 1, 2

z33 = −2(s2
1σ1 + s2

2σ2)(1− cosφ3)

zm3 = z3m = −smσm [sinφm sinφ3 − βm(1− cosφm)(1− cosφ3)] m = 1, 2

(3.14)

with φm = km∆xm (|φm| ≤ π) the normalized Fourier frequencies. Using those notations, we obtain
η∆t =

∑2
m=1 σm (φm + smφ3)2 in (3.12).

The response function of the (MSC) time scheme (3.3) subject to the spatial discretization (2.20-2.21)
is

λ̃ = 1 +
z0 + z33

1− θz33

, z0 =
2∑

m=1

(zmm + zm3 + z3m). (3.15)

Stability of the scheme under investigation is obtained for |λ̃| ≤ 1.

In the subsequent paragraphs we first show that the condition λ̃ ≤ 1 is satisfied whatever the value of θ,
and whatever the spatial discretization. Then, we show that the TRIADS scheme always provides a more
restrictive stability range than the SW-TRIADS scheme. Eventually, we derive the requirements to satisfy
the constraint λ̃ ≥ −1 which ensures that the corresponding scheme is stable.
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Upper Bound on λ̃

To emphasize the fact that the zmm terms are negative, we define ym =
√

2σm(1− cosφm), and y3 =√
y2

31 + y2
32 ( with y3m =

√
2s2

mσm(1− cosφ3) ) so that zmm = −y2
m. Moreover, we introduce the vector

vm = (sinφm, ςm(1− cosφm)), with ςm such that βm = −ςmς3 and |ςm| ≤ 1. We can easily show that

zm3 = z3m = −smσm(vm · v3) (3.16)

and for m = 1, 2 (thanks to the condition |ςm| ≤ 1)

σm‖vm‖2 ≤ σm
{

sin2 φm + (1− cosφm)2
}

= y2
m, (3.17)

where ‖ • ‖ defines the `2-norm. (3.16) and (3.17) imply that

−z33 −
2∑

m=1

(zmm + zm3 + z3m) = y2
1 + y2

2 + y2
3 + 2s1σ1(v1 · v3) + 2s2σ2(v2 · v3)

≥
2∑

m=1

σm‖vm‖2 + s2
mσm‖v3‖2 + 2smσm(vm · v3)

=
2∑

m=1

σm‖vm + smv3‖2 ≥ 0.

(3.18)

This result is sufficient to show that λ̃ ≤ 1, indeed thanks to (3.15) we have

λ̃ = 1−
{
−z33 −

∑2
m=1(zmm + zm3 + z3m)

1 + θy2
3

}
≤ 1, (3.19)

because we showed that the term in curly brackets is positive. Note that this result is valid whatever |βm| ≤
1 and hence whatever the spatial discretization. This result means that stability of the time discretization
is obtained for λ̃ ≥ −1. In the following we first show that if this condition is satisfied by the TRIADS
scheme the same applies to the SW-TRIADS scheme.

Effect of the Cross-Terms

As shown in (3.14), the difference between the two spatial discretizations under consideration appears
only in the z3m terms. The definition of the slope dependent parameter βm for the SW-TRIADS scheme is
such that for all sm, βmsm = |sm|. Substitution in (3.14) leads to

− z3m = σm [sm sinφm sinφ3 − |sm|(1− cosφm)(1− cosφ3)] ≤ σmsm sinφm sinφ3. (3.20)

This inequality shows that the cross-terms discretized using the SW-TRIADS scheme always provide a
less restrictive stability constraint than when using the TRIADS scheme (which corresponds to βm = 0 in
(3.14)). It means that the condition λ̃ ≥ −1 is more difficult to satisfy with the TRIADS discretization.
We thus consider in the remainder of this section the most restrictive case βm = 0. We provide in App. B
the results obtained for a non-zero value of βm with the SW-TRIADS discretization.
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Fig. 3. Optimized values θ? (for σ2 = 0) of the stabilizing parameter θ obtained with the TRIADS scheme (left) and
the SW-TRIADS scheme (right) with respect to σ1 and s1.

Stability Conditions

Starting from (3.15), stability is obtained for

λ̃ ≥ −1 ⇔
2∑

m=1

ϕm − 2(1 + θy2
3) ≤ 0, ϕm = y2

m + y2
3m − z3m − zm3. (3.21)

Taking sm = 0 (i.e. y3m=z3m=0) and θ = 0 in (3.21) we find the stability constraint y2
1 + y2

2 ≤ 2 which
corresponds to the usual constraint (3.5) obtained when the horizontal Laplacian operator is integrated
using an Euler explicit scheme. Ideally, this is the stability constraint we are targeting for the general case
sm 6= 0 so that the rotated Laplacian operator does not involve the use of a smaller time step than the
non-rotated Laplacian operator. The stability condition (3.21) can be more conveniently written as

ϕθ1 + ϕθ2 ≤ 2, with ϕθm = ϕm − 2θy2
m3. (3.22)

The stability analysis therefore requires the derivation of a proper upper bound for the ϕθm functions. For
clarity, we describe the computation of such an upper bound in App. A, and we recall here only the final
result :

ϕθ1 + ϕθ2 ≤ 2σ1M (θ, s1) + 2σ2M (θ, s2) (3.23)

where

M (θ, sm) = 1 + s2
m(1− 2θ) +

√
(1 + s2

m) (1 + s2
m(1− 2θ)2). (3.24)

Combining (3.22) and (3.23) we get the following criteria for stability,

2σ1M (θ, s1) + 2σ2M (θ, s2) ≤ 2. (3.25)

In the fully-explicit (EXP) case (i.e. θ = 0) we get M (0, sm) = 2(1 + s2
m), the associated stability criteria

reads
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σ1(1 + s2
1) + σ2(1 + s2

2) ≤ 1

2
. (3.26)

This result leads to the stability condition (3.6) and is consistent with the result found in Mathieu et al.
(1999) (eqn. 31). Furthermore, for θ = 1 (i.e.; the (IMP) scheme), we get M (1, sm) = 2 and thus σ1+σ2 ≤
1/2 which corresponds to the stability limit of the non-rotated operator. This result shows that by treating
implicitly the vertical component of the tensor there is no additional constraint arising from the cross-
terms. Finally, for the (MSC) scheme the optimal value of θ providing a minimum of implicit diffusion is
solution of the equation σ1M (θ, s1) + σ2M (θ, s2) = 1. However, the analytical solution of this equation
is extremely complex and would be impractical anyway for real applications. We, therefore, proceed in a
more conservative way by noting that for θ ≤ 1

M (θ, sm) ≤M ‡(θ, sm) = 2(1 + s2
m)− 2θs2

m. (3.27)

It is now straightforward to determine the analytical solution θ? of the equation σ1M ‡(θ, s1)+σ2M ‡(θ, s2) =

1 :

(s2
1σ1 + s2

2σ2)θ? =
1

2
max

{
−1 + 2(1 + s2

1)σ1 + 2(1 + s2
2)σ2, 0

}
. (3.28)

We can check that θ? = 0 if the (EXP) scheme is stable and θ? = 1 for σ1 + σ2 = 1/2. In Fig. 3 we
show the values of the stabilizing parameter θ? associated with the TRIADS scheme as well as the values
of the stabilizing parameter obtained in App. B with the SW-TRIADS. We, first, want to emphasize the
fact that those values of θ are sufficient conditions for stability but are not the optimal values, conservative
choices have been made during our analysis. This remark explains why in Fig. 3 larger values of θ are
shown for the SW-TRIADS, compared to the TRIADS (particularly for small values of σm), although
we argue earlier that the TRIADS scheme always provide a more restrictive stability condition than the
SW-TRIADS scheme. It can be shown that the value of θ given in (3.28) for the TRIADS scheme is also
a sufficient condition for stability with the SW-TRIADS scheme.

In general, we see that the value of θ required to maintain stability of the scheme can be smaller than
1 in numerous cases and hence that splitting errors (as defined in footnote 2) associated with the (IMP)
scheme can be further reduced. It, however, still needs to be checked that this reduction of splitting errors
has a clear and meaningful impact on the physical solution of numerical models. This question is left for
a future study.

