
OLLAF : a Dual Plane Reconfigurable Architecture

for OS Support

Samuel GARCIA and Bertrand GRANADO

ENSEA - ETIS

95014 CERGY, France

email: samuel.garcia@ensea.fr,

bertrand.granado@ensea.fr

Abstract— In the context of large versatile platform for em-
bedded real time system on chip, a fine grained dynamically
reconfigurable architecture could be used as one possible com-
putational resource. In order to manage efficiently this resource
we need a specific OS kernel able to manage such a hardware
adaptable architecture. Both the history of micro-processor based
system and our previous work based on currently available FPGA
devices led us to think that not only an OS kernel must be defined
to handle an FGDRA1 but a FGDRA must also be designed to
handle this OS kernel. This article relate our original work in
this direction. OLLAF2, an original FGDRA core that we have
designed will be presented. A comparison with other methods
used today using commercially available FPGA is also presented
concerning the particular preemption service.

I. INTRODUCTION

This work takes place in the SMILE project (see figure

1). This project aims at provide a distributed middle layer

to efficiently handle the complexity of a tomorrow’s RSoC3.

This system may contains several computing units of different

types. It will embed at least one or more General Purpose

Processor (GPP), but also dynamically reconfigurable architec-

tures (DRA) at different granularities and especialy FGDRA.

Tomorrow’s computing systems has to comply with lots of

constraints. Those constraints may be time related, to meet real

time requirements, but also power consumption constraints, as

it is, and will be more and more, one of the primary concern

of electronic devices.

By fine grained, we here means an architecture which is

reconfigurable at the bit level. A dynamically reconfigurable

architecture, using single bit LUT and flipflop, and providing

a bit level reconfigurable interconnection matrix, as the one

presented here, or basic logic fabric of most commercial

FPGA, are examples of FGDRA. Those kind of architecture

can be adapted to any application more optimally than a

coarser grain DRA. This feature make them today the platform

of choice when it comes to handle computational tasks in a

highly constrained context.

In more general terms FGDRA can achieve much better

efficiency than GPP does, while offering the same versatility

and, potentially, a very close flexibility. The counterpart is that

1Fine Grained Dynamically Reconfigurable Architecture
2Operating system enabled Low LAtency Fgdra
3Reconfigurable System on Chip

Fig. 1. Basic view of a RSoC in SMILE

it introduces a much greater complexity for application design-

ers. This complexity could be lowered to an acceptable level

in two ways. First by providing powerful CAD tool. Lots of

research are thus led in the field of high level synthesis [1]. The

second way is to abstract the system complexity by providing a

middle layer, e.g an operating system, that abstracts the lower

level of the system [2]. Moreover, an OS could manage new

tasks at run time. This property is a feature of importance for

DRA. For all those reasons, a specialized operating system is

required for FGDRA.

In our work we make a difference between a FGDRA, which

is a general term, and a FPGA which, for us, relates to an

actual silicon device sold under this designation.

The SMILE project follows a distributed approach of the

system. Each computing unit of a RSoC (GPP, DSP, DRA,

...) has its own real time kernel. This topology allows to use a

specific custom made real time kernel for each computing unit.

It then allows to take into account every specificities of each

computing unit. A message passing communication scheme,

based on MPI4, ensure a consistent operation of the whole

system. In this frame of mind, we developed a dedicated real

time kernel for a FGDRA.

Both the history of micro-processor based system and our

previous work based on currently available FPGA devices led

us to think that not only an OS kernel must be conceived

4Message Passing Interface



to handle a FGDRA, but a FGDRA must also be designed

to support efficiently this OS kernel. This article relate our

original works in this direction. The FGDRA core that we

have designed will be presented as well as a more general

view of our approach of a FGDRA and its related OS kernel.

This paper is organized as follows. Section 2 discusses of

related works in the field of OS for FGDRA. Section 3 explains

our original FGDRA platform proposition named OLLAF.

Section 4 discusses more precisely of the context manage-

ment scheme and its extension to configuration management.

Section 5 exposes a particular case study that covers the most

common memory transfer case in OLLAF. Section 6 compares

the transfer costs in OLLAF with the classical approach using

this case study. Finally, conclusions are drawn in section 7.

