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Abstract— In the context of large versatile platform for em-
bedded real time system on chip, a fine grained dynamically
reconfigurable architecture (at a first approach an FPGA) can be
used as one possible computational resource. In order to manage
this resource in that kind of context we need an OS kernel able
to manage such a resource. Both the history of micro-processor
based system and our previous work based on currently available
FPGA devices led us to think that not only an OS kernel must be
defined to handle an FGDRA but a FGDRA must also be designed
to handle this OS kernel. This article relate our original work in
this direction. OLLAF1, an original FGDRA core that we have
designed and modelized using VHDL will be presented as well
as a more general view of our approach of a FGDRA and its
related OS kernel.

I. INTRODUCTION

This work takes place in the SMILE project. This project

aims at providing a distributed middle layer to efficiently

handle the complexity of a tomorrow’s RSoC2. This system

may contain several computing units of different type. It will

embed at less one or more General Purpose Processor (GPP),

but also dynamically reconfigurable architectures (DRA) at

different granularities. Tomorrow’s computing systems has to

comply with lots of constraints. Those constraints may be

time related, to meet real time requirements, but also power

consumption constraints, as it is, and will be more and more,

one of the primary concern of electronical devices.

FGDRA3 are today the platform of choice when it comes

to handle tasks in a highly computational constrained context.

In more general terms FGDRA can achieves much better

efficiency than GPP does, while offering the same versatility

and, potentially, a very close flexibility. The counterpart is that

it introduces a much greater complexity for application design-

ers. This complexity could be lowered to an acceptable level

in two ways. First by providing powerful CAD tool. Lots of

research are thus led in the field of high level synthesis [1]. The

second way is to abstract the system complexity by providing a

middle layer, e.g an operating system, that abstracts the lower

level of the system [2]. Moreover, an OS could manage new

tasks at run time. This property is a feature of importance for

1Operating system enabled Low LAtency Fgdra
2Reconfigurable System on Chip
3Fine Grained Dynamically Reconfigurable Architecture, FPGA being a

case of FGDRA

Fig. 1. Basic view of a RSoC in SMILE

DRA. For all those reasons, a specialized operating system is

required for FGDRA.

In our work we make a difference between a FGDRA, which

is a general term, and a FPGA which, for us, relate to an actual

silicon device sold under this designation.

The SMILE project follows a distributed approach of the

system. Each computing unit of a RSoC (GPP, DSP, DRA,

...) has its own real time kernel. This topology allows to use

a specific custom made real time kernel for each computing

unit. This enable to take into account every specificities of each

computing unit. A message passing communication scheme,

based on MPI4, ensure a consistent operation of the whole

system. In this frame of mind, we developed a dedicated real

time kernel for a FGDRA.

Both the history of micro-processor based system and our

previous work based on currently available FPGA devices led

us to think that not only an OS kernel must be conceived

to handle a FGDRA, but a FGDRA must also be designed

to support efficiently this OS kernel. This article relate our

original works in this direction. The FGDRA core that we

have designed will be presented as well as a more general

view of our approach of a FGDRA and its related OS kernel.

The reminder of this paper is organized as follows. Section 2

discusses related work in the field of OS for FGDRA. Section

4Message Passing Interface



3 explains an original FGDRA platform proposition called

OLLAF what we have designed and modelized using VHDL.

Section 4 discuss more precisely of the basic reconfigurable

core in the point of view of a task designer and more precisely

on the reconfiguration point of view. Section 5 explain how

our architecture can affect different OS services. Finally,

conclusion are drawn in section 6.

II. RELATED WORK

A. OS for FGDRA

Several research have been led in the field of OS for

FGDRA[3], [4], [5], [6]. All those studies present an OS more

or less customized to enable specific FGDRA related services.

Example of such services are : partial reconfiguration manage-

ment, hardware task preemption or hardware task migration.

They are all designed on top of a platform composed of a

commercial FPGA and a micro-processor. This microprocessor

may be a softcore processor, an embedded hardwired core or

even an external processor.

In the 90’s, some works have also been published about the

design of a specific architecture for dynamical reconfiguration.

In [7] authors discuss about the first multi-context reconfig-

urable device. This concept as been implemented by NEC on

the Dynamically Reconfigurable Logic Engine (DRLE) [8].

At the same period, the concept of DPGA was introduced, it

was also proposed in [9] to implement a DPGA in the same

die as a classic microprocessor to form one of the first SoC

including dynamically reconfigurable logic. In 1995, Xilinx

even applied a patent on multi-context programmable device

proposed as an XC4000E FPGA with multiple configuration

planes [10].

