
HAL Id: hal-00665823
https://hal.science/hal-00665823v1

Submitted on 2 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task model and online operating system API for
hardware tasks in OLLAF platform

Samuel Garcia, Bertrand Granado

To cite this version:
Samuel Garcia, Bertrand Granado. Task model and online operating system API for hardware tasks
in OLLAF platform. Workshop on Design and Architectures for Signal end Image Processing, Nov
2011, Finland. pp.1-7. �hal-00665823�

https://hal.science/hal-00665823v1
https://hal.archives-ouvertes.fr

Task model and online operating system API for

hardware tasks in OLLAF platform

Samuel GARCIA and Bertrand GRANADO

ETIS - ENSEA - CNRS UMR8051 - Univ. Cergy Pontoise

95014 CERGY, France

email: samuel.garcia@ensea.fr,

bertrand.granado@ensea.fr

Abstract— This article present an original hardware task
model and the corresponding online API for Fine Grained Dy-
namically Reconfigurable Architecture. We cover the integration
of this API in the OLLAF platform and more specifically its
application to memory access management in a dynamically
reconfigurable environment. Methods offered by this platform
are compared to existing software and hardware solutions.
We also discuss of the design complexity of an application
using difference solutions. We demonstrate that our solution
cans give application developer the same flexibility than with
a software implementation, with a very close design complexity
while ensuring the same performance gain a common FPGA
based IP would permit.

I. INTRODUCTION

More than moore philosophy tries to focus more on how

can we get the most out of a given technology as Moore’s

law tend to focus on bringing a new technology to achieve

more. Within this philosophy an application developer can usu-

ally enhance his system performance by designing a custom

designed computing architecture for his specific application

algorithm instead of using a generic architecture such as a

general purpose micro-processor(more than Moore option).

Fact is that most often application designers simply choose

a newer technology and/or bigger micro-processor when it

comes to performance enhancement(Moore’s law). Custom

computing architecture implemented on a fine grained dy-

namically reconfigurable architecture (FGDRA) can offer the

same degree of flexibility than a micro-processor does while

offering the performance benefit of a custom architecture. The

dynamic nature of both application and platform imply a run

time management in the form of an Operating System (OS)

that propose an abstracted and simplified model of the design

possibilities offered by the host architecture in the form of an

Application Programmer Interface (API). This article present

an online API for hardware task implemented on the OLLAF

platform [1]. We will here discuss of an innovative vision of

data management architecture for dynamically reconfigurable

platform as an example of OLLAF online API use.

This paper will be organized as follows. Section II covers

related works on this subject, it also gives an overview of the

OLLAF platform. Section III present our work on online API

for dynamically reconfigurable hardware task and more specif-

ically memory access services. Section IV is a comparison of

the several example solutions presented. Conclusions are then

drawn in section V, as well as perspectives on this work.

II. RELATED WORK

A. bibliography

Several researches have been led in the field of OS for

FGDRA [2], [3], [4], [5]. All those studies present an OS

more or less customized to enable specific FGDRA related

services. Example of such services are partial reconfiguration

management, hardware task preemption or hardware task

migration. They are all designed on top of a commercial FPGA

coupled with a micro-processor. This micro-processor may be

a soft-core processor, an embedded hardwired core or even an

external processor.

Those works tend to consider hardware task as subtask

of a software task. Operating system kernel being usually

adaptation of a classical software operating system, a simple

solution is to give the software mother-task the responsibility

to send system call. In [6], authors propose a method for

both software to hardware and hardware to hardware intertask

communication service. This method rely on a IP wrapper

that encapsulate the task architecture and communicate with

a particular software task being called the software alter-ego

of the hardware task. While this method can work for small

message passing exchanges or simple system call, it would

provide poor performance for high volume data transfers. The

system being purely software, thus sequential, it would not

allow to perform more than one operating system service at a

time.

The simplest solution, recommended in [7] is to use a

simple bus as communication media and a hardware task

model like a simple micro-processor peripheral. This model

has the advantage of being very straitforward, but it bound

hardware tasks as a control software’s slave.

