
HAL Id: hal-00665805
https://hal.science/hal-00665805v1

Submitted on 2 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OLLAF : a Fine Grained Dynamically Reconfigurable
Architecture for OS Support

Samuel Garcia, Bertrand Granado

To cite this version:
Samuel Garcia, Bertrand Granado. OLLAF : a Fine Grained Dynamically Reconfigurable Architecture
for OS Support. Workshop on Design and Architectures for Signal end Image Processing, Nov 2008,
Belgium. pp.1. �hal-00665805�

https://hal.science/hal-00665805v1
https://hal.archives-ouvertes.fr


OLLAF : a Fine Grained Dynamically

Reconfigurable Architecture for OS Support

Samuel GARCIA and Bertrand GRANADO

ENSEA - ETIS

95014 CERGY, France

email: samuel.garcia@ensea.fr,

bertrand.granado@ensea.fr

Abstract— In the context of large versatile platform for em-
bedded real time system on chip, a fine grained dynamically
reconfigurable architecture could be used as one possible com-
putational resource. In order to manage efficiently this resource
we need a specific OS kernel able to manage such a hardware
adaptable architecture. Both the history of micro-processor based
system and our previous work based on currently available FPGA
devices led us to think that not only an OS kernel must be defined
to handle an FGDRA but a FGDRA must also be designed to
handle this OS kernel. This article relate our original work in
this direction. OLLAF1, an original FGDRA core that we have
designed will be presented. A comparison with other methods
used today using commercially available FPGA is also presented
concerning the particular preemption service.

I. INTRODUCTION

This work takes place in the SMILE project. This project

aims at provide a distributed middle layer to efficiently handle

the complexity of a tomorrow’s RSoC2. This system may

contains several computing units of different types. It will

embed at least one or more General Purpose Processor (GPP),

but also dynamically reconfigurable architectures (DRA) at

different granularities and especialy FGDRA3. Tomorrow’s

computing systems has to comply with lots of constraints.

Those constraints may be time related, to meet real time

requirements, but also power consumption constraints, as it

is, and will be more and more, one of the primary concern of

electronical devices.

By fine grained, we here means an architecture which is

reconfigurable at the bit level. A dynamically reconfigurable

architecture, using single bit LUT and flipflop, and providing

a bit level reconfigurable interconnection matrix, as the one

presented here, or basic logic fabric of most commercial

FPGA, are examples of FGDRA. Those kind of architecture

can be adapted to any application more optimally than a

coarser grain DRA. This feature make them today the platform

of choice when it comes to handle computational tasks in a

highly constrained context.

In more general terms FGDRA can achieves much better

efficiency than GPP does, while offering the same versatility

and, potentially, a very close flexibility. The counterpart is that

1Operating system enabled Low LAtency Fgdra
2Reconfigurable System on Chip
3Fine Grained Dynamically Reconfigurable Architecture

Fig. 1. Basic view of a RSoC in SMILE

it introduces a much greater complexity for application design-

ers. This complexity could be lowered to an acceptable level

in two ways. First by providing powerful CAD tool. Lots of

research are thus led in the field of high level synthesis [1]. The

second way is to abstract the system complexity by providing a

middle layer, e.g an operating system, that abstracts the lower

level of the system [2]. Moreover, an OS could manage new

tasks at run time. This property is a feature of importance for

DRA. For all those reasons, a specialized operating system is

required for FGDRA.

In our work we make a difference between a FGDRA, which

is a general term, and a FPGA which, for us, relate to an actual

silicon device sold under this designation and which can be

used as a FGDRA but is actually not designed especialy thor

that purpose.

The SMILE project follows a distributed approach of the

system. Each computing unit of a RSoC (GPP, DSP, DRA,

...) has its own real time kernel. This topology allows to use a

specific custom made real time kernel for each computing unit.

It then allows to take into account every specificities of each

computing unit. A message passing communication scheme,

based on MPI4, ensure a consistent operation of the whole

system. In this frame of mind, we developed a dedicated real

time kernel for a FGDRA.

This kernel is an adaptation to FGDRA of an abstract OS

4Message Passing Interface



model which could be described as follow :

• it manages the execution of a set of task on a given

versatile computational ressource. More concreatly it will

run periodically a special algorithm to evaluate where and

when to run each tasks. This period is called Tick and

is a tradeoff between efficiency and flexibility, a typical

value in classical OS is tens of milliseconds.