3.4 Non-oscillatory Scheme

Throughout the previous subsection we have considered the requirement |λ̃| ≤ 1 which is a necessary
condition for stability. However a more severe condition 0 ≤ λ̃ ≤ 1 may be required to ensure a non-
oscillatory behavior of the temporal integration (Mathieu et al., 1999). This corresponds to the so-called
”no flip-flop” condition, as opposed to the condition |λ̃| ≤ 1 which allows a flip-flop behavior in time
unlike the exact solution of the problem under investigation (Cushman-Roisin and Beckers, 2011, Chap.
5). Indeed, we see in (3.13) that negative values of λ̃ would allow the solution to oscillate at each time step
because λ̃, λ̃2, λ̃3, ... would change sign. It is straightforward to extend the results described in Sec. 3.3 to
the ”no flip-flop” case. In the non-rotated case, (3.5) reduces to

σ1 + σ2 ≤ 1/4, (3.29)
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which means that the time step must be divided by two. In the rotated case, the (EXP) scheme satisfies the
condition λ̃ ≥ 0 for

σ1(1 + s2
1) + σ2(1 + s2

2) ≤ 1

4
. (3.30)

For the (IMP) scheme, the absence of flip-flop requires

σ1

(
1 +

√
1 + s2

1

)
+ σ2

(
1 +

√
1 + s2

2

)
≤ 1

2
(3.31)

which is the condition used in the CLIO model to set ∆t (Mathieu et al., 1999). The inequality (3.31)
shows that the no flip-flop condition is satisfied under a stability constraint more restrictive than (3.29). In
the case of the (MSC) scheme, the no flip-flop condition is achieved if (3.29) is satisfied and if θ is chosen
such that

(s2
1σ1 + s2

2σ2)θ? =
1

2
max

{
−1 + 4(1 + s2

1)σ1 + 4(1 + s2
2)σ2, 0

}
. (3.32)

For this value of θ the scheme satisfies the ”no flip-flop” condition if the horizontal terms do, which reduces
to (3.29). In (3.32), the value of θ? varies from θ? = 0 when (3.30) is satisfied to θ? = 2 when σ1 + σ2 =

1/4. The aim here is not to claim that flip-flops should not be allowed. Indeed, the widely used horizontal
Laplacian operator advanced with a forward Euler scheme allows flip-flops for 1/4 ≤ σ1 +σ2 ≤ 1/2 and it
did not turn out to be problematic in practice. This paragraph was meant to illustrate that, unlike the (IMP)
scheme which is restricted by the cross-terms, the (MSC) scheme is general enough to ensure additional
properties of the time discretization like the absence of flip-flops.

3.5 Comments

The literature on multi-dimensional parabolic problems with mixed derivatives has been focused on
demonstrating the stability of the method of stabilizing corrections (and/or the ADI method). To our
knowledge, there are no systematic studies on the impact of the stabilizing step on the accuracy of the
solution. This point is discussed in this section and turns out to be very helpful to anticipate the behavior
of the scheme in practical situations.

3.5.1 Spatial Discretization

In Fig. 4 we show the amplification factor obtained when the (EXP) scheme is stable. Because in
this case there are no splitting errors, this figure is indicative of the differences between the two spatial
discretizations under consideration. To make the interpretation of the results easier, we consider the no
flip-flop case. In the figure, we can not formally identify the direction of the computational grid because it
represents a wavenumber space, but it is instructive to look at the amplification factor in several directions.
Using (3.10), we find that ∇q and (k1, k3) are collinear. Moreover it is straightforward to see that the
dianeutral direction and ρ⊥ = (−α1, 1) are collinear too, as well as the isoneutral direction and ρ‖ =

(1, α1). We specifically look at two directions in the (φ1, φ3) plane corresponding to two different angles
between∇q and the isoneutral/dianeutral direction :

• D1 = φ1 + s1φ3 = 0 (i.e.;∇q ·ρ‖ = 0) corresponds to the direction along which∇q is perpendicular to
the isoneutral direction. In this case, q is constant in the isoneutral direction (because the iso-q lines are
perpendicular to ∇q). Because an isoneutral mixing operator should not affect a tracer constant in the
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SW-TRIADS, s1 = 1/2, σ1 = 1/5 SW-TRIADS, s1 = 2, σ1 = 1/20

TRIADS, s1 = 2, σ1 = 1/20TRIADS, s1 = 1/2, σ1 = 1/5

EXACT, s1 = 1/2, σ1 = 1/5 EXACT, s1 = 2, σ1 = 1/20

Fig. 4. Exact amplification factor in the (φ1, φ3) plane for σ1 = 1/4(1 + s2
1) (i.e.; when the (EXP) scheme is stable)

with s1 = 1/2 (top. left) and s1 = 2 (top,right) in the two-dimensional (x1,x3) case (i.e. κ2 = 0). Amplification
factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle, right for s1 = 2)
and with the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2) for the same values
of σ1. The thick black line is D1 = 0, the thick gray line is D2 = 0.
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isoneutral direction, we expect the amplification factor λ to be equal to one along this line, otherwise it
would indicate that the slope is computed in an inaccurate way and that dianeutral mixing occurs.
• A perpendicular to D1 is D2 = φ3 − s1φ1 = 0 (i.e.; ∇q · ρ⊥ = 0) which corresponds to the direction

along which∇q is aligned with the isoneutral direction. In this case, we see from Fig. 4 (top panels) that
the exact amplification factor is equivalent to the one of a one-dimensional Laplacian operator, indeed
we would have η∆t = σ1(1 + s2

1)2φ2
1.

Along the line D1 = 0, the SW-TRIADS always provide a damping in better agreement with the exact
one, compared to the TRIADS scheme, thus indicating a more accurate computation of the direction of
diffusion for s1 = 1/2 as well as s1 = 2. We see that, for φ3 = 0, all the discretizations have the same
behavior and that the mode |φ1| = π is effectively damped. This was expected because the difference
between the TRIADS and SW-TRIADS schemes is in the cross-terms which vanish for φ3 = 0. Unlike
the SW-TRIADS, the TRIADS scheme has also the property to efficiently damp the checkerboard mode
(|φ1|, |φ3|) = (π, π), whatever the grid slope ratio (Fig. 4). The lack of damping associated with the SW-
TRIADS is not problematic to solve the initial value problem (2.6) because we assume some regularity of
the initial condition, and the checkerboard mode is not present in this case. However, when advective terms
are considered they can allow the creation and accumulation of dispersive errors which are expected to be
controlled by diffusive processes. We usually do not rely on the rotated operator to damp small scale noise
in the vertical direction because the vertical mixing parameterization does it efficiently (otherwise grid-
scale noise would arise when an horizontal Laplacian operator is used). In the horizontal direction, those
operators are generally the only source of numerical filtering, and we thus expect them to control small-
scale noise. For example, for s1 = 1/2, the TRIADS scheme does it efficiently while the SW-TRIADS
scheme damps the 2∆x1 mode (|φ1| = π) only for well-resolved scales in the vertical (|φ3| ≤ π/2).
Note that it is, however, expected that the 2∆x3 mode (|φ3| = π) is already significantly damped by the
vertical mixing scheme. The weak damping with the SW-TRIADS scheme can be seen also along the line
D2 = 0. In this direction, the exact amplification factor and the TRIADS scheme ensure a monotonic
damping, indeed λ monotonically decreases when we go from well-resolved to poorly-resolved scales
(i.e. when |φ1| or |φ3| increases). This property is not satisfied by the operator discretized with the SW-
TRIADS. We thus expect the TRIADS to provide a better control of numerical noise and the SW-TRIADS
to provide a more accurate computation of the direction of diffusion. Moreover, it is worth mentioning that
numerical noise in the tracer fields can project into irreversible dianeutral mixing errors, especially when
local Richardson number-dependent vertical mixing schemes are used in the oceanic interior.

3.5.2 Space-Time Discretization

We show in Fig. 5 the amplification factor for s1 = 1/2 and s1 = 2 when the (MSC) scheme is used
with values of θ chosen such that there are no flip-flops in time. If we note ∆tρ the time step of the (EXP)
scheme and ∆t0 the time step of the (MSC) scheme, we get the ratio µ2 defined as

µ2 =
∆t0
∆tρ

= 1 + s2
1. (3.33)

For s1 = 1/2, we have µ2 = 5/4, and µ2 = 5 for s1 = 2. When µ2 is close to one, as for s1 = 1/2,
splitting errors are very small. We see that the left panels in Fig. 5 are very similar to the left panels in Fig.
4. For µ2 = 5, the damping along the line D1 = 0 increases which indicates that the computation of the
direction of diffusion become less and less accurate (Fig. 5, right panels). The space-time discretization is
also relatively inaccurate along the line D2 = 0 and the SW-TRIADS scheme suffers from non-monotonic
damping. However, the schemes still perform well as long as the vertical scales are well-resolved (i.e.
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SW-TRIADS, s1 = 1/2, σ1 = 1/4 SW-TRIADS, s1 = 2, σ1 = 1/4

TRIADS, s1 = 2, σ1 = 1/4TRIADS, s1 = 1/2, σ1 = 1/4

EXACT, s1 = 1/2, σ1 = 1/4 EXACT, s1 = 2, σ1 = 1/4

Fig. 5. Same as Fig. 4 for the (MSC) scheme with σ1 = 1/4 (i.e.; when the (EXP) scheme does not satisfy the no
flip-flop condition).
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|φ3| < π/2).