In [8] authors propose an actor task model on a data-flow

computing scheme. The API consist on a control and a data

channel given by a wrapper that take care of communication

and synchronization work. This method differs with our ap-

proach as it imply strong constraint on architectural choice

in the task implementation. This restrictive task model allow

to simplify this API as only few specific services will ever

be called by a task. This architecture would be bound to few

particular classes of applications.

Our approach is to consider a hardware task as a full

fledged, independent system task. We also want a task model

being as generic as possible. The application designer can

chose the architecture that is most optimal to implement it.

In the state of the art are widely accepted API such as those

of POSIX norm[9] or µC OS-II [10]. The work presented

here aim at porting those API fundamental principles to a

dynamically reconfigurable hardware system. This API is to

be integrated as a part of the OLLAF platform presented in

the next paragraph.

B. OLLAF architecture overview

OLLAF architecture stand for Operating system enabled

Low LAtency FGDRA. It is a Fine Grained Dynamically

Reconfigurable Architecture (FGDRA) platform specifically

designed to support operating system services to manage

hardware task. In this overview we will first explain the

specification we follow in the design of this platform, this

should give a good understanding of the original philosophy of

this design. We will present the mechanisms used in OLLAF to

answer to those specifications and then show the contribution

of those architectural solutions in terms of operating system

support.

1) Specifications of a FGDRA with OS support: We have

designed a FGDRA with OS support following those specifi-

cations.

It should first address the problem of the configuration speed

of a task. This is one of the primary concerns because if

the system spend more time configuring itself than actually

running tasks its efficiency will be poor. The configuration

speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme, and

to match some real time requirements, our FGDRA platform

must also include preemption facilities. For the same reasons

than configuration, the speed of context saving and restoring

process will be one of our primary concerns. On this particular

point, previous work that have been discussed in [11] will be

adapted and reused.

Scheduling on a classical micro-processor is just a matter

of time. The problem is to distribute the computation time be-

tween different tasks. In the case of a FGDRA the system must

distribute both computation time and computation resources.

Scheduling in such a system is then no more a one dimensional

problem, but a three dimensional one. One dimension is the

time and the two others represent the surface of reconfigurable

resources. Performing an efficient scheduling at run time for

minimizing processing time is then a very hard problem that

the FGDRA should help getting close to solve. The primary

concern on this subject is to ensure an easy task relocation.

For that, the reconfigurable logic core should be spited into

several equivalent blocks. This will allow to move a task from

one block to any another block, or from a group of blocks to

another group of blocks of the same size and the same form

factor, without any change on the configuration data. The size

of those blocks would be a tradeoff between flexibility and

scheduling efficiency.

Another aspect of an operating system is to provide inter

task communication services. In our case we will distinguish

two cases. First the case of a task running on top of our

FGDRA and communicating with another task running on a

different computing unit. This last case will not be covered

here as this problem concern a whole heterogeneous platform,

not only the particular FGDRA computing units. The second

case is when two, or more, tasks run on top of the same

FGDRA communicate together. This communication channel

should remain the same wherever the task is placed on the

FGDRA reconfigurable core and whatever state those tasks are

(running, pending, waiting, ...). That mean that the FGDRA

platform must provide a rationalized communication medium

including exchange memories.

The same arguments could also be applied to inputs/outputs.

Here again two cases exist. First the case of I/O being a global

resource of the whole platform. Secondly the case of special

I/O directly bound to the FGDRA.

Fig. 1. Global view of OLLAF

2) OLLAF principles: Figure 1 show a global view of

OLLAF, our original FGDRA designed to support efficiently

OS services like preemption or configuration transfers.

In the center stand the reconfigurable logic core of the

FGDRA. This core is a dual plane, an active plane and a

hidden one, organized in slices. Each slice can be reconfigured

separately and offers the same set of services. A task is mapped

on an integer number of slices. This topology as been chosen

for two reasons. First, using a partial reconfiguration by slice

transforms the scheduling problem into a two dimensional

problem (time + 1D surface) which will be easier to handle

for minimizing the processing time. Secondly as every slice

are the same and offers the same set of services, tasks can be

moved from one slice to another without any change on the

configuration data.

