
HAL Id: hal-00665755
https://hal.science/hal-00665755v2

Submitted on 14 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Design of Virtual Links in AFDX Networks
Ahmad Al Sheikh, Olivier Brun, Maxime Chéramy, Pierre-Emmanuel Hladik

To cite this version:
Ahmad Al Sheikh, Olivier Brun, Maxime Chéramy, Pierre-Emmanuel Hladik. Optimal Design of
Virtual Links in AFDX Networks. Real-Time Systems, 2013, 49 (3), 31p. �10.1007/s11241-012-9171-
z�. �hal-00665755v2�

https://hal.science/hal-00665755v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Optimal Design of Virtual Links in AFDX Networks

Ahmad Al Sheikh · Olivier Brun ·

Maxime Chéramy · Pierre-Emmanuel

Hladik

Received: date / Accepted: date

Abstract The Avionics Full Duplex Switched Ethernet (AFDX) backbone
constitutes one of the major technological breakthroughs in modern avionic
architectures. This network is based on routing Ethernet frames through iso-
lated data tunnels referred to as Virtual Links (VL). VLs can be thought of as
multicast trees, each serving for data transmission between one and only one
end of the network to several others. Multiple VLs are deployed for exchanging
data between avionic systems with a reserved amount of bandwith.

In this paper, we propose different methods to define VL characteristics and
to route VLs in the network while minimizing the maximum utilization rate of
the links. The proposed methods provide the basis for a more efficient design
of the VLs, and have to be completed later on by the verification of the worst-
case network latencies. The industrial applicability is shown on experimental
results and on a representative benchmark.

Keywords AFDX · Virtual Link · Bandwidth consumption · Route
optimization

1 Introduction

1.1 Resource Allocation Problems in IMA Architectures

Nowadays, aircrafts have to maintain high standards of safety and reliability
in a high stress environment whilst integrating many computers, sensors, actu-
ators, and control and display units [17,18,4,14]. Traditional avionic systems
have been built according to a federated architecture (“one function - one com-
puter”), which leads to numerous equipment boxes, one for each subsystem.

A. Al Sheikh · O. Brun · M. Chéramy · P.E. Hladik
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France.
Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France.
E-mail: {aalsheik, brun, mcheramy, pehladik}@laas.fr

Ockp"vgz"hkng
Enkem"jgtg"vq"xkgy"nkpmgf"Tghgtgpegu

2 Ahmad Al Sheikh et al.

With the ever increasing number of embedded avionic functions, the avionic
industry has had to abandon this design approach in favor of the Integrated
Modular Avionics (IMA) [19]. IMA architectures allow the execution of avionic
functions using shared computing and communication resources while respect-
ing hard segregation constraints in order to avoid fault-propagation between
applications.

At the computing level, the processing units, called modules, can host
several avionic applications of different criticalities and execute them indepen-
dently. Segregation constraints are enforced using complete partitioning, not
only on a functional basis, but also with respect to space (spatial partitioning)
and time (temporal partitioning). A partition is therefore a program unit of an
application that can execute only within strictly periodic time intervals and
that can only access a statically allocated memory space.

At the communication level, the Avionics Full-Duplex Switched Ethernet
(AFDX) network enforces the segregation constraints by replacing the point-
to-point cabling used in federated architectures with Virtual Links (VL) [2].
Each VL is dedicated to a single communication flow between a source parti-
tion and multiple receivers and uses a statically configured route in the net-
work. It can be thought as a permanently defined virtual circuit between the
source and the receivers with guaranteed timing and bandwidth allocation on
the network. Traffic-shaping is used to regulate the time between two con-
secutive transmissions on the network by the same VL, thus controlling the
bandwidth it uses, and providing traffic at a constant and deterministic rate.

Primary benefits of IMA include reduction of the weight, the power con-
sumption and the overall complexity of the physical architecture, as well as pro-
viding greater flexibility in software design and shortened design-cycle times.
However, the transition from federated to IMA architectures has given rise to
complex resource allocation problems. We can distinguish two main types of
resource allocation problems:

– The first is related to the multiprocessor scheduling of the strictly periodic
partitions on the processing modules. Indeed, as partitions allocated to the
same module share the overall execution time, the system designer has to
ensure the temporal segregation of these partitions by designing a proper
periodic schedule.

– The second is related to the design of the Virtual Links. Indeed, data
exchanges between partitions located on different modules have to be tun-
neled through VLs, and thus a dedicated VL has to be configured for each
communication flow. This amounts to selecting some transmission parame-
ters, which have an impact on the timing properties and on the bandwdith
allocation of the VL, in addition to finding a multicast path between the
source and the receivers.

In a previous work [3], we have exposed a method to allocate and schedule
partitions on the processing modules. The present paper is the logical progres-
sion from this previous work and is focused on the design of VLs in AFDX

Optimal Design of Virtual Links in AFDX Networks 3

networks, assuming a predefined multiprocessor scheduling of the avionic par-
titions.