4 Time Discretization of the Isoneutral Biharmonic Operator

4.1 Proposed Scheme

As mentioned in the paper’s introduction, the isoneutral biharmonic operator has never been thoroughly
studied in the literature so far. One possible explanation is that people working on rotated operators were
mainly interested in large-scale flows for which the scale-selectivity property is not a priority. Moreover,
a very drastic reduction of the time step is required to maintain stability of such an operator. The aim of
the present section is to tackle this last point by deriving a time integration scheme enabling an efficient
and easy implementation of a rotated biharmonic operator. To our knowledge, no alternative to the usual
explicit Euler scheme has been proposed. It is of course feasible to mimic the (IMP) scheme used for the
rotated Laplacian operator but it would require the solution of a penta-diagonal system, and additional
constraints would arise from the cross terms anyway. Indeed, an implicit vertical biharmonic operator can
not stabilize the second order terms in x3. Even if it is relatively counter-intuitive we show in the remainder
of this section that it is possible to stabilize a biharmonic operator by means of a simple Laplacian operator.
An alternative approach could be to use a combination of an implicit Laplacian operator and an implicit
biharmonic operator in the vertical to stabilize separately the second-order and fourth-order terms, but it
would increase substantially the complexity of the scheme.

In the same spirit as the method of stabilizing corrections introduced in Sec. 3.1, we thus propose to
integrate the rotated biharmonic operator D4 in the following way :


q? = qn +∆tD4(qn)

qn+1 = q? +∆t ∂3 {κ̃∂3q
n+1 − κ̃∂3q

n} ,
(4.1)

In (4.1), an explicit and consistent approximation of the operator is first computed, followed by a second
stage aiming at improving the stability. For the aforementioned reasons, we decided to use a second-order
diffusive operator for this second stage. Instead of the stabilizing parameter θ used in the previous section,
we use here a stabilizing vertical diffusivity κ̃.

4.2 Important Results

We first provide the results and prove them in Sec. 4.3. We keep the notations from the previous section
but now with σm replaced by

σ(4)
m =

√
∆tBm

∆x2
m

, (4.2)

where Bm is the hyperdiffusivity in the xm direction.
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Horizontal Biharmonic Operator

When using an Euler forward scheme, the stability limit of the two-dimensional horizontal biharmonic
operator is

(
σ

(4)
1 + σ

(4)
2

)2 ≤ 1

8
. (4.3)

This result is also given in Griffies (2004) (Chap. 18).

Isoneutral Biharmonic Operator

• TRIADS discretization
· The (EXP) scheme is stable for

(
σ

(4)
1 (1 + s2

1) + σ
(4)
2 (1 + s2

2)
)2 ≤ 1

8
. (4.4)

· The stability constraint of the (MSC) scheme is the same as the stability limit (4.3) for

κ̃ = 8

(
∆x2

3

∆t

)(
σ

(4)
1 s2

1 + σ
(4)
2 s2

2

) (
(1 + s2

1)σ
(4)
1 + (1 + s2

2)σ
(4)
2

)
(4.5)

• SW-TRIADS discretization
· The (EXP) scheme is stable for

(
σ

(4)
1 max

{
s2

1, 1
}

+ σ
(4)
2 max

{
s2

2, 1
})2 ≤ 1

8
. (4.6)

· The stability constraint of the (MSC) scheme is given by (4.3) for

κ̃ = 8

(
∆x2

3

∆t

)(
S1σ

(4)
1 + S2σ

(4)
2

) (
(1 + S1)σ

(4)
1 + (1 + S2)σ

(4)
2

)
, (4.7)

with Sm = max
{
s2
m − |sm|, 0

}
.

Note that, if we take Sm = s2
m in (4.7), we retrieve (4.5). Using the notations introduced in Sec. 2.2,

we could write in a generic way Sm = sm(sm − βm), thus showing that Sm corresponds to the weight of
the vertical points (i, j, k + 1) and (i, j, k − 1) in the stencil (2.21). We now give the proof of the stability
results.

4.3 Linear Stability Analysis

We, first, define a vertical Courant number σ̃ = κ̃∆t/∆x2
3 associated with the stabilizing stage in

(4.1), and we introduce ỹ3 =
√

2σ̃(1− cosφ3). The aim of this stability analysis is to determine a value
of σ̃ (and hence κ̃) ensuring that the stability constraint of the rotated biharmonic operator is imposed
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SW-TRIADS, s1 = 1/2, σ
(4)
1 = 1/5 SW-TRIADS, s1 = 2, σ

(4)
1 = 1/20

TRIADS, s1 = 2, σ
(4)
1 = 1/20TRIADS, s1 = 1/2, σ

(4)
1 = 1/5

EXACT, s1 = 1/2, σ
(4)
1 = 1/5 EXACT, s1 = 2, σ

(4)
1 = 1/20

Fig. 6. Exact amplification factor in the (φ1, φ3) plane for σ(4)
1 =

√
1/16(1 + s2

1)2 (i.e.; when the (EXP) scheme
is stable) with s1 = 1/2 (top, left) and s1 = 2 (top,right) in the two-dimensional (x1,x3) case (i.e. κ2 = 0).
Amplification factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle,
right for s1 = 2) and with the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2)
for the same values of σ1.The thick black line is D1 = 0, the thick gray line is D2 = 0.
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by the horizontal components of the operator. Note that the exact amplification factor is now given by

λ = exp (−η∆t) with η =
2∑

m=1

Bm(km + αmk3)4, while the amplification factor after discretization is

λ̃ = 1− (y2
1 + y2

2 + y2
3 − z13 − z31 − z23 − z32)

2

1 + ỹ2
3

= 1− (ϕ1 + ϕ2)2

1 + ỹ2
3

, (4.8)

where ϕm is defined in (3.21). It is straightforward to check that λ̃ ≤ 1, stability is thus obtained for
λ̃ ≥ −1; this condition is equivalent to

(ϕ1 + ϕ2)2 − 2ỹ2
3 ≤ 2. (4.9)

We can first easily check that the stability limit of the horizontal biharmonic operator (i.e., with sm = 0)
is given by (y2

1 + y2
2)2 ≤ 2, leading to

(
σ

(4)
1 + σ

(4)
2

)2 ≤ 1/8. Furthermore, using the upper bound on ϕm
found in App. A, we can derive the stability constraint for the forward Euler scheme (i.e., κ̃ = 0),

(ϕ1 + ϕ2)2 ≤ 4
(
σ

(4)
1 M (0, s1) + σ

(4)
2 M (0, s2)

)2
= 16

(
σ

(4)
1 (1 + s2

1) + σ
(4)
2 (1 + s2

2)
)2 ≤ 2, (4.10)

where M is defined in (3.24); (4.10) leads to the expected result (4.4). As an illustration, this stability
constraint implies that for s1 = s2 = 2, the time step used with the horizontal biharmonic operator should
be reduced by a factor of 25 when using the rotated biharmonic operator.

In the general case κ̃ 6= 0, we again use the upper bound on ϕm to get

(ϕ1 + ϕ2)2 − 2ỹ2
3 ≤ B(θ) = 4

(
σ

(4)
1 M (θ, s1) + θy2

13 + σ
(4)
2 M (θ, s2) + θy2
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)2 − 2ỹ2
3, (4.11)

stability is obtained for B(θ) ≤ 2. For simplicity, we take θ = 1 (i.e. M = 2)

B(θ = 1) = 16
(
σ

(4)
1 + σ

(4)
2 + (σ

(4)
1 s2

1 + σ
(4)
2 s2

2)(1− cosφ3)
)2 − 4σ̃(1− cosφ3)

= 16
(
σ

(4)
1 + σ

(4)
2

)2

+ (1− cosφ3)
{

16(σ
(4)
1 s2

1 + σ
(4)
2 s2

2)
[
2(σ

(4)
1 + σ

(4)
2 ) + (σ

(4)
1 s2

1 + σ
(4)
2 s2

2)(1− cosφ3)
]
− 4σ̃

}
.

(4.12)
The stability constraint B(θ = 1) ≤ 2 thus reduces to

(
σ

(4)
1 + σ

(4)
2

)2 ≤ 1/8 if the term in curly brackets
in (4.12) is negative or zero. This requirement is satisfied for

σ̃ ≥ σ? = 8(σ
(4)
1 s2

1 + σ
(4)
2 s2

2)
(
(1 + s2

1)σ
(4)
1 + (1 + s2

2)σ
(4)
2

)
, (4.13)

which demonstrates (4.5). Less conservative values of σ̃ could be derived (like the one used in Lemarié
et al. (2012)), however the algebra becomes very quickly complicated and tedious. The optimal value (4.7)
of the stabilizing parameter σ̃ obtained with the SW-TRIADS scheme is provided in App. B.

Non-Oscillatory Scheme

As for the Laplacian operator, we can derive the necessary constraints to satisfy λ̃ ≥ 0 instead of
λ̃ ≥ −1. In this case, 1/8 should be replaced by 1/16 in (4.3), (4.4), and (4.6). Furthermore, if the
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stabilizing diffusivity (4.5) is multiplied by two, the (MSC) scheme satisfies the ”no flip-flop” condition
for

(
σ

(4)
1 + σ

(4)
2

)2 ≤ 1/16.

