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Abstract— Today’s FGDRA! could now be regarded, not
only as prototyping platforms, but also as reliable alternative
to ASICs for consumers products production platforms. To deal
with such a system, we propose a middleware layer (RTOS)
named SMILE, which could manage not only software process
but also hardware tasks running on an FGDRA. Preemption
issues for hardware tasks on such a system will be treated,
introducing the concept of PDR-SoC?. In this paper, our work
on hardware FGDRA based task contexts, its management and
its evaluation, is exposed.

I. Introduction

The idea of reconfigurable computing has been intro-
duced by Gerald Estrin in [1] in 1960. More recently,
popularization of FPGA technologies as brought the
subject on the foreground of today’s research themes.
The application field of this concept is very large, it goes
from HPC? [2], [3], [4] to embedded SoC [5], [6] including
telecommunication systems [7]. Several research have been
led on this subject, some using fine grained reconfigurable
platforms like FPGA [8], [9], [10], others using coarse
grained reconfigurable platform [11], [12].

With the latest platform FPGA generation that inte-
grate hardwired CPU core with the ability to manage the
FPGA logic array’s configuration (ex : Virtex IT pro), the
concept of PDR-SoC could now be a reality.

But today, most of time, DRAs? are considered as
hardware accelerator for very specific tasks, like video
encoding as an example. One of the keypoint of our
project is that we consider a DRA as a full-fledged
computational resource along with CPUs or DSPs. Several
experimentation have shown that a fine grained DRA,
like an FPGA, can perform any algorithm. Moreover, for
any algorithm we can build an optimized architecture
running on a FGDRA. In this context, a FGDRA may
be seen as a general purpose computing device as well as
a microprocessor or a DSP.

IFGDRA : Fine Grained Dynamically Reconfigurable Architecture
, the most known being FPGAs

2PDRSoC : Preemptive Dynamically Reconfigurable System on
Chip

SHPC : High Performance Computing

4DRA : Dynamically Reconfigurable Architecture
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From this point of view, it is obvious that dynamical
reconfiguration gives a better versatility to a FGDRA and
that an operating system is required to manage the system
optimally.

The SMILE project, in which this work take place,
aim at developing a distributed RTOS kernel which is
able to manage a whole DR-SoC including FGDRAs. The
FGDRA’s kernel must handle any algorithm and thus
require preemption ability.

The main challenge of preemption being context man-
agement, the present article relates our work on this
particular subject. After brief theoretical considerations
about hardware task context on fine grained DRA and
a short state of the art on the subject, a solution called
CSB and several original improvements we made to this
method will be presented.

II. Concept of hardware task’s context

From a previous study led in our laboratory for the
SMILE project, we were able to define what hardware
task context exactly is. A task context, in the general
case, relates to all the informations that must be saved to
continue this task after an interruption, without modifying
its work. In the case of a hardware task, this concept
needed to be defined.

According to the Huffman model a synchronous ar-
chitecture consists of several flip-flops (registers) and
combinatorial logic blocks. For combinatorial parts, for
each input vector we will always get a unique output
result, so that for a totally combinatorial task, we do not
need to save anything.

In case of a sequential task, the output result depends
not only on the input signals, but also on the current state
of the system. The current state of a system relates not
only on the current control state but also on the current
value of variables. This current state thus need to be saved
and then restored to be able to stop a hardware task at any
time, without any data corruption. Although this current
state is defined by both registers and memories, we will
focus only on the registers, considering that memory’s
issues could be managed by some kind of MMU as it’s
often performed in micro-processor based system.



The hardware task’s context can thus be defined as the
entire set of information memorized by all the flip-flops
that compose this task.

III. State of the art

This section mainly summarizes the survey of the IRISA
lab about hardware preemption on FPGAJ[13].

A. Bitstream based solution[14], [15], [16]

This method consists on reading back the configu-
ration bitstream of the FPGA as it contain all data
we want to save. The bitstream transfer can use either
the FPGA JTAG chain or a parallel interface such as
the SelectMAP/ICAP interface on Virtex Family. But
this method presents a lots of drawbacks in both cases,
especially for the saving process.