• it offers an abstracted view of the platform to the task

designer. In other terms, each task can be designed

without worrying about other tasks and sometimes even

about the platform. It then offers a standardized set

of services such as communications or synchronizations

between tasks.

This model slightly differs from most OS implementation

proposed for FPGA management even if the overall idea

remain the same.

Both the history of micro-processor based system and our

previous work based on currently available FPGA devices led

us to think that not only an OS kernel must be conceived

to handle a FGDRA, but a FGDRA must also be designed

to support efficiently this OS kernel. This article relate our

original works in this direction. The FGDRA core that we

have designed will be presented as well as a more general

view of our approach of a FGDRA and its related OS kernel.

This paper is organized as follows. Section 2 discuss of

related works in the field of OS for FGDRA. Section 3 explains

our original FGDRA platform proposition named OLLAF.

Section 4 discuss more precisely of the context management

scheme and its extention to configuration management. Sec-

tion 5 explains how our architecture can affect different OS

services. Section 6 exposes an analytic comparison between

OLLAF and other methods used todays in terms of preemption

overhead and efficiency. Finally, conclusions are drawn in

section 7.

II. RELATED WORK

A. OS for FGDRA

Several research have been led in the field of OS for

FGDRA[3], [4], [5], [6]. All those studies present an OS more

or less customized to enable specific FGDRA related services.

Example of such services are : partial reconfiguration manage-

ment, hardware task preemption or hardware task migration.

They are all designed on top of a platform composed of a

commercial FPGA and a micro-processor. This microprocessor

may be a softcore processor, an embedded hardwired core or

even an external processor.

In the 90’s, some works have also been published about the

design of a specific architecture for dynamical reconfiguration.

In [7] authors discuss about the first multi-context reconfig-

urable device. This concept as been implemented by NEC on

the Dynamically Reconfigurable Logic Engine (DRLE) [8].

At the same period, the concept of DPGA was introduced, it

was also proposed in [9] to implement a DPGA in the same

die as a classic microprocessor to form one of the first SoC

including dynamically reconfigurable logic. In 1995, Xilinx

even applied a patent on multi-context programmable device

proposed as an XC4000E FPGA with multiple configuration

planes [10].

More recently, in [11], authors propose to add special

material to a DRA to support OS services, they worked on

top of a classic FPGA.

The work presented in this paper try to take advantage

of those previous work both about hardware reconfigurable

platform and OS for FGDRA.

B. previous work

Our first work on OS for FGDRA was related to preemption

of hardware task on FPGA[12]. For that purpose we explored

the use of a scanpath at the task level. In order to accelerate the

context transfer we explore the possibility of using multiple

parallels scanpaths. We also provided the Context Management

Unit or CMU, which is a small IP capable to manage the whole

process of saving and restoring tasks contexts.

In that study both the CMU and the scanpath were build to

be implemented on top of any available commercial FPGA.

This approach showed number of limitations. They could be

summarized in this way: implementing this kind of OS related

material on top of the existing DRA introduce unacceptable

overhead on both the task and the OS service. Differently said,

most of OS related material should be as much as possible

hardwired into the platform’s architecture.

III. OLLAF : GENERAL OVERVIEW

A. Specifications of a FGDRA with OS support

We have designed a FGDRA with OS support following

those specifications.

It should first address the problem of the configuration speed

of a task. This is one of the primary concerns because if the

system spend more time configuring itself than actually run-

ning tasks, then its efficiency will be poor. The configuration

speed will thus have a big impact on the scheduling strategy.

In order to enable more choice on scheduling scheme, and

to match some real time requirement, our FGDRA platform

must also include preemption facilities. For the same reasons

than configuration, the speed of context saving and restoring

process will be one of our primary concerns. On this particular

point, previous work we have discussed in section 2 will be

adapted and reused.

Scheduling on a single GPP system is just a matter of time.

The problem is to distribute the computation time between

different tasks. In the case of a DRA the system must distribute

both computation time and computation resources. Scheduling

in such a system is then no more a one dimensional problem,

but a three dimensional one. One dimension is the time and

the two others are the surface of reconfigurable resources.

Performing such a scheduling at run time with real time

constraints is at this stage not conceivable. But the FGDRA

should help getting close to that goal. The primary concern

on this subject is to ensure an easy task relocation. For that,

the reconfigurable logic core should be splited into several

equivalent blocks. This will allow to move a task from a block



Fig. 2. Global view of the FGDRA

to any another block or from a group of blocks to another

group of blocks of the same size and the same form factor

without any change on the configuration data. The size of those

blocks would be a tradeof between flexibility and scheduling

efficiency.