1.2 Design of Virtual Links

Due to the complexity of the overall problem, the design of an IMA platform
usually follows a (suboptimal) decomposition approach (refer to Figure 1). In
this approach, the design of the virtual links is performed once the avionic
partitions have been scheduled on the processing modules of the platform. A
dedicated VL implementing its own traffic shaper has to be configured for each
data exchange between partitions located on different modules. This basically
requires that the system integrator answers the following questions:

– What are the VLs to be configured ?
– How to set the transmission parameters of the VLs ?
– How to route the VLs in the AFDX Interconnect ?

!"#$%&'()&*+),&'+%&'()-.&$#"'/)+(01'2-$2"*

3.."1&$()&*+)01,(+4.()-&'$2$2"*0)"*)/"+4.(0

5(026*)72'$4&.)82*90

:"4$()72'$4&.)82*90

3*&.;0()*($%"'9).&$(*12(0

7&.2+)1"*<64'&$2"*

=&2.)$")'(0-(1$
+(.&;0

&++)&.."1&$2"*)
1"*0$'&2*$0

8&$(*12(0)&'(
*"$)'(0-(1$(+

>*1'(&0()!

?&'$0)&+'(00(+)2*)
$,20)-&-('

Fig. 1: Decomposition approach for the design process on IMA.

Let us first consider the second question. Two key parameters are used to
configure a VL. The first one is the Bandwidth Allocation Gap (BAG), i.e,
the minimum time interval between the starting bits of two successive AFDX
frames, assuming zero jitter. In other words, the BAG defines the maximum
frequency at which frames are sent in a VL. This parameter can take only
discrete values that are powers of 2 from 1 to 128 ms. The second parameter
is the Maximum Frame Size (MFS), i.e, the maximum size, in bytes, of the
transmitted Ethernet frames for the VL. MFS is in the range from 64 to 1518
bytes. Together, these parameters allow to limit the transmission rate of a VL
in order to prevent its traffic from interfering with the traffic of other VLs.

For each message sent by a partition to receivers on other modules, the
system integrator has to set the BAG and MFS values of the VL dedicated to
this message, taking into account application-level requirements in the form

4 Ahmad Al Sheikh et al.

of a maximum delivery time and a message size. Note that a major difficulty
to guarantee the delivery time of a message is that it depends on the network
traversal time, which in turn depends on the number of configured VLs, on
their transmission parameters and on how they are routed in the network.
However, as observed by Lauer et al. in [11], “the upper bounds on worst-case
traversal time [...] are small compared to periods and duration of the functions”
(the experimental results on industrial systems reported in [5,15] lead to the
same observation). In practice, the worst-case network traversal time is in the
order of few ms, whereas the maximum delivery times of the messages are
comparable to partition periods, and are thus in the order of several tens or
hundreds of ms. A pragmatic approach to VL design is therefore to assume
an upper bound ∆ on the worst-case network traversal time, to design the VL
using maximum delivery times decreased by ∆, and then to check a posteriori
that this bound is satisfied.

There are usually several feasible values of the BAG and MFS parameters
that allow to guarantee the message delivery time. It is therefore convenient to
use the feasible BAG and MFS values minimizing the bandwidth consumption
since this will give more flexibility to add future VLs. For instance, to transmit
a 100 bytes message within a maximum delivery time of 50 ms, it is possible
to use a VL with (1) BAG=8 ms and MFS=64 bytes (17 bytes payload), or
with (2) BAG = 32 ms and MFS=147 bytes (100 bytes payload). In these two
options the temporal requirement is respected, but the bandwidth is 64 Kbps
for the first option and 36.75 Kbps for the second. Although trivial, this ex-
ample clearly shows the influence of the VL transmission parameters on the
quality of a design.

We now turn to the question of what VLs have to be created. A dedicated
VL has to be created whenever a source partition sends a message to receivers
located on other modules. It may however occur that a source partition sends
several messages to the same set of receivers. In this case, the system integrator
can choose to use a separate VL for each message, or to aggregate all data
into a single message and thus to use a single VL, and he can even choose to
use an intermediate strategy. As we show in Section 3, the choice made by the
system integrator can have a strong influence on the bandwidth consumption.

Finally, once the VLs are defined, the system integrator has to route them
in the AFDX network. The routing problem amounts to finding one and only
one multicast tree between the source and the destinations of each VL whilst
guaranteeing that the amount of reserved bandwidth on each link is lower than
its capacity. Since an upper-bound on the worst-case network traversal time
has been assumed, message delivery times are guaranteed by design and it is
therefore not suitable to minimize the network latency. A more appropriate
design goal is to maximize the minimum residual capacity of the network
links since ensuring a fair load distribution among network links eases the
introduction of new VLs, or the modification of existing ones.

Optimal Design of Virtual Links in AFDX Networks 5

1.3 Related work

Although many works have been devoted to the design of avionic architec-
tures, the problems addressed in this paper have been largely overlooked. To
the extend of our knowledge, there is no previous work on how to define the
VLs. All previous works regarding VLs focus on the analysis of the time re-
quired to transmit a frame through the network. Different methods have been
proposed, such as Network Calculus [6], probabilistic analysis [15], trajectory
approach [12], ILP [11], etc.