The first drawback is due to the fact that the useful
information is scattered among a large quantity of data.
So that a lot of useless information must be transferred
and the task context must still be extracted from it.

The second drawback is that the structure of this
bitstream varies from one FPGA’s family to another.
Moreover, the read back bitstream is not the same than the
configuration bitstream, and not all FPGA family support
a read back process.

B. Ad-Hoc solution[17], [18]

This method consists in providing a predefined interface
to the application designer (API®), the designer must then
take context management of his application into account
in respect of the given APIL.

These methods can not be used here as our goal is to
simplify the design process of an application, and not to
make it more complex. We cannot then relieve us of a
hard job on the application designer.

C. Scanpath based solutions

This method is inspired by circuit testing. It consists
on providing additional logic to all flip-flops of the design,
allowing both a 'normal’ running mode and a ’scan’ mode.
During the scan mode, all flip-flops are chained to build a
shift register. We then just need to shift as many bits as
there are flip-flops in the design, to read or to write the
required information.

This method has many advantages :

o First, it can be easily implemented directly into any
existing FPGA just using an HDL definition of special
flip-flop. It is thus an universal method.

o Secondly, modifications that must be attempted to
a standard design to make it into a preemptable
task in a system based on this method can be easily
automated.

But this method has also some drawbacks. It introduces
overheads in both size and maximum speed of the task
and most of all it suffers of poor transfer speed. In this
article this last point is addressed.

5API : Application Programmer Interface
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IV. Retained solutions and Implementation
A. Scanpath

Taking into account all that we have just seen in the
preceding section, we have chosen to concentrate on the
use of a scanpath. As we wanted to be able to test different
kinds of chainable flipflop, we chosen to work at the lowest
possible level.

A previous study has been performed in our lab about
hardware task’s context saving, that use the JTAG Bound-
ary Scan bus for context transfer. From this previous
study, it comes out that the use of the JTAG’s Boundary
Scan standard increased in an useless manner both data
transfer and the surface occupied in the FGDRA. Indeed,
each flip-flop having to be doubled, the size of the
application was also doubled. Although this experiment
validated the use of a scanpath to save and restore an
hardware context from a functional point of view, it
appeared that there was some weaknesses in this system.

A solution consisted in putting aside the JTAG protocol
and preserving only the scanpath to reduce at the same
time the configuration sequencer, which does not have to
manage JTAG protocol any more and the transfer since
all the protocol part is removed.

B. CSB

The main idea of our preemption scanpath is to modify
chainable flip-flops to minimize both occupied surface and
the number of control signals. We have then introduced
the CSB®. Whereas previously set up JTAG chainable
flip-flops were each made up of three multiplexers, two
flip-flops and a combinatorial block, the new CSB flip-
flops only require one flipflop and one multiplexer as it
can be seen on (fig. 1). Moreover, the old design required
five additional control signals versus one for the new one,
thus simplifying drastically the place&route process. We
just had to this a global clock multiplexer in order to be
able of using a different clock frequency in run mode.

The question of the relative slowness of the transmission
still remains. To circumvent this issue, two approaches
have been considered :

o first saving the contexts of the various hardware
tasks, directly into internals ram blocks(eg: BRAM
in FPGA). In this way, the operating frequency of
our scanpath can be maximized. The transfer time of
a context by a scanpath being directly related to its
working frequency, this enables to save time.

« secondly using several scanpath working simultane-
ously. Memories often requiring an 8bit data access,

6CSB : Configuration Scan Bus
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CMU register

we have chosen to use an 8 scanpath architecture
called PCS87.

C. CMU with embedded Block RAM

Finally, a configuration controller allowing to save or
to restore a given context on request have been defined
and implemented. This sequencer is directly linked with
a BRAM memory thus forming a complete context man-
agement block called CMUS®. Using an external internal
BRAM permits to maximize the working frequency of the
CMU as it only require internal signals which are quicker
than external ones. Moreover, this topology authorizes to
place the memory close to the sequencer resulting in a
shorter critical path.