II. RELATED WORK

A. OS for FGDRA

Several research have been led in the field of OS for

FGDRA[3], [4], [5], [6]. All those studies present an OS more

or less customized to enable specific FGDRA related services.

Example of such services are : partial reconfiguration manage-

ment, hardware task preemption or hardware task migration.

They are all designed on top of a platform composed of a

commercial FPGA and a micro-processor. This microprocessor

may be a softcore processor, an embedded hardwired core or

even an external processor.

Some works have also been published about the design of

a specific architecture for dynamical reconfiguration. In [7]

authors discuss about the first multi-context reconfigurable

device. This concept has been implemented by NEC on the

Dynamically Reconfigurable Logic Engine (DRLE) [8]. At the

same period, the concept of DPGA was introduced, it was also

proposed in [9] to implement a DPGA in the same die as a

classic microprocessor to form one of the first SoC including

dynamically reconfigurable logic. In 1995, Xilinx even applied

a patent on multi-context programmable device proposed as an

XC4000E FPGA with multiple configuration planes [10]. In

[11], authors also study the use of a configuration cache, this

feature is provided to lower costly external transfers, witch is

not mutch a problem in the case of a SoC. This paper hoever,

show the advantages of coupling configuration caches, partial

reconfiguration and multiple configuration planes.

More recently, in [12], authors propose to add special

material to a DRA to support OS services, they worked on

top of a classic FPGA.

The work presented in this paper try to take advantage

of those previous work both about hardware reconfigurable

platform and OS for FGDRA.

B. previous work

Our first work on OS for FGDRA was related to preemption

of hardware task on FPGA[13]. For that purpose we explored

the use of a scanpath at the task level. In order to accelerate the

context transfer we explore the possibility of using multiple

parallel scanpaths. We also provided the Context Management

Unit or CMU, which is a small IP capable to manage the whole

process of saving and restoring tasks contexts.

In that study both the CMU and the scanpath were build to

be implemented on top of any available commercial FPGA.

This approach showed number of limitations. They could be

summarized in this way: implementing this kind of OS related

material on top of the existing DRA introduces unacceptable

overhead on both the task and the OS service. Differently said,

most of OS related material should be as much as possible

hardwired into the platform’s architecture.

III. OLLAF : GENERAL OVERVIEW

A. Specifications of a FGDRA with OS support

We have designed a FGDRA with OS support following

those specifications.

It should first address the problem of the configuration speed

of a task. This is one of the primary concerns because if the

system spends more time configuring itself than actually run-

ning tasks, then its efficiency will be poor. The configuration

speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme, and

to match some real time requirement, our FGDRA platform

must also include preemption facilities. For the same reasons

than configuration, the speed of context saving and restoring

process will be one of our primary concerns. On this particular

point, previous works we have discussed in section 2 will be

adapted and reused.

Scheduling on a single GPP system is just a matter of time.

The problem is to distribute the computation time between

different tasks. In the case of a DRA the system must distribute

both computation time and computation resources. Scheduling

in such a system is then no more a one dimensional problem,

but a three dimensional one. One dimension is the time and

the two others are the surface of reconfigurable resources.

Performing such a scheduling at run time with real time

constraints is at this stage not conceivable. But the FGDRA

should help getting close to that goal. The primary concern

on this subject is to ensure an easy task relocation. For that,

the reconfigurable logic core should be splited into several

equivalent blocks. This will allow to move a task from a block

to any another block or from a group of blocks to another

group of blocks of the same size and the same form factor

without any change on the configuration data. The size of those

blocks would be a tradeof between flexibility and scheduling

efficiency.

Another aspect of an operating system is to provide inter

task communication services. In our case we will distinguish

two cases. First the case of a task running on top of our

FGDRA and communicating with another task running on a

different computing unit, for example a GPP. This case will

not be covered here as this problem concerns the whole hetero-

geneous platform, not only the particular FGDRA computing

unit. The second case is when two, or more, tasks run on top of

the same FGDRA communicate together. This communication

channel should remain the same wherever the task is placed

on the FGDRA reconfigurable core and whatever state those



Fig. 2. Global view of the FGDRA

tasks are (running, pending, waiting, ...). That means that the

FGDRA platform must provide a rationalized communication

medium including some sort of exchange memories.