Another aspect of an operating system is to provide inter

task communication services. In our case we will distinguish

two cases. First the case of a task running on top of our

FGDRA and communicating with another task running on a

different computing unit, for example a GPP. This case will

not be covered here as this problem concern the whole hetero-

geneous platform, not only the particular FGDRA computing

unit. The second case is when two, or more, tasks run on top of

the same FGDRA communicate together. This communication

channel should remain the same wherever the task is placed

on the FGDRA reconfigurable core and whatever state those

tasks are (running, pending, waiting, ...). That mean that the

FGDRA platform must provide a rationalized communication

medium including some sort of exchange memories.

The same arguments could also be applied to inputs/outputs.

Here again two cases exist. First the case of I/O being a global

resource of the whole platform. Secondly the case of special

I/O directly bound to the FGDRA.

B. Proposed solutions

Figure 2 show a global view of OLLAF, our original

FGDRA designed to support OS sevices as they have just

been specified.

In the center stand the reconfigurable logic core of the

FGDRA. This core is organized in columns, each column can

be reconfigured separately and offer the same set of services.

That means that a task uses an integer number of columns.

This topology as been chosen for two reasons. First using a

partial reconfiguration by column transforms the scheduling

problem into a two dimensional problem (time + 1D space)

which will be easier to handle in real time situations. Secondly

as every columns is the same and offers the same set of

services, tasks can be moved from one column to another

without any change on the configuration data.

In the figure, at the bottom of each column you can notice

two hardware blocks called CMU and HCM. The CMU as

said earlier is an IP able to manage automatically task’s

context saving and restoring. The HCM standing for Hardware

Configuration Manager is pretty much the same but to handle

configuration data also called bitstream. On each column a

local configuration/context memory is added. This memory

can be seen as a first level of cache memory to store contexts

and configurations close to the column where it might most

probably be required. The internal architecture of the core

provides adequate materials to work with CMU and HCM.

More about this will be discussed in the next section.

On the right of the figure stands a big block called ”HW

Sup + HW RTK + central memory”. This block contain a

classic microprocessor which serves as a hardware supervisor.

It runs a custom real time kernel specially adapted to handle

FGDRA related OS services and platform level communica-

tion services. Along with this hardware supervisor a central

memory is provided for OS use only. Basically this memory

will store configuration and eventual context of every task that

may run on the FGDRA. This supervisor communicates with

all columns using a dedicated control bus.

Finally, on top of the figure 2 you can see the applica-

tion communication medium. This communication medium

provides a communication port to each column. Those com-

munications ports will be directly bound to the reconfigurable

interconnection matrix of the core. If I/O had to be bound to

the FGDRA they would be connected with this communication

medium in the same way reconfigurable columns are.

C. Logic core overview

In order to make the description of the FGDRA core more

understandable, we will here split its functionalities between

two points of view. The first one is the functional point of

view, it consists on the information that a task designer may

have to know in order to design the architecture. The second

point of view is the configuration point of view, it consists on

information about reconfiguration plane. As one of the main

goals of the OS is to abstract configuration management, this

point of view could be seen as the OS point of view.

Internal architecture of a LE in the functional point of view

can be seen on figure 3. This architecture integrates elements

that compose a classic Logic Element of FGDRA. If we want

to improve functional architecture, it should not change our

conclusion on configuration point of view.

A multiplexor based interconnect as been choosen instead of

the passing MOS transistor used in most commercial FPGA. In

this way we can lower the number of configuration bit required

to allow the same connection flexibility. In this last intercon-

nection scheme, the number of configuration bit grow linearly

with interconnection possibility while using multiplexor makes

it grow as a log2 function.

At first, configuration memory points are modellized as

a D flip-flop. This allow us to rapidly apply our works on

context management to configuration management. However,

configuration and context management remains two separate

path, a context swap can be performed without any change



Fig. 3. Functional, task designer point of view of LE

Fig. 4. Dual plane memory point

in configuration. This can be interesting for checkpointing or

when more than one instance of the same task runnning.

IV. CONTEXT MANAGEMENT SCHEME

In [12] we proposed a context management scheme based

on a scanpath, a local context memory and the CMU which is

a small IP capable of managing automatically context transfer

between the scanpath and the local memory. The context

management scheme in OLLAF is slightly different in two

ways. First, every context management related material is hard

wired into the platform. Secondly, we added two more stage

in order to even lower preemption overhead and to ensure the

consistency of the system.