This CMU can be directly controlled using a single 16
bits register that can be accessed by a standard micro-
processor bus. This register contains four fields, “nb”
to specify the number of shift required, “CID” which
identifies the context that we want to save/restore, “S/R”
to choose whether we want to save or restore the context,
and a “run” bit that must be set to 1 to begin the transfer.
This bit gets back to 0 automatically when the transfer
is completed. This configuration allow to deal with 16
tasks of 1024 flip-flops each for a simple CSB configuration
or 8192 flip-flops each for a PCS8 configuration. Note
that those numbers have been chosen arbitrarily and can
easily be increased if necessary, the only limitation being
the restricted amount of RAM in the targeted FGDRA.
The CMU offers a simple connection with another system
like a micro-processor and provides a simple and classical
programmer view of context management. In the long
term, CMU should be integrated inside the FGDRA, like
MMU are in most microprocessor.

V. Design flow, methodology and tools
As a designer realizes an IP, he spends his time on the
functionality of the IP, he does not want nor have the time

"PCS : Parallel Configuration Scan 8bit
8CMU : Context Management Unit

to add specific material to make his IP preemptable. It is
thus necessary to describe a design flow that takes into
account this point of view. In such a flow, the flip-flops re-
placement and chaining must then be automatic. Although
some solutions exist for DFT? purposes [19][20][21], those
solutions were not applicable here. We have thus decided
to set up our own solution.

For that purpose, we based our work on a standard
workflow as can be seen on figure 3a. The synthesis is done
in two stages, RTL synthesis and Technological synthesis
(Place & Route). Each stage has two outputs, one for
implementation and one for simulation. As an example,
the RTL synthesis provides an RTL VHDL model of the
design, in our case, as we targeted a Xilinx’s FPGA, this
model is based on the UNISIM library which is provided
by Xilinx.

A TCL script have been developed to add chaining
signals to the RTL simulation model, and a technological
library called CSBlib that contains a synthesisable VHDL
model of every component that can be instantiated at this
level have been implemented.

Based on CSBlib and on our conversion script, a new
designflow can be proposed (figure 3b) in which only the
RTL synthesis is first performed. The conversion script
is then executed on the RTL simulation model provided.
The whole synthesis (RTL and Technological) must then
be performed.

This method has been implemented for CSB and the
whole process is quasi-automatic. The final version should
be able to deal with a PCS8 context management configu-
ration and should be fully automatic. The current version
have been successfully tested on an UART downloaded on
OpenCores.org. This show that IP designer do not need
to bother about context management while designing an
application as any IP can be converted as long as a VHDL
description of this IP is provided.

VI. Tests and comparisons

In order to evaluate the proposed architectures, a 7th
order fully pipelined FIR filter have been implemented in
three different configurations. The first configuration use
standard design method (not preemptable), the two others
use respectively a CSB and a PCS8 configuration. Note
that in order to simplify the design we chose to fix all
coefficients to one.

For each test, pre and post-synthesis simulation were
performed. At the light of those tests, we can say that both
CSB and PCS8 effectively allow to save and to restore an
hardware task’s context. Quantitative results about used
place and speed are extracted from synthesis reports. Note
that those tests were made targeting a Xilinx Virtex II-
Pro
XC2VP30FF896 FPGA, but we can use any other FGDRA
as long as it provide sufficient internal memory.