More recently, in [11], authors propose to add special mate-

rial to a DRA to support OS services, they worked on top of a

classic FPGA. Some works as in [12] focus on technological

improvement of FGDRA like using a MRAM based extra

configuration plane. Other focus more on hight level generic

modelization of a DRA of undetermined granularity [13].

The work presented in this paper try to take advantage

of those previous work both about hardware reconfigurable

platform and OS for FGDRA.

B. previous work

Our first work on OS for FGDRA was related to preemption

of hardware task on FPGA[14]. For that purpose we explored

the use of a scanpath at the task level. In order to accelerate the

context transfer we explore the possibility of using multiple

parallels scanpaths. We also provided the Context Management

Unit or CMU, which is a small IP capable to manage the whole

process of saving and restoring tasks contexts.

In that study both the CMU and the scanpath were build to

be implemented on top of any available commercial FPGA.

This approach showed number of limitations. They could be

summarized in this way: implementing this kind of OS related

material on top of the existing DRA introduce unacceptable

overhead on both the task and the OS service. Differently said,

most of OS related material should be as much as possible

hardwired into the platform’s architecture.

III. OLLAF : GENERAL OVERVIEW

A. Specifications of a FGDRA with OS support

We have designed a FGDRA with OS support following

those specifications. This FGDRA called OLLAF has been

designed as a synthesizable VHDL model.

It should first address the problem of the configuration speed

of a task. This is one of the primary concerns because if the

system spend more time configuring itself than actually run-

ning tasks, then its efficiency will be poor. The configuration

speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme, and

to match some real time requirement, our FGDRA platform

must also include preemption facilities. For the same reasons

than configuration, the speed of context saving and restoring

process will be one of our primary concerns. On this particular

point, previous work we have discussed in section 2 will be

adapted and reused.

Scheduling on a single GPP system is just a matter of time.

The problem is to distribute the computation time between

different tasks. In the case of a DRA the system must distribute

both computation time and computation resources. Scheduling

in such a system is then no more a one dimensional problem,

but a three dimensional one. One dimension is the time and

the two others are the surface of reconfigurable resources.

Performing such a scheduling at run time with real time

constraints is at this stage not conceivable. But the FGDRA

should help getting close to that goal. The primary concern

on this subject is to ensure an easy task relocation. For that,

the reconfigurable logic core should be splited into several

equivalent blocs. This will allow to move a task from a bloc

to any another bloc or from a group of blocs to another

group of blocs of the same size and the same form factor

without any change on the configuration data. The size of those

blocs would be a tradeoff between flexibility and scheduling

efficiency.

Another aspect of an operating system is to provide inter

task communication services. In our case we will distinguish

two cases. First the case of a task running on top of our

FGDRA and communicating with another task running on a

different computing unit, for example a GPP. This case will

not be covered here as this problem concern the whole hetero-

geneous platform, not only the particular FGDRA computing

unit. The second case is when two, or more, tasks run on top of

the same FGDRA communicate together. This communication

channel should remain the same wherever the task is placed

on the FGDRA reconfigurable core and whatever state those

tasks are (running, pending, waiting, ...). That mean that the

FGDRA platform must provide a rationalized communication

medium including some sort of exchange memories.

The same arguments could also be applied to inputs/outputs.

Here again two cases exist. First the case of I/O being a global

resource of the whole platform. Secondly the case of special

I/O directly bound to the FGDRA.



Fig. 2. Global view of the FGDRA

B. Proposed solutions

Figure 2 show a global view of OLLAF, our original

FGDRA designed to support OS services as they have just

been specified.

In the center stand the reconfigurable logic core of the

FGDRA. This core is organized in columns, each column can

be reconfigured separately and offer the same set of services.

That means that a task use an integer number of columns. This

topology as been chosen for two reasons. First using a partial

reconfiguration by column transform the scheduling problem

into a two dimensional problem (time + 1D space) which will

be easier to handle in real time situations. Secondly as every

columns is the same and offer the same set of services, tasks

can be moved from one column to another without any change

on the configuration data.

In the figure, at the bottom of each column you can notice

two hardware blocs called CMU and HCM. The CMU as

said earlier is an IP able to manage automatically task’s

context saving and restoring. The HCM standing for Hardware

Configuration Manager is pretty much the same but to handle

configuration data also called bitstream. On each column a

local configuration/context memory is added. This memory

can be seen as a first level of cache memory to store contexts

and configurations close to the column where it might most

probably be required. The internal architecture of the core

provides adequate materials to work with CMU and HCM.