As context management materials are added at platform

level and no more at task level, it needed to be splited

differently. As the Programable Logic Core is column based, it

was then natural to implement context management at columns

level. A CMU and a local memory have then been added to

each column, and one scanpath is provided for each column’s

set of flipflops.

In order to lower preemption overhead, our reconfigurable

logic core use a double memory plane. Flipflops used in

LE are thus replaced with two FF with switching material.

Architecture of this double plane FF can be seen on figure

4. Run and scan are then no more two working modes but

two parallel planes which can be swapped as will. With this

topology, the context of a task can be shifted in while the

previous task is still running and shifted out while the next

one is already running. The effective task switching overhead

is then taken down to one clock cycle as illustrated in figure

6.

Contexts are transfered by the CMU into Local Context

Memories using this hidden scanpath. Because the context

of every column can be transfered in parallel, Local Context

Memories are placed at column level. It is particularly usefull

when task use more than one column. Those memories can

contain at this stage 10 contexts. They can be seen as local

cache memories to optimize access to a bigger memory called

the Central Context Repository.

Fig. 5. Context memories hierarchy

The Central Context Repository is a large memory space

storing the context of each task instance run by the system.

Local Context Memories should then store contexts of tasks

who are most likely to be the next to be ran on the corre-

sponding column.

After a preemption of the corresponding task, a context can

be stored in more than one LCM in addition to the copy stored

in the Central Context Repository. In such situation, care must

be taken to ensure the consistency of the task execution. For

that purpose, contexts are tagged by the CMU each time

a context saving is performed with a version number. The

operating system keep tracks of this version number and also

increment it each time a context saving is performed. In this

way the system can then check for the validity of a context

before a context restoration. The system must also try to update

the context copy in the CCR as short as possible after a context

saving is performed.

Dual Plan Scanpath, Local Context Memory and Central

Context Repository form a complex memory hierarchy spe-

cially designed to optimize preemption overhead. The same

memory scheme is also used for configuration management

except configuration do not change during execution so it does

not need to be saved and then no versioning control is required

here. The programmable logic core use a dual configuration

plane equivalent to the Dual Plane Scanpath used for context.

Each column has a Hardware Configuration Manager which is

a simplified version of the CMU (without saving mechanism).

A Local Configuration Memory is provided besside Local

Context Memory, the name LCM is used as in figure 3 to

relate to both those memories. In the same way, the CCR can

refer to Central Context/Configuration Repository.

In best case, preemption overhead can then be bound to one

clock cycle.

A scenario of a typical preemption is presented here. In this

scenario we consider the case where context and configuration

of both task are already stored into the right LCM. Let’s

consider that a task T1 is preempted to run another task T2,

scenario of task preemption is then as follow :

• T1 is running and the scheduler decide to preempt it to

run T2 instead

• T2’s configuration and eventually context is shifted on

the second configuration plane



Fig. 6. Typical preemption scenario

• once the transfer is completed the two configurations

planes are switched

• now T2 is running and T1’s context can be shifted out to

be saved

• T1’s context is updated as soon as possible in the CCR

This scenario is illustrated in figure 6.

This is the case when both context and configuration of

T2 are already stored into LCM. That means that, in order to

have this favorable case, we need an anticipated scheduling to

manage our Context/Configuration Memories Hierarchy as a

smart cache.

V. CONFIGURATION, PREEMPTION AND OS INTERACTION

In previous sections an architectural view of our FGDRA

has been exposed. In this section, we discuss about the impact

of this architecture on OS services. We will here consider the

three services most specifically related to the FGDRA.

First, the configuration management service. On the hard-

ware side, each column provides a hardware configuration

manager and an associated local memory. As stated earlier that

mean that configurations have to be placed in advance in the

local configuration memory. The associated service running on

the hardware supervisor micro-processor will thus need to take

that into account. That imply that this service must manage an

intelligent cache to prefetch task configuration on the columns

where it might most probably be placed. In order to do so, an

anticipated scheduling must be performed.

Secondly, the preemption service. The same principle must

be applicable here as those applied for configuration manage-

ment. Except that contexts also have to be saved. The context

management service must ensure that it never exist more than

one valid context for each task in the entire FGDRA. Context

must thus be transferred as soon as possible from local context

memory to the centralized global memory of the hardware

supervisor. This service will also have a big impact on the

scheduling service as the ability to perform preemption with a

very low overhead allow the use of more flexible scheduling

algorithms.