4.4 Comments

We show in Fig. 6 and 7 the amplification factor obtained with a rotated biharmonic operator for
s1 = 1/2 and s1 = 2 with the (EXP) and the (MSC) schemes in the no flip-flop case. We can draw the
same remarks as for the Laplacian operator: the SW-TRIADS computes more accurately the direction of
diffusion, however it suffers from a lack of damping of the checkerboard mode. The ratio µ4 between the
time step of the (MSC) scheme and the one of the (EXP) scheme is given by

µ4 = (1 + s2
1)2. (4.14)

For s1 = 1/2, we get µ4 ≈ 1.56. In this case, the results are very similar between the (MSC) and the
(EXP) schemes. For s1 = 2, the ratio becomes stiffer with µ4 = 25. However, the scheme behaves in a
similar manner (Fig. 7, right panels) than the (EXP) scheme (Fig. 6, right panels).

4.5 Partial Conclusion and Limitations of Our Approach

We have shown so far that the Laplacian and biharmonic rotated operators can be made stable by com-
bining an explicit-in-time evaluation with a semi-implicit stabilizing step. This approach has the advantage
to be extremely easy to implement because it requires only the inversion of a simple tridiagonal system in
the vertical. For quite large grid slope ratios (s1 = 2) the scheme performs relatively well but as the slope
steepens to s1 = 10 (Fig. 8) it can suffer from a lack of damping of the smallest resolved scales, especially
for the rotated biharmonic operator. This behavior is reminiscent of the Crank-Nicolson scheme for which
the small scale structures are not damped in the limit of large time-steps (Manfredi and Ottaviani, 1999).
This problem thus arises when the time step used with the (MSC) scheme is significantly larger than the
stability limit of the (EXP) scheme, i.e.; when µ4 or µ2 are large (for s1 = 10 we have µ4 ≈ 10000). This
lack of damping affects only the vertical direction. The horizontal terms of the tensor, which are advanced
explicitly, are still ”active“. Because the TRIADS scheme requires a larger value of κ̃ to stabilize the time-
integration, this lack of damping is generally more pronounced with this scheme. This issue is also more
obvious when we try to suppress the flip-flops in time by increasing the value of κ̃ (Fig. 8).

The fact that we restrict ourselves to implicit integrations only in the vertical direction reduces sig-
nificantly the range of possible methods to try to mitigate this problem. If steep grid slope ratios are
expected and accuracy matters, we could combine the (MSC) with a time-splitting approach, not to penal-
ize the whole model. When using an Euler explicit scheme, if s1 reaches O(10) values we should decrease
the time step by a factor 104 compared to the time step of the horizontal biharmonic operator (indeed,
µ4 ≈ 10000 for s1 = 10). Several sub-steps of the (MSC) scheme to advance the rotated operator from
time n to n + 1 would still be significantly more computationally efficient than using an explicit Euler
scheme. The use of a small number of sub-step clearly improves the damping properties of the rotated
biharmonic operator which smoothes more efficiently the poorly resolved scales (Fig. 9). Based on the re-
sults shown in Fig. 9 we can recommend the use of 4 sub-steps to maintain a good accuracy of the rotated
operator for steep grid slope ratios. We checked that for very large values of s1 (s1 = 106), 4 sub-steps are
still sufficient to damp the smallest scales (not shown). Note that an even number of sub-steps ensures the
absence of flip-flops.
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SW-TRIADS, s1 = 1/2, σ
(4)
1 = 1/4 SW-TRIADS, s1 = 2, σ

(4)
1 = 1/4

TRIADS, s1 = 2, σ
(4)
1 = 1/4TRIADS, s1 = 1/2, σ

(4)
1 = 1/4

EXACT, s1 = 1/2, σ
(4)
1 = 1/4 EXACT, s1 = 2, σ

(4)
1 = 1/4

Fig. 7. Same as Fig. 6 for the (MSC) scheme with σ(4)
1 = 1/4 (i.e.; when the (EXP) scheme does not satisfy the no

flip-flop condition).
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Fig. 8. Amplification factor of the rotated Laplacian operator along the lineD1 = 0 (top, left) andD2 = 0 (top, right),
and of the rotated biharmonic operator alongD1 = 0 (bottom, left) andD2 = 0 (bottom,right) for s1 = 10, σ1 = 1/4

and σ(4)
1 = 1/4. The gray lines (resp. black lines) are obtained with a stabilizing diffusivity preventing flip-flops

(resp. allowing flip-flops) with the (MSC) scheme. The results obtained with the TRIADS (resp. SW-TRIADS)
discretization are represented with thick lines (resp. thick dashed lines). The thin black lines correspond to the exact
amplification.

5 Implementation of the Proposed Schemes in Existing Models

In this section, we provide additional information required for the implementation of the various
schemes introduced in the previous sections.

5.1 Time-Scheme for Diffusive Processes

As mentioned earlier, the majority of the global ocean climate models makes use of a rotated Laplacian
operators advanced with the (IMP) scheme. For those models, the implementation of the (MSC) scheme
is straightforward and does not require any additional global array for storage. In numerical models like
ROMS or MitGCM 5 using a predictor-corrector scheme where provisional values qn+ 1

2 are given by a
predictor step (e.g. a Leapfrog-Adams-Moulton interpolation in ROMS or an Adams-Bashforth extrapola-
tion in MitGCM), the (MSC) scheme and the implicit vertical diffusion can be combined with the corrector
step in the following way :

5 Massachusetts Institute of Technology General Circulation Model, mitgcm.org
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nmsc = 1

nmsc = 2

nmsc = 4

nmsc = 8

nexp = (101)2

Fig. 9. Amplification factor of the rotated biharmonic operator along the line D2 = 0, for s1 = 10. The results are
shown for the TRIADS scheme when a sub-stepping of the operator is used with nmsc = 1, 2, 4 or 8 sub-steps of
the (MSC) scheme, and with nexp = (1 + s2

1)2 sub-steps of the (EXP) scheme. The case nmsc = 1 corresponds to
σ

(4)
1 = 1/4.


qn+1,? = qn + ∆t RHSn+ 1

2 +∆t D4(qn)−∆t ∂3 [κ̃∂3q
n]

qn+1 = qn+1,? + ∆t ∂3 [(K3 + κ̃)∂3q
n+1] ,

(5.1)

where K3 is the vertical eddy-diffusivity given by an appropriate parameterization of the sub-grid scale
vertical mixing, and RHS contains all the terms other than diffusive terms. More generally, the explicit
part of the stabilizing correction must be applied at the initial time of the tracer time step (i.e. at time n for
ROMS/MitGCM, n − 1/2 for MOM4p1 (Griffies, 2010, Eqn (8.8)), or n − 1 for NEMO/POP), and the
implicit part at the final time (i.e. at time n+1 for ROMS/MitGCM/NEMO/POP, or n+1/2 for MOM4p1).
For models using a Leapfrog scheme, like NEMO or POP, ∆t must be replaced by 2∆t (Madec, 2008;
Smith et al., 2010).

5.2 Boundary Conditions

We have considered so far a model problem defined on an unbounded domain. For realistic applications,
the specification of boundary conditions is required and is based upon two requirements : the mixing
operator conserves the tracer content and reduces the global tracer variance. Conservation of the tracer
being diffused imposes F (3) = 0 at x3 = ζ (with ζ the free-surface) and x3 = −H (with H the depth of
the water column). To ensure that the boundary conditions are consistent with the global tracer variance
diminishing property it is convenient to use the tracer/density triads formalism defined in Sec. 2.3. Using
the notations introduced in Fig. 1, we consider that the grid cell (i, k) is located at the ocean floor. The
no-flux boundary condition requires F (3)

i,k− 1
2

= 0 which involves that the triads 3,4,11 and 12 cancel. More
generally, each time a given triad crosses the boundary the diffusivity A(n) associated with this triad in
the discrete functional (2.17) should be zero, and this triad can not participate in the computation of the
F (1) interfacial fluxes in the grid-cell next to a boundary. At the bottom (i.e. for k = 1) we have
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(5.3)

This approach can be seen as a diffusivity tapering because κ1 is divided by two in the bottom most grid
box. An other way to specify a boundary condition is to consider that F (3)

i,j, 1
2

= 0 because (δ3ρi,j, 1
2
)−1 = 0

at the bottom. In this case we get
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and
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(5.5)
This second approach is recommended only if a specific procedure is used to ensure that (∂3ρ)−1 goes
smoothly to zero as a boundary is approached. The same remarks apply at the surface. For realistic ap-
plications, the direction of diffusion is generally progressively aligned with the horizontal direction when
approaching the surface. This “boundary rotation” is generally done to avoid the rotated operator to inter-
act with the parameterization of sub-grid scale vertical mixing and also to stay consistent with the small
slope limit in the well mixed surface layer.