More about this will be discussed in the next section.

On the right of the figure stand a big bloc called ”HW

Sup + HW RTK + central memory”. This bloc contain a

classic microprocessor which serve as a hardware supervisor.

It runs a custom real time kernel specially adapted to handle

FGDRA related OS services and platform level communica-

tion services. Along with this hardware supervisor a central

memory is provided for OS use only. Basically this memory

will store configuration and eventual context of every task that

may run on the FGDRA. This supervisor communicates with

all columns using a dedicated control bus.

Finally, on top of the figure 2 you can see the applica-

tion communication medium. This communication medium

provides a communication port to each column. Those com-

Fig. 3. Basic reconfigurable tile

Fig. 4. Functional, task designer point of view of LE

munications ports will be directly bound to the reconfigurable

interconnection matrix of the core. If I/O had to be bound to

the FGDRA they would be connected with this communication

medium in the same way reconfigurable columns are.

IV. RECONFIGURABLE LOGIC CORE

FGDRA core could be considered with two points of view.

The first one is the functional point of view, it consists on the

information that a task designer may have to know in order to

design the task’s architecture. The second point of view is the

configuration point of view, it consists on information about

reconfiguration plane. As one of the main goals of the OS is

to abstract configuration management, this point of view could

be seen as the OS point of view.

A. conceiver point of view

The FGDRA core is composed of several basic tiles (figure

3). Each tile consist on a classic Logic Element and a Switch

Box. The switch box is in fact an elementary part of the

reconfiguration matrix. In other words the reconfiguration

matrix is build by connecting adjacent tile’s switch box. This

allow to easily generate a reconfigurable core of any desired

size.

Internal architecture of a LE in the functional point of view

can be seen on figure 4. This architecture integrates elements

that compose a classic Logic Element of FGDRA. The OS

point of view don’t impact the functional point of view and

if we want to modify the functional architecture, it should not

change our conclusion on OS point of view.

B. configuration point of view

In the configuration point of view only the configuration

plane will be discussed.

Each configuration memory point is at first modelized

as a flip flop. In order to perform reconfiguration they are

chained to form a scanpath. As configuration speed have to

be increased as much as possible our reconfigurable logic



Fig. 5. Configuration point of view of LE

core will use multiple parallel scanpath. As an example the

18 configuration memory points of one of our LE will be

each part of a different scanpath (16 for the 4bit LUT and

2 configurable inverter). That mean 18 parallel scanpaths for

each LE columns and then a reconfiguration time 18 times

shorter than with one unique scanpath. Those scanpaths are

not independent, they all share the same clock and control

signals. For that reason in the remaining of this section it will

be referred as a unique configuration scanpath, the path being

now a word, not a bit.

When a task is preempted, the context of this task must

be saved. During this process only the information stored in

the LE’s flipflops are required. For this reason LE’s flipflops

are connected to another totally independent scanpath. This

scanpath use a different clock and control signals.

Both configuration and context scanpath use equivalent

signals. Signals for the configuration scanpath use the CfS

prefix and context scanpath ones use the CS prefix. For each

scanpath there is basically three signal, one clock signal clk,

a mode selection signal rs, and the chain signal named in at

the input of a flip flop or a bloc and out at the output.

In order to even lower the configuration and context manag-

ing overhead, our reconfigurable logic core use a double mem-

ory plane. A configuration memory point is not one flipflop

but two flipflop with some switching material. Architecture of

this memory point can be seen on figure 7. Run and scan are

then no more two working mode but two parallel plane which

can be swapped as will. With this topology, configuration and

context of a task can be shifted while the previous task is still

running. The effective task switching overhead is then taken

downto one clock cycle.

Let’s consider that a task T1 is preempted to run another

task T2, scenario of task preemption is then as follow :

• T1 is running and the scheduler decide to preempt it to

run T2 instead

• T2’s configuration and eventually context is shifted on

the second configuration plane

• once the transfer is completed the two configurations

planes are swiched

• now T2 is running and T1’s context can be shifted out to

be saved

Fig. 6. Typical preemption scenario

This scenario is illustrated in figure 6.

The only constraint of this system is that scheduling deci-

sion have to be taken in advance in order to take advantage

of the dual configuration plane.