The same arguments could also be applied to inputs/outputs.

Here again two cases exist. First the case of I/O being a global

resource of the whole platform. Secondly the case of special

I/O directly bound to the FGDRA.

B. Proposed solutions

Figure 2 shows a global view of OLLAF, our original

FGDRA designed to support OS sevices as they have just

been specified.

In the center stand the reconfigurable logic core of the

FGDRA. This core is organized in columns, each column can

be reconfigured separately and offer the same set of services.

That means that a task uses an integer number of columns.

This topology has been chosen for two reasons. First using

a partial reconfiguration by column transforms the scheduling

problem into a two dimensional problem (time + 1D space)

which will be easier to handle in real time situations. Secondly

as every columns are the same and offers the same set of

services, tasks can be moved from one column to another

without any change on the configuration data.

In the figure, at the bottom of each column you can notice

two hardware blocks called CMU and HCM. The CMU as

said earlier is an IP able to manage automatically task’s

context saving and restoring. The HCM standing for Hardware

Configuration Manager is pretty much the same but to handle

configuration data also called bitstream. On each column a

local configuration/context memory is added. This memory

can be seen as a first level of cache memory to store contexts

and configurations close to the column where it might most

probably be required. The internal architecture of the core

provides adequate materials to work with CMU and HCM.

More about this will be discussed in the next section.

On the right of the figure stands a big block called ”HW

Sup + HW RTK + central memory”. This block contains a

classic microprocessor which serves as a hardware supervisor.

It runs a custom real time kernel specially adapted to handle

FGDRA related OS services and platform level communica-

tion services. Along with this hardware supervisor a central

memory is provided for OS use only. Basically this memory

will store configurations and eventual contexts of every task

that may run on the FGDRA. This supervisor communicates

with all columns using a dedicated control bus.

Finally, on top of the figure 2 you can see the applica-

tion communication medium. This communication medium

provides a communication port to each column. Those com-

munications ports will be directly bound to the reconfigurable

interconnection matrix of the core. If I/O had to be bound to

the FGDRA they would be connected with this communication

medium in the same way reconfigurable columns are.

C. configuration, preemption and OS interaction

In previous sections an architectural view of our FGDRA

has been exposed. In this section, we discuss about the impact

of this architecture on OS services. We will here consider the

three services most specifically related to the FGDRA.

First, the configuration management service. On the hard-

ware side, each column provides a hardware configuration

manager and an associated local memory. As stated earlier that

means that configurations have to be placed in advance in the

local configuration memory. The associated service running

on the hardware supervisor micro-processor will thus need

to take that into account. That implies that this service must

manage an intelligent cache to prefetch task configuration on

the columns where it might most probably be placed. In order

to do so, an anticipated scheduling must be performed.

Secondly, the preemption service. The same principle must

be applicable here as those applied for configuration manage-

ment. Except that contexts also have to be saved. The context

management service must ensure that it never exists more than

one valid context for each task in the entire FGDRA. Context

must thus be transferred as soon as possible from local context

memory to the centralized global memory of the hardware

supervisor. This service will also have a big impact on the

scheduling service as the ability to perform preemption with a

very low overhead allow the use of more flexible scheduling

algorithms.

And last the scheduling service and in particular the space

management part of the scheduling. It takes advantage of

the column topology and of the centralized communication

scheme. As stated, fewer computing power will be required to

manage a one dimensional space at run time. The problem is

here similar to memory management in classical GPP based

system. The reconfigurable resource could then be managed as

a virtual infinite space containing an undetermined number of

columns. The job is then to dynamically map the required set

of columns (task) into the real space (the actual reconfigurable

logic core of the FGDRA).

IV. CONTEXT MANAGEMENT SCHEME

In [13] we proposed a context management scheme based

on a scanpath, a local context memory and the CMU which is

a small IP capable of managing automatically context transfer

between the scanpath and the local memory. The context

management scheme in OLLAF is slightly different in two

ways. First, every context management related material is hard

wired into the platform. Secondly, we added two more stages



Fig. 3. Dual plane configuration memory

in order to even lower preemption overhead and to ensure the

consistency of the system.