In the figure, at the bottom of each slice you can notice

two hardware blocks called CMU1 and HCM2. The CMU

is an IP able to manage automatically task’s context saving

and restoring. The HCM standing for Hardware Configuration

Manager is pretty much the same but to handle configuration

data also called bitstream. More details about this controller

can be found in [11]. On each slice a local cache memory

named LCM is added. This memory is a first level of cache

memory to store contexts and configurations close to the

slice where it might most probably be required. The internal

architecture of the core provides adequate materials to work

with CMU and HCM. More about this will be discussed in

the next section.

On the right of the figure stands a big block called ”HW Sup

+ HW RTK + CCR”. This block contains a hardware supervi-

sor running a real time kernel specially adapted to handle FG-

DRA related OS services and platform level communication

services. In our first prototype presented here, this hardware

supervisor is a classical 32 bits micro-processor. Along with

this hardware supervisor a central memory is provided for OS

use only. This memory will store configurations and contexts

of every task that may run on the FGDRA. This supervisor

communicates with all slices using a dedicated control bus.

The hardware supervisor can initiate context transfers, from

and to the hidden plane, by writing in CMU’s and HCM’s

registers through this control bus.

Finally, on top of the figure 1 you can see the application

communication media. This communication media provides

a communication port to each slice. Those communication

ports are bound to the reconfigurable interconnection matrix of

the core through API endpoint presented here. Smart Memory

Block (SMB) and Smart IO Block are also connected to this

communication media.

This architecture has been developed as a VHDL model in

which the size and number of slices are generic parameters.

On this article we will consider slices composed of 512LE

with 32 input line and 32 output line to/from either the two

adjacent slices and the communication media, this is illustrated

on figure 2

Fig. 2. external view of a slice in OLLAF

3) OLLAF platform and OS interaction: In previous sec-

tions an architectural view of our FGDRA has been exposed.

In this section, we discuss about the impact of this architecture

on OS services. We will here consider the four services most

specifically related to the FGDRA :

1CMU : Contexte Management Unit
2HCM : Hardware Configuration Manager

• First, the configuration management service : on the

hardware side, each slice provides a HCM and a LCM.

That means that configurations have to be prefetched in

the LCM. The associated service running on the hardware

supervisor will thus need to take that into account. This

service must manage an intelligent cache to prefetch task

configuration on the slices where it might most probably

be mapped.

• Secondly, the preemption service: The context manage-

ment service must ensure that it never exists more than

one valid context for each task in the entire FGDRA.

Contexts must thus be transferred as soon as possible

from LCM to the centralized global memory of the

hardware supervisor.

• Scheduling service, and in particular the space man-

agement part of the scheduling : it takes advantage

of the slice topology and the centralized communica-

tion scheme. The reconfigurable resource could then

be managed as a virtual infinite space containing an

undetermined number of slices. The job is to dynamically

map the virtual space into the real space (the actual

reconfigurable logic core of the FGDRA).

• Communication service and system management of I/O

and memory access : it abstract all the communications

of a task and the complexity due to dynamical relocation

of task necessary for logic resource management.

III. PROPOSED SOLUTIONS

A. Task model and API in OLLAF

Our goal is to transpose to hardware task the same man-

agement facilities that an application developer can dispose

when designing a software task. Operating Systems for re-

configurable hardware task management is nothing new, lot

of works have been and still are led on the subject, but very

few of them define clearly what is the Task model in such

a system. For a full software system, a task is basically a C

language function. This simple assessment tells us how we can

exchange data with it, how it can be ran and how it acts within

the system. Moreover, it also makes clear of what a system call

is and how it can be programmed by the application designer,

with just an other C function. This define the system API as

a collection of C functions to call when required, in other

terms a C library. To call a system service, all you have to

do is include the corresponding API’s library and call the

corresponding function with the right parameters. Not only

this is simple, this is also natural to any software developer.