And last the scheduling service and in particular the space

management part of the scheduling. It takes advantage of

the column topology and of the centralized communication

scheme. As stated, fewer computing power will be required to

manage a one dimensional space at run time. The problem is

here similar to memory management in classical GPP based

system. The reconfigurable resource could then be managed as

a virtual infinite space containing an undetermined number of

columns. The job is then to dynamically map the required set

of columns (task) into the real space (the actual reconfigurable

logic core of the FGDRA).

VI. PREEMPTION COST COMPARISON

This section present an analytic comparison of preemption

efficiency in OLLAF and other solution from past works or

literature. We will here consider six methods :

• XIL

a solution based on the xilinx XAPP290 [13] using ICAP

to transfer both context and configuration and using the

readback bitstream for context extraction.

• Scan

a solution using a simple scanpath for context transfer as

described in both [14] and [12], and using ICAP interface

for configuration.

• PCS8

is similar to Scan solution but using 8 parallel scanpath

as described in [12].

• DPScan

use a dual plane scanpath similar to the one used in

OLLAF for context and ICAP for configuration. This

method is also studied in [14], referred as a shadow Scan

Chain.

• MM

use once again ICAP for configuration and the memory

mapped solution proposed in [14].

• OLLAF

this last solution being the use of separate, column

distributed, dual plane scanpath for configuration and

context as proposed in this article.

In this study we consider two parameter. The preemption

overhead H is the cost of a preemption for the system in

terms of time. The efficiency of preemption process λ is then

λ = 1−
H

P
with P is the minimum period at which preemption

occurs so in our case P is the clock tick of the operating

system. In this study we use a typical clock tick of 10ms. In

order to focus on the architectural view only all times will be

expressed and estimated in number of clock cycle. Assuming

a typical clock frequency of 100MHz the OS tick is 106tclk.

Task sizes will be expressed as n, the number of flipflop used.

The time cost of a preemption take into account two context

transfers and one configuration transfer.

Analytic expression of H for each case are estimated as

follow :

• XIL

In [14] authors estimate that bitstream contain 20 times

more data than context related data so the bitstream of

a task of size n is approximately 21n. Assuming that

it use a 32bits width access bus, the ICAP interface

can transfers 32bits per clock cycle. In the same article,

authors estimate that it takes 20clock cycles to extract

each context bit from the readback bitstream.

H =
21n

32
+

21n

32
+ 20n ≃ 21.3n (1)



XIL Scan PCS8 DPScan MM OLLAF

H (tclk) 15188 1897 642 472 492 1

λ 98.4% 99.8% 99.94% 99.95% 99.95% 1 − 10−6
≃ 100%

TABLE I

COMPARISON OF TASK PREEMPTION OVERHEAD AND EFFICIENCY FOR 713FF TASK

XIL Scan PCS8 DPScan MM OLLAF

H (tclk) 21.3×106 2.66×106 900×103 660×103 690×103 1
λ -2030% -166% 10% 34% 31% ≃ 100%

TABLE II

COMPARISON OF TASK PREEMPTION OVERHEAD AND EFFICIENCY FOR A WHOLE 1MFF FGDRA

• Scan

Using a simple scanpath for context transfer requires 1

clock cycle per flipflop for each transfer.

H =
21n

32
+ 2n ≃ 2.66n (2)

• PCS8

Using 8 parallel scanpath it requires 1 clock cycle for 8

flipflops.

H =
21n

32
+

2n

8
≃ 0.9n (3)

• DPScan

Using a double plane scanpath, the context transfers can

be hidden, the cost of those transfer is then always 1

clock cycle.

H =
21n

32
+ 1 ≃ 0.66n + 1 (4)

• MM

Using 32 bits memory access, this case is similar to the

PCS8 but using 32 parallel paths instead of 8.

H =
21n

32
+

2n

32
≃ 0.69n (5)

• OLLAF

In OLLAF, both context and configuration transfer are

hidden so the total cost of the preemption is always 1

clock cycle whatever the size of the task.

H = 1 (6)

In order to make a concrete case comparison, we will

consider two task T1 and T2. We consider a DES56 cryp-

tographic IP that requires 862 flipflops, and a 16tap FIR filter

that requires 563 flipflop. Both of those IPs can be found in

www.opencores.org. To ease the computation we will consider

two task using the average number of flipflop of the two

considered IP. So for T1 and T2 we got n =
862+563

2
≃ 713.

Table I show the overhead H and the efficiency λ for each

method presented.

Those results show that in this case, using our method leads

to a preemption overhead around 500 times smaller than the

bests others cases.