As context management materials are added at platform

level and no more at task level, it needed to be splited

differently. As the Programable Logic Core is column based, it

was then natural to implement context management at columns

level. A CMU and a local memory have then been added to

each column, and one scanpath is provided for each column’s

set of flipflops.

In order to lower preemption overhead, our reconfigurable

logic core uses a double memory plane. Flipflops used in

LE are thus replaced with two FF with switching material.

Architecture of this double plane FF can be seen on figure

3. Run and scan are then no more two working modes but

two parallel planes which can be swapped as will. With this

topology, the context of a task can be shifted in while the

previous task is still running and shifted out while the next

one is already running. The effective task switching overhead

is then taken down to one clock cycle as illustrated in figure

5.

Contexts are transfered by the CMU into Local Context

Memories using this hidden scanpath. Because the context

of every column can be transfered in parallel, Local Context

Memories are placed at column level. It is particularly usefull

when a task uses more than one column. Those memories can

contain at this stage 10 contexts. They can be seen as local

cache memories to optimize access to a bigger memory called

the Central Context Repository.

The Central Context Repository is a large memory space

storing the context of each task instance run by the system.

Local Context Memories should then store contexts of tasks

who are most likely to be the next to be ran on the corre-

sponding column.

After a preemption of the corresponding task, a context can

be stored in more than one LCM in addition to the copy stored

in the Central Context Repository. In such situation, care must

be taken to ensure the consistency of the task execution. For

that purpose, contexts are tagged by the CMU each time

a context saving is performed with a version number. The

operating system keeps track of this version number and also

increments it each time a context saving is performed. In this

way the system can then check for the validity of a context

before a context restoration. The system must also try to update

the context copy in the CCR as short as possible after a context

saving is performed.

Dual Plan Scanpath, Local Context Memory and Central

Context Repository form a complex memory hierarchy spe-

Fig. 4. Context memories hierarchy

Fig. 5. Typical preemption scenario

cially designed to optimize preemption overhead. The same

memory scheme is also used for configuration management

except that a configuration does not change during execution

so it does not need to be saved and then no versioning control

is required here. The programmable logic core use a dual

configuration plane equivalent to the Dual Plane Scanpath

used for context. Each column has a Hardware Configuration

Manager which is a simplified version of the CMU (with-

out saving mechanism). A Local Configuration Memory is

provided beside Local Context Memory, the name LCM is

used as in figure 2 to relate to both those memories. In the

same way, the CCR can refer to Central Context/Configuration

Repository.

In best case, preemption overhead can then be bound to one

clock cycle.

A scenario of a typical preemption is presented here. In this

scenario we consider the case where context and configuration

of both task are already stored into the right LCM. Let’s

consider that a task T1 is preempted to run another task T2,

scenario of task preemption is then as follow :

• T1 is running and the scheduler decides to preempt it to

run T2 instead

• T2’s configuration and eventually context is shifted on

the second configuration plane

• once the transfer is completed the two configurations

planes are switched

• now T2 is running and T1’s context can be shifted out to

be saved

• T1’s context is updated as soon as possible in the CCR

This scenario is illustrated in figure 5.

This is the case when both context and configuration of

T2 are already stored into LCM. That means that, in order to

have this favorable case, we need an anticipated scheduling to

manage our Context/Configuration Memories Hierarchy as a

smart cache.



Fig. 6. Memory view of the considered implementation of OLLAF

V. CASE STUDY

We will here expose the execution of a given already sched-

uled set of tasks. We consider here a particular implementation

of the OLLAF architecture including 4 columns of 1024 logic

elements each (4x256LE per columns), a 32bits control bus

width, and local configuration/context memories (LCM) size

of three task so three configuration and three context. This

mean a configuration bitstream size of 87Kbits and a context of

1Kbit per column. LCMs would then be 264Kbits memories.

As stated earlier OLLAF architecture provide three level of

configuration memory in addition to the working configuration

plane. Those memory levels are respectively the CCR, LCMs

and the second configuration plane (the plane not currently

working). Transfer from the CCR to an LCM using the

control bus will be referred at as L0 transfer, those from an

LCM to the CCR as L0’. Transfer from LCM to the non

working configuration plane will be L1 and the backward L1’.