The code sample in Listing 1 show a typical software task

performing a simple four taps FIR filter on a set of data, using

the µC OS-II API. We can see that input data are passed as an

argument of the task function while the output data are passed

back using an OS provided message passing service.

Figure3 show a typical functional architecture of a hardware

version of this task. To make this architecture a hardware task

to be ran on an OS managed FGDRA we have to tell where

the task stop and where the system begin. Figure4 show this

division as we propose it to be. The system part will have to

i n c l u d e <OSMainAPI . h>

/ / C o e f f i t i e n t s

d e f i n e P1 1 / 2

d e f i n e P2 1 / 2

d e f i n e P3 1 / 8

d e f i n e P4 1 / 4

void f i r F i l t e r T a s k (i n t ∗ i n p u t D a t a ,

i n t i n p u t T a b l e S i z e , void ∗ p d a t a)

{
i n t i ;

i n t ∗ o u t p u t B u f f e r = m a l l oc (

s i z e o f (i n t)∗ i n p u t T a b l e S i z e) ;

f o r (i =3 ; i<i n p u t T a b l e S i z e ; i ++)

∗ (o u t p u t B u f f e r + i) = (

∗ (i n p u t D a t a + i) ∗ P1

+ ∗ (i n p u t D a t a + i − 1) ∗ P2

+ ∗ (i n p u t D a t a + i − 2) ∗ P3

+ ∗ (i n p u t D a t a + i − 3) ∗ P4

) / 4 ;

OSMboxPost (∗mBoxID , o u t p u t B u f f e r) ;

OSTaskDel (OS PRIO SELF) ;

}

Listing 1: A four taps FIR filter software implementation using µC OS-II API

be included into the OLLAF architecture. Then the point we

want to discuss in more depth in this paper is the interface

between the task part and the system part of the functional

architecture. This interface will constitute a hardware API for

the operating system. It will also define the task model in our

system.

To answer to that question we will first focus on what

we already have in the OLLAF architecture. In the previous

section we have seen that OLLAF’s reconfigurable logic core

provide in each slice 32 inputs signals and 32 output signals to

the outer world (ins[31..0] and outs[31..0]). We also know that

each slice is composed of 512 Logic Elements (LE). Thus we

want an interface that use only 32 input lines and 32 output

lines, and for the use of witch the required logic on the task

side can be made using far less than 512 LEs.

The solution we chose in OLLAF is to use a 32 bit access

register which act as a command register and/or as a data

register with sequential behavior. The first time a given task

instance access the API, it must always provide a command

word. Some simple access can be performed directly inserting

eventual data in the same 32 bits word. Access requiring more

data as for example a standard memory acces that require an

Fig. 3. Functional architecture of a hardware implementation of a four taps
FIR filter

Fig. 4. Four tap FIR filter implemented as hardware task, a) and b) are two
possible division between task and operating system

address word and a 32 bits data word, the same register will

be used sequentially.

Figure5’s chart shows the the command word API. We can

see that the two-first bits determine the type of destination

with which the task want to communicate. System (00) is for

system call. Memory (01) is for memory access. Task (10)

is for intertask communication. And I/O (11) is for external

input/output.

If we conciders the 4 taps FIR filter, we can see that we

need to write output data to the memory. This can be done by

initiating a full 32 bits transfer. Using our API it then consist

on first writing the control word ”01 0 1 1 xxx xxxx xxxx xxxx

xxxx xxxx”, then writing the 32 bits address and finally the

32 bits data. This imply to add to the actual task architecture

a multiplexor and a small state machine, the whole represent

only 34 Logic elements.

B. Data streams

The communication media used in OLLAF is a circuit

switching NoC3 rather than the more popular packet switching

NoC. It is based on a dynamic adaptation of the work pre-

sented in [12]. This choice allows to dynamically create a point

to point connection between two network nodes on which the

3NoC : Network on Chip

Fig. 5. Tree view of OLLAF online API, each arrow means a word to write or read on the API endpoint, following a branch gives the actual word to write.

full bandwidth can then dedicated to data transfers. We call this

data stream transaction. Task to memory communication is one

particular case where such a data stream transaction can give

a real performance gain while still allowing a simple dynamic

management. One can figure such a data stream transaction

as a hardware DMA transfer with a dynamically created ded-

icated bus. The transfer initialization is performed as it would

for a common DMA, using the upper mentioned API. Once

the request is accepted by the global communication arbiter,

which in this case is part of the operating system, a dedicated

communication channel is created for the transaction. If the

task is to be preempted and moved elsewhere, the system

will automatically recreate this channel, with the new host-

place of the task, as a part of the context restoration process.