In OLLAF, both context and configuration transfers are

hidden due to the use of a dual configuration plane. The

latency L between the moment a preemption is asked and the

moment the new task effectively begin to run can also being

studied. This latency only depends on the size of the columns.

That means that for a given platform, it will be a constant. In

the worst case this latency will be far shorter than the OS

tick period. OS tick period being the shortest time in which

the system can respond to an event, we can consider that this

latency will not affect the system at all under normal operation.

In the case of an interruption, would then be perceptible. It

hasn’tbeen measured yet but we can say that this latency will

be fully determined for a given platform. In an extreme case, a

task that should respond immediately to a specific event should

be run as a critical section so that it will be always active.

C. Results

During our past works on preemption for FGDRA, we used

a fixed coefficient seventh order FIR as test application. We

then want to compare the estimated time overhead of a task

preemption using our new FGDRA with the one obtained

using our old context management scheme and a Xilinx ICAP

interface. In order to make the comparison possible we will

consider a 128x1 tiles column, our FIR architecture using

128 LEs. Each tile use 100bits of configuration memory. To

reconfigure a 128 tiles column we thus need 12800bits. The

context of the task is composed by 128bits. To perform the

preemption we need to save the context of the preempted task

and then to restore the one of the new task we want to run.

We thus have to transfer 256 context bits. The Xilinx ICAP

interface have a throughput of 32bits per clock cycle while

using CSB for context transfer a throughput of one bit per

clock cycle is performed. Using our FGDRA both operation

can be performed at the same time and the switching time cost

is always of one clock cycle. Using those estimated data, the

comparison between those two solution are shown in the table

I.

V. CONFIGURATION, PREEMPTION AND OS INTERACTION

In previous section an architectural view of our FGDRA has

been exposed. In this section, impacts this architecture will



ICAP + CSB our FGDRA

Context transfer 128 × 2 1
Configuration 400 -

Total task switching 656 1

TABLE I

ESTIMATED COMPARISON OF TASK PREEMPTION OVERHEAD USING OUR

NEW FGDRA OR A XILINX ICAP INTERFACE AND OUR OLD CSB

CONTEXT TRANSFER METHOD. (GIVEN IN CLOCK CYCLE)

Fig. 7. Dual plane memory point

have on OS services will be discussed. We will here consider

the three service most specifically related to the FGDRA.

First, the configuration management service. On the hard-

ware side, each column provides a hardware configuration

manager and an associated local memory. As stated earlier that

mean that configurations have to be placed in advance in the

local configuration memory. The associated service running on

the hardware supervisor micro-processor will thus need to take

that into account. That imply that this service must manage

some sort of intelligent cache to prefetch task configuration

on the columns where it might most probably be placed. In

order to do so, some sort of anticipated scheduling must be

performed.

Secondly, the preemption service. The same principle must

be applicable here as those applied for configuration manage-

ment. Except that contexts also have to be saved. The context

management service must ensure that it never exist more than

one context for each task in the entire FGDRA. Context must

thus be transferred as soon as possible from local context

memory to the centralized global memory of the hardware

supervisor. This service will also have a big impact on the

scheduling service as the ability to perform preemption with a

very low overhead allow the use of more flexible scheduling

algorithms.

And last the scheduling service and in particular the space

management part of the scheduling. It takes advantage of

the column topology and of the centralized communication

scheme. As stated, fewer computing power will be required to

manage a one dimensional space at run time. The problem is

here similar to memory management in classical GPP based

system. The reconfigurable resource could then be managed as

a virtual infinite space containing an undetermined number of

columns. The job is then to dynamically map the required set

of columns (task) into the real space (the actual reconfigurable

logic core of the FGDRA).

VI. CONCLUSION AND PERSPECTIVES

A global view of OLLAF, an original FGDRA that enhance

OS service support has been presented, and in more details

its reconfigurable logic core. We claim that OS and platform

must be closely linked to each others in order to perform as

optimally as possible.

We showed that this architecture can enhance the pre-

emption efficiency and ease task relocation. Thanks to that,

both time and space scheduling complexity can be drastically

reduced. The operating system should then be able to run those

services efficiently at run time under real time constraints.

Today, the reconfigurable logic core have been modelized

using VHDL and is being tested by several simulations. The

rest of the FGDRA is also in progress. The dedicated custom

OS service are being written as an extension of µC/OS-II,

a well proven real time OS. We are also working on the

distributed management of the whole heterogeneous system

including, at least, one of our FGDRA and its dedicated real

time kernel, and one GPP.
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