In the horizontal, homogeneous Neumann boundary conditions (i.e., ∂1q = ∂1ρ = 0) are imposed
through masking at the coast. Again, because the biharmonic operator corresponds to two successive
Laplacian operators, the specification of the boundary conditions does not imply additional difficulties,
and the second boundary condition at the coast required for this operator is simply ∂3

1q = ∂3
1ρ = 0. It is

straightforward to extend the results of this paragraph to the x2-direction. The boundary condition for the
stabilizing step in the (MSC) scheme is an homogeneous Neumann condition to ensure conservation of
the tracer content.

A major difficulty when rotating the diffusion in the isoneutral direction is to maintain the numerical
integrity of the scheme in poorly stratified regions, including boundary layers and convective regions.
Here, the notion of numerical integrity encompasses several aspects : stay consistent with the small slope
approximation, smoothly satisfy the boundary condition when conditions (5.4) and (5.5) are used, avoid
any infinite slopes and associated infinite fluxes which would introduce numerical instabilities. In the next
two subsections, we discuss more specifically those delicacies.
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5.3 Boundary Rotation

A specific procedure is required to safely consider that the neutral slope varies smoothly in the bound-
ary layer and cancels at the surface. Several ways to handle the transition from isoneutral to horizontal
mixing have been proposed in the literature (e.g. Treguier et al., 1997; Fox-Kemper et al., 2008; Ferrari
et al., 2008, 2010, see also Griffies (2004) (Chap. 15) for a review on this topic through 2003). Those
methodologies are generally specifically designed in the framework of the Gent and McWilliams (1990)
parameterization to avoid any spurious recirculation in the surface layer when an eddy-induced velocity
is used. Indeed, the eddy-induced velocity, parameterizing the effect of mesoscale eddies, is usually de-
fined with respect to the vertical derivative of the neutral slopes, the type of boundary rotation adopted
in the surface layer therefore interacts with the parameterization. For this reason, a linear clipping, ensur-
ing a constant eddy-induced velocity in the surface layer, is usually applied to the neutral slopes between
the base of the surface boundary layer and the surface (Gnanadesikan et al., 2007; Madec, 2008). How-
ever, recent advances in the understanding of the role of eddy fluxes in the mixed layer have led to a
redesign of the function responsible for the boundary rotation (Ferrari et al., 2008; Fox-Kemper et al.,
2008; Colas et al., 2012). A somehow different way to proceed is presented in Ferrari et al. (2010) where
the eddy-induced velocity is computed from a vertical mode decomposition under the assumption that
the parameterized eddy-transport is dominated by low baroclinic modes. In this case, the computation of
the eddy-induced velocity does not require any slope limiting or boundary rotation procedure, and those
delicacies are transferred to the isoneutral diffusion operator only.

In a more general view, when considering the isoneutral diffusion independently of the eddy-induced
velocity, the important term to keep under control is (∂3ρ)−1 and no longer the neutral slopes.

5.4 Diffusion Slope Limit

We provide here a simple example of a procedure to stay consistent with the small slope limit and to
satisfy the boundary conditions, although many other procedures might be perfectly valid. We first define
the quantity
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and the maximum slope αmax allowed. The value of (δ3ρ)−1, defined at a cell vertical interface, that can
be used in practice to compute the neutral slopes is given by

(
δ3ρi,j,k+ 1

2

)−1
= max

− F (x3) · αmax

(∆x3)i,j,k+ 1
2
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i,j,k+ 1
2
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{
−ε,

(
δ3ρi,j,k+ 1

2

)−1
} (5.6)

In the case of an unstable stratification, the enforcement of a minimum stratification ε maintains the dif-
fusion in the horizontal direction. In the case of a stable stratification, but with large slopes, the slope is
bounded by a maximum value αmax. The procedure (5.6) ensures that the limiting of (δ3ρ)−1 is ”felt“ the
same way when the slopes are computed at u and w points. The analytical function F in (5.6) enables the
implementation of a boundary rotation. The value of this function is typically 1 in the oceanic interior and
decreases to 0 when approaching the boundaries.

In Sec. 7, we provide a critical discussion on the choice of the actual slope αm (as in (5.6)) rather than
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on the grid slope ratio sm to maintain the numerical integrity of the isoneutral mixing operators.

5.5 Isoneutral Directions

The first implementations of the rotated operators were using the in-situ density to compute the δmρ
terms in the rotation tensor (Cox, 1987). As mentioned earlier in Sec. 2.2.1, an extra horizontal diffusion
was generally required to control an instability in the corresponding scheme. The source of this instability
was found later in Griffies et al. (1998) (see also Griffies (2004), Chap. 14). They showed that using the
in-situ density to compute the δmρ terms leads to a non-linear instability due to an imbalance between the
active tracer isoneutral diffusive fluxes. The balance between those fluxes is achieved when the diffusive
flux for potential temperature and salinity combine to give zero locally referenced potential density flux.
In Griffies et al. (1998), a procedure to compute the neutral slopes is presented to ensure this constraint.
For completeness, we briefly recall the basis of this procedure and express it with our notations. We first
note that

δmρ(Θ, S, x3) = ρ(Θ)δmΘ + ρ(S)δmS, (5.7)

where

ρ(Θ) =

[
∂ρ

∂Θ

]
S,x3=Const

, ρ(S) =

[
∂ρ

∂S

]
Θ,x3=Const

with Θ the potential temperature and S the salinity. At a discrete level, the natural placement for the ρ(Θ)

and ρ(S) terms is the same as Θ and S, and each triad has a unique associated value of ρ(Θ) and ρ(S)

(corresponding to the central ρ-point of a triad, Fig. 1). For the potential temperature Θ, the flux (2.13) in
the x1-direction should thus be rewritten as
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(5.8)
same rules apply to the salinity flux and to the vertical flux F (3). As a consequence of this methodology,
the isoneutral diffusive flux of the locally referenced potential density discretely vanishes triad-by-triad,
as long as the (EXP) scheme is used for the time integration. As discussed earlier, the splitting errors as-
sociated with the (IMP) time discretization of the isoneutral Laplacian operator reintroduces an imbalance
in the active tracer isoneutral diffusive fluxes. The use of the (MSC) scheme is a way to minimize this
imbalance because it introduces only the minimum amount of implicit diffusion necessary to stabilize the
temporal integration.

In Lemarié et al. (2012), the neutral slopes are computed using the ”elementary adiabatic differences”
as defined in Shchepetkin and McWilliams (2011) (Eq. 4.8). In this case, the exact balance between the
active tracer isoneutral diffusive fluxes was not satisfied, however the absence of such a balance did not
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turn out to be problematic for a realistic multi-decadal basin-scale Pacific simulation, although this issue
may be more acute elsewhere and for longer timescales.

5.6 Diagnosing the Stability Condition of the Rotated Biharmonic Operator in a Basin-scale Model
Simulation

Based on the prescriptions to handle poorly stratified regions, introduced in (5.6), and on the ROMS
Pacific configuration described in Lemarié et al. (2012), we show in Fig. 10 an offline diagnostics of
the maximum value of the quantity

(
σ

(4)
1 (1 + s2

1) + σ
(4)
2 (1 + s2

2)
)2
/(1/8) for each water column. This

quantity, derived from the stability condition (4.4) for the rotated biharmonic operator advanced with the
(EXP) scheme, provides an estimate of the stiffness of the stability condition for the isoneutral biharmonic
operator. To generate the figure, we considered ∆t = 4200 s (i.e. the ROMS baroclinic time-step used in
Lemarié et al. (2012) to integrate the Pacific configuration in time), B1 = |u|∆x3

1/12, B2 = |v|∆x3
2/12,

αmax = 1/10, and F (x3) = (x3/hbl)
2 [3− 2(x3/hbl)] for x3 ≤ hbl (F (x3) = 1 otherwise) where hbl

is the depth of the surface boundary layer diagnosed by the parameterization of the vertical mixing. For
this configuration, the value of ∆xm varies from 50 km at the equator to 35 km at high latitudes. The
hyperdiffusivities Bm are those given in Marchesiello et al. (2009) and Lemarié et al. (2012).

As mentioned earlier, it is not unusual to get very stiff stability conditions especially in shallow areas,
including coastal regions, and in the Kuroshio extension. The maximum stability constraint is generally
found either at the depth of the thermocline (green shaded area in Fig. 10, bottom panel) or at the bottom
(blue shaded area in Fig. 10, bottom panel). Fig. 10 is meant to illustrate that even if the time-step of
numerical models is generally set by hyperbolic terms, the use of a forward Euler scheme to integrate the
rotated biharmonic operator is impractical and would impose a severe restriction on the time-step of the
model, as could be expected from our study.

6 Numerical Results

In this section, we present a set of idealized experiments to investigate the behavior of the various
space-time dicretization schemes we introduced earlier in the paper.