Swapping between the two configuration plane could alos be

modelized as memory transfer referred at by L2, note that this

particular transfer always occurs in both directions at the same

time. This memory view of the platform is shown on figure 6.

In this study, as the architecture is all synchronous, all

times will be considered in an integer number of clock period,

referred at by Tclk. Task scheduling will be dictated by

the operating system clock also called Tick, which is not

to be confused with the logical clock above-mentioned. The

period of this operating system clock have usually a typical

value comprised between 1ms and 100ms. In this study we

concider a random logical clock frequency of 100MHz and a

Tick period of 5ms as it is the default Tick period used in

µC/OS[14], a well known real time kernel that we intend to

use in our works. That mean a Tick period of 500K Tclk.

Scheduling can also happend in the case where an interuption

occure, but this case is not covered in this study.

Table I give transfer times at the differents stages for the

considered implementation of the platform.

The considered set of tasks consists on five tasks, T1, T2,

T3, T4 and T5, we consider that they have already been

scheduled as shown on figure7 and table II. Note that T1 and

T1’ are two different instance of the same task, that mean they

share the same configuration but not the same context.

l0 l0’ l1 l1’ l2

Transfer time (tclk) 2816 32 1024 1024 1

TABLE I

TRANSFER TIMES FOR 4X256 COLUMN BASED OLLAF PLATFORM

T1 T1’ T2 T3 T4 T5

Size (Column) 1 1 2 1 4 1
Duration (Tick) 2,33 2 5 3 1 2

Begin time (Tick) 0 6 0 2 3 7

TABLE II

CONSIDERED TASKS DESCRIPTIONS

When a task execution in asked on a particular columns, the

context and configuration of the task must be transferred to one

configuration plane of this column and then the configuration

planes must be swapped in order to actually run the task. If

another task was running on this column it will be preempted.

Depending on the place where the context and configuration

data of the task are already present, and on the state of the

different memory stages, there can be several different cases of

transfers prior of execution. As an example, a very unfavorable

case is when we want to run a task on a columns of which

the LCM contain three other context that has not already been

saved in the CCR, we then need to save at least one of those

contexts before we can write into the considered LCM and

then transfer the configuration of the task we want to run into

one of the memory planes. Memory transfers in this case will

lead to a minimal latency of 4865Tclk. Another example is

when both context and configuration of the task are still in

the second configuration plane, the latency could then be as

low as one clock cycle. Those task and this scheduling are

chosen to meet the most commons of those cases given the

particular implementation considered.

VI. RESULTS

Using the sequence and parameters given in previous sec-

tion, we here study the transfers cost in terms of time. We

compare this cost using three differsnt platforms. The first

(Shared Bus) is a platform using a simple 32bit shared bus as

it is the case when using a classical FGDRA platform such as

a Xilinx VirtexIIpro with Icap interface. The second (OLLAF

Shared Bus OLLAF simple OLLAF

Total Transfer time (tclk) 36608 36897 9509

TABLE III

TRANSFER TIMES COMPARISON FOR THE FIRST EXECUTION

Shared Bus OLLAF simple OLLAF

Total Transfer time (tclk) 36608 11846 1062

TABLE IV

TRANSFER TIMES COMPARISON FOR PERIODIC EXECUTION OF THE

SEQUENCE



Fig. 7. Considered tasks and scheduling

simple) is a simple plane version of OLLAF where transfers

times can not be masked by the execution of another task.

And the last (OLLAF) is the OLLAF architecture as described

earlier in this paper. As we want to focus this study on the

memory transfers, we will here consider that no anticipations

are made. The total transfer times during one execution of this

sequence using those three platforms are shown in Table III.

Those results shows that the total transfer time for OLLAF-

simple is quiet the same than for the Shared bus solution,

this can be explained as the gain due to parallelisme of

some transfers is weighed by the fact that transfers are more

numerous. But it also shows being able to overlap execution

and context transfers, as with OLLAF, can achieve a gain close

to x4 in such a sequence.

If we now concider this sequence as periodical, results in

Table III are now only true for the first execution of the

sequence. Table IV show results for every next iteration of

the sequence.