The dedicated channel automatically follow the task so that

application developer doesn’t have to bother of the dynamical

management of the task. As long as it is designed in respect

with the API, the system guaranty that it runs as if it was the

only task in a static system.

In the previous section we have seen that we could perform

standard memory access using the OLLAF runtime hardware

API. We will show here another type of access that can be

performed using this API still based on our simple four tap

FIR filter example.

As said earlier, task to memory data stream transaction

are very similar to DMA transfer. In OLLAF the actual

management of the transfer is done by the memory itself.

Embedded data memory is decomposed into several separated

smart memory blocs (SMB). Each can serve one or more

transactions including data stream transaction. We will not

here get into more details about the smart memory engines

used in OLLAF as this article want to focus on the API

mechanism and associated principles.

In our example we can use a data stream transaction for both

input and output data as they are both continuous blocs of data.

As we would do using a traditional DMA we can initiate a

transfer from the input memory to our task, initiate a writing

transaction on a second API endpoint and then compute the

data as a stream allowing an optimal computing power use.

Note that this requires two API endpoint so the task should

be at least two slice big on the reconfigurable logic core.

Figure6 show the actual functional architecture of the new

implementation. According to the API tree chart in Fig5 we

see that to initiate a 32 bits simple block read transaction,

we need to write the word ”01 1 0000010 DATA SIZE”

where DATA SIZE is a 22 bits integer number representing

the size of the input data block to read, then we must write

the beginning address of this data block in the memory space.

Data will then be sent one 32 bits word each clock cycle. The

same principle stand for the writing transaction.

Fig. 6. Functional view of the FIR filter task architecture using transactional
block read and write memory access in OLLAF

We will now discuss of some more detail about internal

mechanism of the API. The communication media offers a

100% dedicated channel to system communication. All system

calls including data transfer initialization use this channel and

are addressed to the appropriate node if required (in this

case the smart memory bloc). In fact every nodes that can

serve system call listen to this channel. The main system

”router” only have to determine which of these nodes will be

concerned by the current call. This mechanism paired with a

fully parallelized hardware system router permits a zero delay

system call serving.

As looking at Fig6, we can see that the task now consist

only of its own functionality and a little state machine handling

API communication for transactions initialization. This little

state machine can easily be automatically generated at design

time using simple macro in the HDL source code of the task.

In the same way, if we want the input to be now a data

flow from external I/O port, the OLLAF API permit a similar

data flow transaction for external I/O to task communication

involving smart I/O engines. Not only an application developer

does not have to bother about dynamical management, but

even a simple, possibly static, task becomes easier to design

compared with a standard FPGA design flow. This comes to

the cost of a dedicated platform architecture specially designed

to support operating system managed dynamical system on a

chip.

IV. RESULTS

In this section we summarize the results of the four im-

plementation of the four tap FIR filter presented in this

article. The first case is the C code running on a general

purpose micro-processor (GPP), second case is a traditional

implementation of the functional architecture presented on the

previous section targeting commonly available FPGA, third

case is the OLLAF implementation of this architecture using

API’s standard memory access, and the fourth case is the

OLLAF implementation using API’s transactional access. For

each case we prompt the execution time for a 10,000 words

input file at a fixed frequency of 100 MHz. For the three

hardware implementation the logic size of task is given in

terms of both logic elements count and slices count. A slice

being 512 LE and providing one API endpoint. We also

compare for each case the size of the execution context as

a clue of the preemption cost. At last we will also discuss of

the ease of development. Table I display those results.