6.1 Experimental Setup

We have implemented a two-dimensional (x1, x3) testcase defined on the computational domain Ω =

[0, 1]× [0, 1] with a time-independent stratification

ρξ(x1, x3) = − tanh

(
5

{
x3 −

1

4
− ξ 8π3x3

1

[
sin (πx1)− 1

2
sin(2πx1)

]2
})

. (6.1)

The slope associated with this stratification is

α1 = −∂1ρξ
∂3ρξ

= ξ ·R(x1), (6.2)

where R(x) = 64π3x2 cos (πx/2) sin (πx/2)5 (2πx+ 4πx cos(πx) + 3 sin(πx)). In (6.1), ξ is a stiffness
parameter used to define the amplitude of the angle between the computational grid and the local isoneutral
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Fig. 10. Annual mean of the maximum value of the ratio ∆t/∆tρ for each water column (top), with ∆t the time-step
of the ROMS model using the (MSC) scheme to advance the rotated biharmonic operator and ∆tρ the time-step
which would be needed to advance the same operator but with the (EXP) scheme. Depth of the maximum (bottom).
∆t/∆tρ is first computed using seasonal averages and is then averaged to get the annual mean.

direction. Choosing two values of ξ, we build two set of experiments which are described in Tab. 2 : a first
one with a small grid slope ratio between the computational grid and the isoneutral direction (hereafter
SMALL) and a second with a large grid slope ratio (hereafter LARGE). The largest value we consider is
s ≈ 3 which, for example, would correspond to α1 = 7.5× 10−4, ∆x1 = 100 km and ∆x3 = 25 m.

The stratification (6.1) is shown in Fig. 11 along with the initial condition

36



Resolution Scheme Time Step Maximum slope parameter (s1) ∆t0/∆tρ

SMALL LARGE TRIADS SW-TRIADS

D2 D4 D2 D4

1024x96 (EXP) ∆tρ 0.08 0.35 1 1 1 1

256x48 (MSC) ∆t0 0.16 0.70 1.5 2.25 1 1

128x48 (MSC) ∆t0 0.32 1.4 2.96 9 1.96 3.84

64x24 (MSC) ∆t0 0.32 1.4 2.96 9 1.96 3.84

32x24 (MSC) ∆t0 0.64 2.8 8.8 77 7.84 61.5

Table 2
Description of the numerical experiments discussed in Sec. 6. Those experiments are carried out using the rotated
Laplacian operator (with κ1 = 5 m2 s−1) and the rotated biharmonic operator (with B1 = 5 × 10−1 m4 s−1)
with either the SW-TRIADS or the TRIADS spatial discretizations. ∆tρ is given by the stability limit (3.6) for the
Laplacian operator and (4.4) for the biharmonic operator. ∆t0 corresponds to the time step restriction arising from
the horizontal component of the rotated operators; i.e. ∆t0 = ∆x2

1/2κ1 for the diffusion, resp. ∆t0 = ∆x4
1/8B1 for

the hyperdiffusion. The ratio ∆t0/∆tρ is given for the LARGE experiments with the rotated Laplacian operator D2

and for the rotated biharmonic operator D4.
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] [
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I[1/10,4/10](x1) I[1/10,4/10](x3),

(6.3)
where IΩ(x) is the indicator function 6 . All the simulations described in Tab. 2 are run with the same
diffusivity κ1 = 5 m2 s−1 and hyperdiffusivity B1 = 5× 10−1 m4 s−1.

6.2 Accuracy of the Rotated Operators

The accuracy of different space-time discretizations is checked by computing a high resolution solution
on a 1024x96 grid using an explicit Euler scheme in time. This solution is taken as a solution of reference
for a set of four coarser grids, 256x48, 128x48, 64x24, and 32x24. With the exception of the reference
solution, all the simulations are done using the (MSC) scheme with the stabilizing parameters (3.7), (3.9),
(4.5) and (4.7) with κ2 = 0 (resp. B2 = 0). To build this hierarchy of grids we have considered that when
the horizontal resolution is refined by n2 the vertical resolution is refined by n (Tab. 2). This rule is meant
to be quite consistent with the usual practice in climate models. Due to the excessive computational cost of
the explicit-in-time rotated biharmonic operator on the 1024x96 grid, we use the 256x48 grid as a solution
of reference in this case.

The stratification (6.1) and the initial condition (6.3) are first defined on the reference 1024x96 grid
and then a coarsening procedure is used to provide it to the entire hierarchy of grids. The same coarsen-
ing procedure is then applied to the solution of reference to compute the `2-norm of the error for each
grid of the hierarchy. This procedure ensures that the error is initially zero. The results obtained for the
SMALL and the LARGE experiments are shown in Fig. 12. When using the TRIADS scheme, the error
is monotonically decreasing when the grid is refined. For large grid slope ratios this discretization leads

6 IΩ(x) = 1, if x ∈ Ω; IΩ(x) = 0 otherwise.
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Fig. 11. Two-dimensional (x1, x3) initial conditions for different experiments of a passive tracer (shaded) diffused
along a density field (contours) with a moderate slope between the computational grid and the isoneutral direction
(top), and with a large slope (bottom).

to a significant amount of spurious dianeutral diffusion due to discretization errors (Fig. 13, g) and i) ).
The SW-TRIADS scheme systematically leads to smaller errors whatever the grid resolution and the grid
slope ratio (Fig. 12). However, the evolution of the errors with the resolution is relatively uncommon. For
example, in the LARGE experiments, the error is smaller on the 128x48 grid than on the 256x48 grid. This
is explained by the fact that the errors of discretization associated with the SW-TRIADS scheme do not
monotonically increase when the grid slope ratio s1 increases, as this is the case for the TRIADS scheme.
This point will be further discussed in Sec. 6.4 but it can be seen from (2.21) that the discretization reduces
to the classical 1,-2,1 stencil in the oblique direction for s1 = 1, thus explaining why the errors are small
for the experiments for which the grid slope ratio is close to one (e.g., for the 64x24 and 128x48 grids
in the LARGE case). As far as the biharmonic operator is concerned, the results are very consistent with
the one obtained with the rotated Laplacian operator (Fig. 14). The SW-TRIADS performs better than the
TRIADS when the grid slope ratio exceeds one, which is an important asset when considering grid cells
with a small aspect ratio ∆x3/∆x1 as it can happen for a σ-coordinate models in shallow areas. For very
large values of s1 the direction of diffusion becomes less and less accurate ( Fig. 13 j), Fig. 14 h)) and a
larger vertical stencil should potentially be required to lessen the discretization errors.

Monotonicity violations are obvious from Fig. 13 and 14 where the blue-shaded areas correspond to
negative values whereas the initial condition has positive values only. When the discretization errors are
increasing, thus leading to a spurious dianeutral diffusion, the false extrema are significantly moderated.
The biharmonic operator generates large negative values (Fig. 14), however those min-max violations are
not necessarily associated with the rotation of the tensor because the horizontal biharmonic operator also
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Fig. 12. Time history of the error `2-norm for different grid resolutions, in the SMALL experiments (left) and in
the LARGE experiements (right). The black lines correspond to the results obtained with the TRIADS scheme, and
the dashed gray lines to the results obtained with the SW-TRIADS. Note the different vertical axis between the two
panels.

produces overshoots with a similar order of magnitude (not shown). It is worth mentioning that the part of
the computational domain with a flat stratification coincides with the location of the initial condition (Fig.
11). Most of the overshoots with the biharmonic operator are generated during the initialization, this is the
reason why relatively large monotonicity violations are located in this part of the computational domain.

6.3 Overshootings

Mathieu and Deleersnijder (1998) emphasized the non-monotonic behavior of the discretized rotated
diffusion operator. This can be seen simply by looking at the diffusion of a dirac signal along a direction
non-aligned with the computational grid (Fig. 15). Negative bands are generated on both sides of the
isoneutral direction along which the Dirac signal is propagating. The rotated biharmonic operator presents
two bands of negative values separated by positive values. We can also see from those figures that the
cancellation of the contribution of the dianeutral points in the discretization stencil of the SW-TRIADS
scheme leads to a thin signal elongated in the isoneutral direction while the TRIADS scheme produces
a thicker signal in both the s1 = 1/2 and s1 = 2 cases. Note that the case s1 = 1/2 corresponds to a
maximum of discretization errors for the SW-TRIADS scheme in the limit that s1 ≤ 1; see discussion in
Sec. 6.4.

Monotonicity is verified at a position (i,k) only if all the coefficients in the discretization stencil of the
operator under consideration are positive for points others than (i,k). It can be seen from (2.21) that nei-
ther the TRIADS, nor the SW-TRIADS scheme verifies this property. The continuous form of the rotated
Laplacian operator has however the property not to amplify existing extrema (Mathieu and Deleersni-
jder, 1998), this property is lost at the discrete level due to the discretization of the cross-derivatives. We
quantify the monotonicity violation associated with the SW-TRIADS and TRIADS schemes by computing
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Fig. 13. Snapshots of a passive tracer diffused along isoneutral directions after 25 × 10−3 s of integration in the
LARGE case. Results obtained with the TRIADS scheme (resp. SW-TRIADS scheme) are shown in the left panels
a), c), e), g) and i) (resp. the right panels b), d), f), h) and j)) for different grid resolutions.