Those results, regarding of OLLAFsimple versus Shared

bus, show the utility of a cache stage, which is no more to be

demonstrated. We can note that the result in OLLAF is not

as low as we could at first expect due to a cache miss. The

interesting result is that in the case of OLLAF, it permits a

gain of 34.5 compared with the classical approach in spite of

this cache miss.

If we were to concider either a big platform or short Tick

period, this would have a big impact on the efficiency of the

platform.

We should also note that with a very simple anticipation

mechanism we could avoid this cache miss, resulting in a

transfer cost of only 6Tclk using OLLAF or a gain over 6000

comparing to the classical approach.

VII. CONCLUSION AND PERSPECTIVES

A global view of OLLAF, a FGDRA that enhance OS

service support has been presented. We claim that OS and

platform must be closely linked to each others in order to

perform as optimally as possible.

In this paper, we showed a case study that demonstrate that

thanks to a dedicated configuration and context memory hier-

archy, the OLLAF architecture can perform a greater efficiency

than the one performed using a traditional commercial FPGA.

This paper shows result of the preliminary study of the

project, it demonstrate the efficiency of the methodes used

in terms of time overhead. Further work will now be led in

three directions. First, the development of a generic VHDL

description of the OLLAF platform should permit to study area

cost of those methodes. Secondly the OS itself will be further

studied and more particularly the scheduling and ressources

management algorithmes, we should as an exemple try to study

in more details an anticipated scheduling mechanism in order

to be able to prefetch configurations and context and then

to bring the best out of the OLLAF architecture. And last,

the Application Comunication Media should also be further

studied, including data exchanges, application memories and

I/O management.

REFERENCES

[1] P. Coussy, G. Corre, P. Bomel, E. Senn, and E. Martin, “High-level
synthesis under i/o timing and memory constraints,” in Proceeding of
IEEE International Symposium on Circuits and Systems (ISCAS), 2005.

[2] Q. Deng, S. Wei, H. Xu, Y. Han, and G. Yu, “A Reconfigurable RTOS
with HW/SW Co-scheduling for SOPC,” in International Conference on
Embedded Software and Systems (ICESS), 2005, pp. 116–121.

[3] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA
Coprocessors.” in Field Programmable Logic and its Applications (FPL),
ser. Lecture Notes in Computer Science, no. 1896, 2000, pp. 121–130.

[4] G. Chen, M. Kandemir, and U. Sezer, “Configuration-Sensitive Pro-
cess Scheduling for FPGA-Based Computing Platforms.” in Design
Automation and Test in Europe (DATE), 2004, pp. 486–493.

[5] H. Walder and M. Platzner, “Reconfigurable Hardware Operating
Systems: From Design Concepts to Realizations,” in Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2003, pp. 284–287.

[6] G. Wigley, D. Kearney, and D. Warren, “Introducing reconfigme: An
operating system for reconfigurable computing,” in Conference on Field
Programmable Logic and Application, September 2-4 2002.

[7] X. ping Ling and H. Amano, “Wasmii : a data driven computer on
virtuel hardware,” in IEEE workshop on FPGAs for custom computing
machines, 1993.

[8] Y. Shibata and al., “A virtual hardware system on a dynamically
reconfigurable logic device,” in IEEE symposiunm on FPGAs for custom
cmputing machines, 2000.

[9] A. DeHon, “Dpga-coupled microprocessors : Commodity ics for the
early 21st century,” in IEEE Workshop on FPGAs for custom computing
machines, 1994.

[10] Xilinx, “Time multiplexed programmable logic device,” Patent
no.5646545, 1997.

[11] Z. Li, K. Compton, and S. Hauck, “Configuration caching techniques for
fpga,” in IEEE Symposium onFPGA for Custom Computing Machines
(FCCM), 2000.

[12] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an Operating System for a Heterogeneous Reconfigurable
SoC,” in International Parallel and Distributed Processing Symposium
(IPDPS), 2003, p. 174a.

[13] S. Garcia, J. Prevotet, and B. Granado, “Hardware task context man-
agement for fine grained dynamically reconfigurable architecture,” in
Workshop on Design and Architectures for Signal and Image Processing
(DASIP), 2007.

[14] J. J. Labrosse, MicroC/OS-II The Real-Time Kernel. CMPBooks, 2002.