If we now consider that not only one task is preempted but

the whole FGDRA, assuming a 1 Million LE’s logic core,

estimation of overhead and efficiency for each method are

shown in table II. Those results show clearly the benefit of

OLLAF platform over actual FPGA concerning preemption.

Using actual methods, preemption overhead is linearly depen-

dant on the size of the task. In OLLAF, this overhead do not

depends on the size of the task and is always of only one clock

cycle.

In OLLAF, both context and configuration transfers are

hidden due to the use of a dual configuration plane. The

latency L between the moment a preemption is asked and the

moment the new task effectively begin to run can also being

studied. This latency only depends on the size of the columns.

That means that for a given platform, it will be a constant. In

the worst case this latency will be far shorter than the OS tick

period. OS tick period being in any case the shortest time in

which the system can respond to an event, we can consider

that this latency will not affect the system at all.

VII. CONCLUSION AND PERSPECTIVES

A global view of OLLAF, a FGDRA that enhance OS

service support has been presented, and in more details its

reconfigurable logic core. We claim that OS and platform

must be closely linked to each others in order to perform as

optimally as possible.

In this paper we presented in more details our context

management scheme and its extention to configuration man-

agement. It has been shown that this scheme permit a far better

preemption efficiency than other methods in use today.

Today, the reconfigurable logic core have been designed and

is being tested by several simulations. The rest of the FGDRA

is also in progress. The dedicated custom OS services are

written as an extension of µC/OS-II, a well proven real time

OS. We are also working on the distributed management of

the whole heterogeneous system including, at least, one of our

FGDRA and its dedicated real time kernel, and one GPP.

REFERENCES

[1] P. Coussy, G. Corre, P. Bomel, E. Senn, and E. Martin, “High-level
synthesis under i/o timing and memory constraints,” in Proceeding of
IEEE International Symposium on Circuits and Systems (ISCAS), 2005.



[2] Q. Deng, S. Wei, H. Xu, Y. Han, and G. Yu, “A Reconfigurable RTOS
with HW/SW Co-scheduling for SOPC,” in International Conference on
Embedded Software and Systems (ICESS), 2005, pp. 116–121.

[3] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA
Coprocessors.” in Field Programmable Logic and its Applications (FPL),
ser. Lecture Notes in Computer Science, no. 1896, 2000, pp. 121–130.

[4] G. Chen, M. Kandemir, and U. Sezer, “Configuration-Sensitive Pro-
cess Scheduling for FPGA-Based Computing Platforms.” in Design
Automation and Test in Europe (DATE), 2004, pp. 486–493.

[5] H. Walder and M. Platzner, “Reconfigurable Hardware Operating
Systems: From Design Concepts to Realizations,” in Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2003, pp. 284–287.

[6] G. Wigley, D. Kearney, and D. Warren, “Introducing reconfigme: An
operating system for reconfigurable computing,” in Conference on Field
Programmable Logic and Application, September 2-4 2002.

[7] X. ping Ling and H. Amano, “Wasmii : a data driven computer on
virtuel hardware,” in IEEE workshop on FPGAs for custom computing
machines, 1993.

[8] Y. Shibata and al., “A virtual hardware system on a dynamically
reconfigurable logic device,” in IEEE symposiunm on FPGAs for custom
cmputing machines, 2000.

[9] A. DeHon, “Dpga-coupled microprocessors : Commodity ics for the
early 21st century,” in IEEE Workshop on FPGAs for custom computing
machines, 1994.

[10] Xilinx, “Time multiplexed programmable logic device,” Patent
no.5646545, 1997.

[11] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an Operating System for a Heterogeneous Reconfigurable
SoC,” in International Parallel and Distributed Processing Symposium
(IPDPS), 2003, p. 174a.

[12] S. Garcia, J. Prevotet, and B. Granado, “Hardware task context man-
agement for fine grained dynamically reconfigurable architecture,” in
Workshop on Design and Architectures for Signal and Image Processing
(DASIP), 2007.

[13] Xilinx, “Two flows for partial reconfiguration: Module based or differ-
ence based,” Xilinx, Application Note, 2004, application Note: Virtex,
Virtex-E, Virtex-II, Virtex-II Pro Families XAPP290 (v1.2) September
9, 2004.

[14] D. Koch, C. Haubelt, and J. Teich, “Efficient hardware checkpoint-
ing - concepts, overhead analysis, and implementation,” in Field
Programmable Logic and its Applications (FPL), 2007.