εi,k = max(qn+1
i,k − qmax

i,k , 0)−min(qn+1
i,k − qmin

i,k , 0) (6.4)

where

q
(min)
i,k = min(qni±c,k±c), q

(max)
i,k = max(qni±c,k±c), (6.5)

with c = 1 for the Laplacian operator and c = 2 for the biharmonic operator. The evolution of the
maximum value of εi,k is shown in Fig. 16 for the diffusion of a Dirac signal. This experiment is done
on the 256x48 grid with a diffusivity κ1 and an hyperdiffusivity B1 chosen so that it provides the same
dissipative time scale at the scale of the grid (i.e., B1 = κ1∆x

2
1).

Fig. 16 shows that the magnitude of the min-max violations is of the same order for the rotated har-
monic and biharmonic operators. Even if Fig. 15 suggests that larger negative values are produced by the
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Fig. 14. Snapshots of a passive tracer diffused with a biharmonic operator along isoneutral directions after 25×10−3 s
of integration in the LARGE case. Results obtained with the TRIADS scheme (resp. SW-TRIADS scheme) are
shown in the left panels a), c), e), and g) (resp. the right panels b), d), f) and h)) for different grid resolutions.

biharmonic operator, this does not mean that the min-max violations are larger in this case, as we see from
Fig. 16. This is explained by the fact that the amount of dianeutral diffusion, associated with discretization
errors, is smaller with the rotated biharmonic operator than with the rotated Laplacian operator and is
insufficient to moderate the false extrema.

6.4 SW-TRIADS-COMBI Scheme and Scaling of the Discretization Errors

In this paragraph, we borrow the concept of the so-called COMBI scheme, introduced in Beckers et al.
(2000), to assess the evolution of the discretization errors of the SW-TRIADS scheme with respect to sm.
To minimize overshootings, Beckers et al. (2000) propose an inconsistent COMBI scheme which consists
in adding an additional horizontal or vertical diffusion to cancel the negative weights in the stencil (2.21)
and thus to maintain monotonicity. With the TRIADS discretization this is not straightforward because the
negative weights are systematically in the diagonal direction. For the SW-TRIADS scheme, it is easier to
apply the concept of the COMBI scheme; in (2.21) we see that, for sm positive and sm < 1, it is sufficient
to add a vertical diffusion with a coefficient proportional to sm(1 − sm) and, for sm > 1, it is sufficient
to add an horizontal diffusion with a coefficient proportional to sm − 1. In Fig. 17, we show the diffusion
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Fig. 15. Diffusion of a Dirac signal along isoneutral directions (contours) after t = 2.5 × 10−4 s : a) and e) with
a rotated Laplacian operator using the TRIADS discretization; b) and f) with a rotated Laplacian operator using
the SW-TRIADS discretization; c) and g) with a rotated biharmonic operator using the TRIADS discretization; d)
and h) with a rotated biharmonic operator using the SW-TRIADS discretization. The tracer field is deliberately not
smoothed, cell-averaged values are shown. Note that blue-shaded areas indicate negative values. The grid slope ratio
is s1 ≈ 1/2 for panels a),b),c) and d), and s1 ≈ 2 for e),f),g) and h).

of a Dirac signal using the SW-TRIADS-COMBI scheme (defined as the SW-TRIADS scheme combined
with the COMBI approach). The scheme seems to behave relatively well for s1 ≈ 2, however the amount
of spurious dianeutral diffusion is larger compared with the SW-TRIADS scheme. For s1 ≈ 1/2, the
orientation of the diffusion is less accurate and the dirac signal is propagated too vertically relative to the
isoneutral direction. We can show that the extra diffusivity κv used for sm < 1 in the SW-TRIADS-COMBI
scheme is
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Fig. 16. Magnitude of min-max violations ε for the rotated Laplacian operator (left) and for the rotated biharmonic
operator (right) discretized either with the TRIADS scheme (black lines) or the SW-TRIADS scheme (gray lines).
The vertical line at t = 2.5× 10−4 s represents the time corresponding to the plots in Fig. 15.

κv = κm

(
∆x3

∆xm
|αm| − α2

m

)
.

The expression of κv is also useful to quantify the discretization errors associated with the SW-TRIADS
scheme. The minimum of the error is obtained for αm = 0, or αm = ∆x3/∆xm (i.e., sm = 1) be-
cause κv cancels in those cases, hence the scheme reduces to the classical 1,-2,1 stencil and is mono-
tonic. The maximum of the discretization error is for αm = ∆x3/2∆xm (i.e., sm = 1/2), which leads to

κmax
v =

κm
4

(
∆x3

∆xm

)2

. For sm > 1, the discretization error scales with sm − 1 (which corresponds to the

background horizontal diffusivity of the SW-TRIADS-COMBI scheme) and thus keeps increasing with
increasing values of sm.

The value of κmax
v can be compared with the background vertical diffusivity associated with the vertical

mixing parameterizations currently in use in ocean models, which is of the order of 10−5m2 s−1 below the
mixed layer. We see that it is not unusual, regarding the typical horizontal and vertical resolutions used by
climate models, that the background vertical diffusion in the oceanic interior is sufficient to significantly
moderate the overshootings associated with the use of a rotated mixing operator discretized with the SW-
TRIADS scheme, as long as the grid slope ratio is smaller than one.
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Fig. 17. Diffusion of a Dirac signal (shaded) along isoneutral directions (contours) using the SW-TRIADS-COMBI
scheme : a) for s1 ≈ 1/2; b) for s1 ≈ 2 . The results are shown after 2.5× 10−4 s of integration. Panel a) should be
compared with Fig. 15, b) and panel b) with with Fig. 15, f).

7 Conclusion

The use of a mixing operator non-aligned with the computational grid raises difficulties to maintain
several properties of the non-rotated operators : numerical stability, strict global tracer variance dissipation,
monotonicity (in the case of the Laplacian operator), and accuracy when the slopes steepen to greater than
the grid aspect ratio. In this paper, we present a set of conservative space-time discretizations to investigate
those delicacies. Since we do not want the numerical models to be penalized by diffusive processes, we
consider only linear spatial discretizations and first-order accurate temporal integrations. We do not strive
to design higher order schemes because the diffusive terms are used either for numerical or physical closure
(or both) and are thus supposed to vanish anyway for sufficiently high resolution.

In the same spirit as the methods commonly used for multi-dimensional parabolic problems with mixed
derivatives, we introduce a simple time-stepping scheme and we show its relevance to handle the time-
integration of the rotated harmonic and biharmonic operators. This method, which is known as Method of
Stabilizing Corrections (MSC), consists of a multi-stage approach : at the first stage, a consistent (explicit)
approximation of the rotated operator is evaluated, while all succeeding stages serve only to improve
the stability. For both the rotated harmonic and biharmonic operators, the stabilizing step is done using
a vertical Laplacian operator whose diffusivity is chosen through linear stability analysis. The proposed
scheme is made to enable the rotated operators to be advanced with the same time step as the non-rotated
ones. For large grid slope ratios, the scheme can however suffer from a lack of damping of the smallest
resolved scales in the vertical. To alleviate this problem a time-splitting of the diffusion could be used with
a few (typically of the order of 4) small time steps using the (MSC) scheme within a larger baroclinic time
step. This approach would still be significantly more computationally efficient than using an explicit Euler
scheme.

As noted previously in Beckers et al. (2000), all the consistent linear spatial discretizations of the
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rotated operators produce false dianeutral mixing and min-max violations. This issue is cumbersome be-
cause, in general, min-max violations are larger for schemes with small inherent dianeutral mixing, and
conversely schemes with a larger dianeutral mixing associated with discretization errors tend to mod-
erate the overshootings. The rotated biharmonic operator does not seem to generate significantly larger
monotonicity violations than the rotated Laplacian operator and than the non-rotated biharmonic opera-
tor. Furthermore, we show that different spatial discretizations of the rotated operators can lead to a quite
different behavior of the solution especially for large grid slope ratios. A compact discretization (referred
as to SW-TRIADS) whose stencil adapts to the orientation of the slope provides more accuracy, hence
has less spurious dianeutral mixing, for situations where the neutral slope is greater than the vertical to
horizontal aspect ratio. However, this discretization does not damp very efficiently small-scale noise, and
dispersive errors could thus go uncontrolled with this approach. As shown in Beckers et al. (2000), the
SW-TRIADS scheme can easily be made monotonic by adding a vertical background diffusion (as long
as the grid slope ratio is less than one) at the expense of a larger dianeutral contribution. However, under
some circumstances, the order of magnitude of this background diffusivity is expected to be of the same
order as the physically admissible dianeutral diffusivity.