9DFT : Design For Test



High Level Model :
* Graphical Description

* Behavioural Description
*

®

Y

@ ( RTL Synthesis ) Technlti)lljogical

Y Y ® Y

EDIF Netlist RTL VHDL —)(Simulation)

Model

Y

Technological Synthesis

® +

Place & Route

Y

Technological Model

@ @ ( RTL Synthesis ) Model

(a)

Fig. 3.
Std | CSB | PCSS8
Flipflops 128 | 180 | 176
LUT 60 228 166
run Fmax (MHz) 350 | 300 250
scan Fmax (MHz) - 200 200
Context transfer time (ns) - 640 80

TABLE II
FIR7 + CMU results

A. Area considerations

As expected, the use of both methods implies an over-
head in term of FGDRA occupation. The main problem
with area occupation on FGDRA is that all results highly
depend on optimizations performed during the synthesis
process. In table II we can see that the PCS8 method
uses less LUT that CSB. But after further investigations
it appears that due to the FIR architecture, seven 8 bits
registers from the first pipeline stage are chained the same
way in run mode or in scan mode. So that during synthesis
process, data input multiplexers for those seven register
(representing 56 flipflops) are actually not implemented.

Another optimization artifact is replica flipflops. As an
example, the CSB based CMU alone require 37 flipflops
and the FIR wuse 128, so the complete task including
both should require 165 flipflops, but it actually requires
180. This is due to the fact that, for timing optimization
purpose, the synthesizer creates replicas of some flipflops
of the design. To study the real impact of our context
management method, we then should not consider replicas
as they are due to synthesis optimization, not to the
context management method.

To conclude, we can give an estimation of area required
for a given task when using CSB or PCS8 context
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transfer method and a CMU. Given Nygg,, and Nyysgrp
respectively the number of flipflops and LUT used for the
standard version of the task, equations 1 and 2 gives the
number of flipflops and LUT required for the CSB based
preemptable version of this task.

Nifoss = Nifsop +37 (1)
(2)

Equation 3 and 4 give similar result for a PCS8 based
preemptable task.

NlutCSB = NlutSTD + foSTD +1+40

Nifpcss = Nifsrp +33

(3)
(4)

Note that those equation do not take synthesis opti-
mization into account so that actual result can be sightly
different. Memory used for the CMU is not mentioned
here, when using a Virtex II pro, both PCS8 and CSB
CMU use one BRAM in the actual configuration.

Niutpeoss = Niutsrp + foSTD +14+35

B. Time consideration

Concerning time there are two important parameters,
the first is context transfer time, directly proportional to
the scan mode max frequency, and the second is the run
mode max frequency.

When adding CSB or PCS8 preemption ability to a
given task, the maximum application’s working frequency
is slowed down. This could be a serious problem and
probably constitutes the main drawback of our system.
This speed penalty is less important for CSB than for
PCS8 but if the working frequency is not of a big issue here
the penalty in term of overhead is largely compensated by
the 8x gain due to parallelization.



Those results demonstrates that PCS8 has a clear
advantage in term of overhead. But if the applications
had to work at a frequency close to the FGDRA’s limits,
a CSB configuration should be considered.

VII. Conclusion

A complete hardware task context management method
have been set up, based on a management unit, the CMU,
and using two different context transfer architectures, one
based on a simple scanpath, the CSB, and the second
based on eight scanpath running in parallel, the PCSS8.
A quasi automatic designflow have also been proposed
to build a preemptable hardware task, using our context
management method, from a common VHDL description,
using standard synthesis tool, a custom build library and
a custom conversion script.

Our method has the particularity to be universal as it
can use any synthesizable VHDL IP as input and can
target any existing FPGA as long as it has sufficient
ressources for the given applications. The most noticeable
drawback of this method being that it slows down the
application’s maximum frequency.

Using this method, a hardware task can be preempted
at any time. In some case a given task should not be
preempted while performing a particular action, an access
to an external pipelined memory is an example of such
an action. For this purpose, the next version of the CMU
will provide a special flag to indicate that the task is in a
critical section.

At this time, we work on a midleware side of RTOS for
PDR-SoC and the real time scheduling of hardware task
on FGDRA. The second part of our work will concentrate
on modifications of hardwired architecture of an FGDRA
to make it more efficient for dynamical reconfiguration.
We work on a new FGDRA architecture that directly
implement hardwired PCS8 and CMU.
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