In terms of performance, hardware implementation show

up-to 16 times improvement compared to the software solu-

tion. This result was easily expectable, so it is that this gain

could be much greater with a more complex algorithm. The

same comparison with a 16 taps FIR filter would have lead to

a gain up-to 64. Concerning the OLLAF task implementation,

using standard access leads to a doubled computation time

compared with the classic FPGA implementation. This is due

to the fact that addresses and data have to be transfered sequen-

tially. Transactional access in the fourth implementation case

withdraw this problem giving just a 2 clock cycle overhead

for transactions initialization.

Considering the logical size of the three hardware imple-

mentation, we can see that they are roughly equivalent. Stan-

dard access OLLAF implementation present a 34LE overhead

as mentioned earlier due to the state machine and multiplexor

needed to cope with the API endpoint protocol. The trans-

actional implementation is slightly smaller as the system now

take care of all the memories address processing. Note this size

reduction is due to a simplification of the task architecture. In

OLLAF, the reconfiguration atom is the slice. Slices consist in

512 LE and provide one API endpoint. Any task is constituted

of an integer number of slices. Thus the little size difference

will not have any real effect here as both implementation will

occupy two full slices.

The execution context represents the data that must be saved

prior to preemption. The time cost of a task preemption will

be directly affected by the size of this context. Execution

context size then give a good clue of the preemptability of

a task. On a classic 32 bit general purpose microprocessor

the execution context is basically the set of registers of the

processor, this represent approximately 1 Kbit of data. Two

slices of reconfigurable logic in OLLAF represent 1 Kbit of

data. But in a classical FPGA, as memories are bound to the

reconfigurable logic core, ensuring a correct link between a

memory bloc and the task architecture can be difficult as the

task is moved. It will require to create a fixed communica-

tion structure, such as the communication media in OLLAF,

using reconfigurable logic thus limiting its complexity and

performance compared with hardwired resources. Not only

this solution offers suboptimal performances, but it also loose

most of the advantage of having memory blocs inserted into

the reconfigurable logic core. Without this fixed structure, the

only way to ensure the link between the task and the memory

is to move memory data with the task and to keep the same

relative position of the task prior to the memory bloc. This

make the three dimensional scheduling a real nightmare, and

makes execution context size more than 300 times bigger. This

is where a specifically designed platform such as OLLAF take

all it’s meaning compared with a common FPGA primarily

designed for a static use.

Ease of development might be a little trickier to discuss as

it is a very subjective question. It is then hard to give any real

scientific proof about it. However it is commonly accepted

that designing a software task is simpler than developing its

hardware equivalent. According to [13], using available C

to HDL high level synthesis tools does not overcome this

statement. We can also easily consider that implementing a

dynamically managed hardware task using common FPGA

platforms such as Virtex family using available tools is more

difficult than designing a static hardware architecture without

operating system. Designing a hardware task for OLLAF

platform, thanks to this API, require no other operations than

to develop the HDL code of the task, using either macro blocs

of macro-functions to address system calls. All the complexity

due to dynamical management are abstracted. Moreover, using

operating system services can also abstract parts of the com-

plexity of the task itself. While this article takes the example of

memory access, other services can permit to abstract inter task

communications, I/O access, task synchronization, (...), using

GPP FPGA OLLAF std OLLAF Transactional

T (@ 100M Hz) 1.6ms 100µs 200µs 100.02µs
Size (LE) χ 657 691 529

Slices χ 2 2 2
context Size ≈1kbit 396kbit 76kbit 76kbit
Dev. Ease ++ – + +

TABLE I

IMPLEMENTATIONS SOLUTION SUMMARY

the API presented here. We mentioned earlier that the software

task model and system call have a major advantage of being

natural to any developer. The model proposed here should also

feel natural to any HDL designer as it relies on straightforward

design model using traditional widespread tools.

V. CONCLUSION AND PERSPECTIVES

In this article we presented an original solution for online

hardware task system calls. This solution relies on a task

model as close as possible of any random hardware IP as

it would be designed targeting existing fine grained recon-

figurable platforms such as FPGA. All system services can

be called via hardware API endpoints bound to the recon-

figurable switching matrix of each reconfigurable logic slice.