When using the isoneutral mixing operators under realistic conditions, a specific procedure is required
to maintain the consistency with the small slope approximation made at a continuous level to derive the
rotation tensor, and to properly satisfy the boundary conditions. To do so, we consider a clipping or taper-
ing based on a maximum value of the neutral slope αm, as done traditionally in numerical climate models.
However, our study shows that the stability and the accuracy of the rotated operators are much more de-
pendent on the grid slope ratio sm rather than on the actual slope αm. This remark suggests that a clipping
on the local value of sm could be more appropriate. One drawback of this approach would be to allow the
violation of the small slope approximation when large values of αm are associated with small values of
sm. Considering that the small slope limit is valid for α2

m � 1, a slope αm = 1/10 would imply a 1%
error which suggests some flexibility in the choice of αmax. It is therefore not clear whether violating the
small-slope approximation (which may happen with a limiting acting on sm) is much more damaging for
the stratification than the loss of accuracy for large values of the grid slope ratio (which may happen with
a limiting acting on αm) . A definitive answer to this question would require numerical experiments under
fully-realistic conditions. This point is left for a future study, but this question certainly deserves more
attention.

We show that rotated operators must be used with care if we rely on those operators to efficiently
smooth grid-scale noise along the computational grid. Adding a background vertical, as it is commonly
done through the vertical mixing parameterization, or horizontal diffusion is a way to erase the deficiencies
in terms of smoothing but at the expense of additional numerically-induced spurious dianeutral mixing.
The requirements in terms of noise control are tied to the numerical schemes used to handle the tracer ad-
vection. When low-order schemes are used, larger dispersive errors are expected and an operator providing
an efficient numerical filtering is crucial. In this case, the TRIADS scheme would be recommended. An
unexplored possibility could be to formulate the advection in an isoneutral framework hence the numerical
noise would be prominently in the isoneutral direction and rotated operators would be more adequate to
control this noise.

Besides the idealized configurations studied in the present paper, it is shown in Lemarié et al. (2012)
that a rotated biharmonic operator advanced with the (MSC) scheme in time and using the SW-TRIADS
discretization performs well for a realistic coarse-resolution basin-scale simulation with the Regional
Oceanic Modelling System (ROMS, Shchepetkin and McWilliams, 2005) σ-coordinate model. Using this
space-time discretization, we have demonstrated that the use of an isoneutral biharmonic operator sig-
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nificantly improves the conservation of intermediate water properties and leads to a tightening of the
thermocline compared to an iso-σ biharmonic operator. Because the grid slope ratio with a σ-coordinate
is generally larger than with a z-level model we took advantage of the gain of accuracy provided by the
SW-TRIADS scheme.
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A Upper Bound on ϕθm = ϕm − 2θy2
m3

The aim of this appendix is to derive an upper bound for the function ϕθm introduced in Sec. 3. We
keep the notations previously used in the paper, and for convenience we introduce the parameters Xm =

tan(φm/2), Xm ∈ R (m = 1, 3); so that the expression of ϕθm transforms to

ϕθm = 2σm

(
[(Xm + smX3)2 + (1 + s2

m)X2
mX

2
3 ]

(1 +X2
m)(1 +X2

3 )
− 2θs2

m

X2
3

1 +X2
3

)
. (A.1)

In the remaining of this section we successively study the behavior of ϕθm with respect to Xm and then to
X3. We first get

Sign
(
∂ϕθm
∂Xm

)
= Sign

(
smX3(1−X2

m) +Xm(1 +X2
3 )
)
, (A.2)

where the roots of the second order polynomial in Xm are

X(±)
m =

1 +X2
3 ±

√
(1 +X2

3 )2 + (2smX3)2

2smX3

. (A.3)

∂ϕθm
∂Xm

is positive for X(−)
m ≤ Xm ≤ X(+)

m which is sufficient to show that ϕθm reaches its maximum either

for Xm = X(+)
m or Xm → −∞. In (A.1), we see that the asymptotic limit of ϕθm for Xm going to infinity

either by positive or negative values is the same; the maximum of ϕθm is therefore obtained forXm = X(+)
m .

Substituting Xm by X(+)
m in (A.1) leads to

ϕθm ≤ ϕθm(X(+)
m ) = ϕθm = 2σm

1 + 2s2
m(1− 2θ)

X2
3

1 +X2
3

+

√√√√1 + 4s2
m

X2
3

1 +X2
3

(
1− X2

3

1 +X2
3

) .
(A.4)

After some algebra, we find

Sign
(
∂ϕθm
∂X3

)
= Sign

(
(1− 2θ)

√
1 + 4s2

mX̃3(1− X̃3) + (1− 2X̃3)
)
, X̃3 =

X2
3

1 +X2
3

∈ [0, 1].

(A.5)
This derivative cancels for

X̃3 = X̃
(±)
3 =

1

2

1±
√√√√(1− 2θ)2(1 + s2

m)

1 + (1− 2θ)2s2
m

 . (A.6)

The maximum of ϕθm is reached for X̃3 = X̃
(+)
3 if θ ≤ 1/2 and X̃3 = X̃

(−)
3 otherwise. In both cases the

maximum is the same and provides the following upper bound for ϕθm

ϕθm ≤ 2σm ·M (θ, sm), (A.7)

where

49



M (θ, sm) = 1 + s2
m(1− 2θ) +

√
(1 + s2

m) (1 + s2
m(1− 2θ)2). (A.8)

B Stability Analysis With the SW-TRIADS Scheme

In this section, we extend the results found in Sec. 3 and 4 for the TRIADS scheme to the SW-TRIADS
discretization. The function ϕθm (with m = 1, 2) defined in (3.22) for βm = 0 (i.e., the TRIADS scheme)
becomes

ϕθ,sw
m = 2σm

(
[(Xm + smX3)2 + (sm − 1)2X2

mX
2
3 ]

(1 +X2
m)(1 +X2

3 )
− 2θs2

m

X2
3

1 +X2
3

)
(B.1)

for βm = 1 (i.e., the SW-TRIADS scheme with sm ≥ 0). In this appendix, we consider only the case
sm ≥ 0, it is straightforward to extend by symmetry the results to the case sm ≤ 0. As we did in App. A
for ϕθm, we study here the behavior of ϕθ,sw

m with respect to Xm and X3. After some algebra, we get

Sign
(
∂ϕθ,sw

m

∂Xm

)
= Sign

(
smX3(1−X2

m) +Xm(1 +X2
3 (1− 2sm))

)
, (B.2)

where the roots of the second order polynomial in Xm are

X(±)
m =

1 +X2
3 (1− 2sm)±

√
(1 +X2

3 (1− 2sm))2 + (2smX3)2

2smX3

. (B.3)

We can easily show that the maximum of ϕθ,sw
m is for Xm = X(+)

m which leads to

ϕθ,sw
m ≤ ϕθ,sw

m (X(+)
m ) = ϕθ,sw

m = 2σm

1 + 2(sm(sm − 1)− 2θs2
m)

X2
3

1 +X2
3

+

√√√√1 + 4sm(sm − 1)
X2

3

1 +X2
3

 .
(B.4)

The sign of the derivative of this function with respect to X3 reads

Sign
(
∂ϕθ,sw

m

∂X3

)
= Sign

(
(sm − 1)

(
1 +

√
1 + 4sm(sm − 1)X̃3

)
− 2smθ

√
1 + 4sm(sm − 1)X̃3

)
(B.5)

where X̃3 = X2
3/(1 +X2

3 ).

Rotated Laplacian Operator

We recall that the space-time discretization under consideration is stable for ϕθ,sw
1 + ϕθ,sw

2 ≤ 2.
In (B.5), we see that for sm ≤ 1, ∂ϕθ,sw

m /∂X3 is negative, hence the maximum is for X̃3 = 0 which
translates into ϕθ,sw

m ≤ 4σm in (B.4). This shows that, in this case, the scheme is stable for σ1 + σ2 ≤ 1/2

which corresponds to the stability condition of the non-rotated operator. Moreover, for sm > 1, taking
θ = (sm− 1)/sm still ensures that ∂ϕθ,sw

m /∂X3 is negative, and thus leads to the same stability constraint.
This last remark is sufficient to conclude that the stability condition of the rotated Laplacian operator
discretized using the SW-TRIADS scheme in space and the (MSC) scheme in time is equivalent to the
stability condition of the non-rotated Laplacian operator for
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θ = θsw = max

{
|s1| − 1

|s1|
,
|s2| − 1

|s2|
, 0

}
. (B.6)

If |s1| and |s2| are both smaller than 1 we get θ = 0, and for |sm| → ∞, θ → 1 which also shows that the
(IMP) scheme is stable as long as the horizontal terms of the tensor are stable.

Rotated Biharmonic Operator

Using (B.6), and following the methodology used in Sec. 4.3 to derive an expression for the stabilizing
diffusivity σ̃sw, we find that

σ̃ = σ̃sw = 8 (S1σ1 + S2σ2) ((1 + S1)σ1 + (1 + S2)σ2) , Sm = max{s2
m − |sm|, 0}. (B.7)

Note that σ̃sw vanishes when |s1| and |s2| are smaller than one.
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