This simple interface can cover any communication needs

from simple system call to more complex data transfer, I/O

access or memory access. In this article we demonstrated the

contribution of this API for memory access. More generally

we presented the bases of a complete online operating system

API supported by a platform architecture which permit to

support all required services with both low overhead. This

complete solution offers to application developers a highly ab-

stracted view of the system, freeing them to the complexity of

system level resources management including computational

resources, data storage and exchange resources and I/O.

Perspectives of this work are numerous.

A VHDL model of the platform is being developed, at

this day all the reconfigurable logic core, configuration and

context management units as well as a hardware supervisor

are developed. The application communication media is under

development as well as API endpoint and Smart Memory

Blocks.

Along with the development of the platform, a complete

design flow is being developed based on Mentor Graphics

HDL designer is being developed, including synthesis, place

and route as well as HDL system call. This custom design suite

is composed of TCL scripts around Mentor Graphics tools and

a HDL library mentioned in this article. As this design flow

takes a standard HDL description as input, it is very easy to

add existing higher level synthesis tool on top of it and/or to

build custom ones.

In order to validate such computing solution, we would

also need a benchmarking method adapted to dynamically

reconfigurable computing.

REFERENCES

[1] S. Garcia and B. Granado, “Ollaf: A fine grained dynamically recon-
figurable architecture for os support,” EURASIP Journal on Embedded

Systems - Special issue on design and architectures for signal and image
processing, vol. 2009, p. Article ID 574716, 2009.

[2] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA
Coprocessors.” in Field Programmable Logic and its Applications (FPL),
ser. Lecture Notes in Computer Science, no. 1896, 2000, pp. 121–130.

[3] G. Chen, M. Kandemir, and U. Sezer, “Configuration-Sensitive Pro-
cess Scheduling for FPGA-Based Computing Platforms.” in Design
Automation and Test in Europe (DATE), 2004, pp. 486–493.

[4] H. Walder and M. Platzner, “Reconfigurable Hardware Operating
Systems: From Design Concepts to Realizations,” in Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2003, pp. 284–287.

[5] G. Wigley, D. Kearney, and D. Warren, “Introducing reconfigme: An
operating system for reconfigurable computing,” in Conference on Field
Programmable Logic and Application, September 2-4 2002.

[6] A. Segard and F. Verdier, “Soc and rtos: Managing ips and tasks
communications,” in FPL’04, 2004.

[7] Xilinx, “Two flows for partial reconfiguration: Module based or differ-
ence based,” Xilinx, Application Note, 2004, application Note: Virtex,
Virtex-E, Virtex-II, Virtex-II Pro Families XAPP290 (v1.2) September
9, 2004.

[8] L. Gantel, A. Khiar, B. Miramond, A. Benkhelifa, F. Lemonnier, and
L. Kessal, “Dataflow programming model for reconfigurable comput-
ing,” in RECOSOC’11, 2011.

[9] IEEE, “1003.1-2008 - ieee standard for information technology -
portable operating system interface (posix(r)),” IEEE, Tech. Rep., 2008.
[Online]. Available: http://standards.ieee.org/findstds/standard/1003.1-
2008.html

[10] J. J. Labrosse, MicroC/OS-II The Real-Time Kernel. CMPBooks, 2002.
[11] S. Garcia, J. Prevotet, and B. Granado, “Hardware task context man-

agement for fine grained dynamically reconfigurable architecture,” in
Workshop on Design and Architectures for Signal and Image Processing
(DASIP), 2007.

[12] H. Pujol, “Rseau dinterconnexion haut dbit pour les architectures paral-
lles connexionnistes,” Ph.D. dissertation, Universit de Paris Sud Orsay,
France, 1995.

[13] BDTI, “Bdti certified(tm) results for the autoesl autopilot high-
level synthesis tool,” BDTI, Tech. Rep., 2010. [Online]. Available:
http://www.bdti.com/Resources/BenchmarkResults/HLSTCP/AutoPilot