Although it seems that there is no previous work on the VL routing prob-
lem, similar problems have been considered for telecommunication networks.
In the special case where we only have one VL, the problem becomes re-
lated to the computation of a minimum cost tree, known as a Steiner tree [8,
9]. This Steiner tree problem is NP-complete [16]. Another special case is
obtained when each VL has a single destination, yielding a single-path rout-
ing problem. This problem is also known to be NP-complete [13]. Not much
propositions can be found for routing several multicast demands at once. The
authors in [16] look into finding multicast trees for multicast traffic requests
that arrive one-by-one, while minimizing the maximum link utilization. Many
others also propose multiobjective multicast routing algorithms for a single
multicast traffic request in an already loaded network [7,20].

1.4 Contribution

Our contribution is threefold. We first show how to set the BAG and MFS pa-
rameters of a VL so as to minimize the reserved bandwidth while transmitting
the data within their maximum delivery time. We next consider the case where
a source partition has to send multiple messages to the same set of receivers.
We present several closed-form results and efficient numerical algorithms for
aggregating messages into super-messages so as to minimize the bandwidth
consumption. Finally, we propose an exact integer-linear programming formu-
lation of the routing problem that can be used to route thousands of VLs so
as to maximize the minimal residual capacity of the links. All the proposed
approaches allow to reduce the bandwidth consumption and thus to get more
flexibility for adding new VLs or modifying existing ones. We illustrate the
benefits of the proposed design approaches on a benchmark inspired from an
industrial case study.

1.5 Organization

The paper is organized as follows. Section 2 is devoted to the analysis of the
optimal transmission parameters to send a single message through a VL. In
Section 3, we consider the case where a source partition has to send multiple
messages to the same set of receivers and analyze the optimal strategy to

6 Ahmad Al Sheikh et al.

minimize the bandwidth consumption. Section 4 presents an exact integer-
linear programming formulation to solve the routing problem. Experimental
results are presented in Section 5 and some conclusions are drawn in Section
6.

2 Optimal Transmission Parameters of a VL

2.1 Problem statement

We consider the transmission of a message from a source partition to a set
of destinations (located on modules other than that of the source’s). Let s
denote the size of the message in bytes. The message can be fragmented into n
frames, each having a header of size c bytes. The maximum size of the frame’s
payload is f ∈ IN bytes, and it is assumed that fmin ≤ f ≤ fmax. In AFDX
networks, the values of these parameters are c = 47 bytes, fmin = 17 bytes and
fmax = 1471 bytes, so the minimum frame size is 64 bytes and the maximum
one is 1518 bytes. The payload size f and the number of frames n have to be
such that n f ≥ s.

The delay between the transmision of two consecutive frames is bag =
2k ms, where k ∈ {0, 1, . . . , 7}, so that the total delay between the transmission
of the first frame and that of the last frame is (n − 1) bag ms. Let ∆ denote
an upper bound on the time required to transmit a frame of size 1518 bytes
from one point of the netwok to another. Then the total delay between the
transmission of the first frame of the message by the source partition and the
reception of the last frame by the destinations is upper bounded by (n−1) bag+
∆. It is assumed that this total delay has to be lower than a given constant
δ +∆, so the parameters n and k have to be chosen such that (n− 1) 2k ≤ δ.

Since at most c+ f bytes are transmitted in bag seconds, the total band-
width to be reserved for this communication is bw = (c + f)/bag. The prob-
lem amounts to finding the parameters n, f and bag such that the reserved
bandwidth is minimized, while ensuring the end-to-end delay constraint of the
message delivery. The problem can thus be stated as follows,

minimize
f + c

2k
(OPT)

subject to

(n− 1) 2k ≤ δ,

n f ≥ s,

fmin ≤ f ≤ fmax,

k ∈ {0, 1, . . . , 7},

n, f ∈ IN.

Optimal Design of Virtual Links in AFDX Networks 7

2.2 Derivation of the optimal parameters

In what follows, we introduce important Lemmas and Propositions that help
in deriving the optimal parameters.

Lemma 1 Problem (OPT) has a solution if and only if
⌈

s
fmax

⌉

≤ 1 + δ.

Proof See Appendix A.1. %&

In the following, we let nmin =
⌈

s
fmax

⌉

and nmax = 1+ δ. We shall assume

that nmin ≤ nmax and thus that the set Ω = {nmin, nmin + 1, . . . , nmax} of
all feasible values of n is non empty. The following proposition shows how to
find the optimal parameters for the Virtual Link.

Proposition 1 Let f(n) = max(
⌈

s
n

⌉

, fmin), k(n) = min(7,
⌊

log2

(

δ
n−1

)⌋

),

and bw(n) = (f(n)+c) 2−k(n) for n ∈ Ω. Let n∗ be a minimum in Ω of bw(n),
i.e., bw(n) ≥ bw(n∗) for all integers n ∈ Ω. Then, (n∗, f(n∗), k(n∗)) is an
optimal solution of Problem (OPT).

Proof See Appendix A.2. %&

Proposition 1 implies that finding the optimal solution of problem (OPT)
reduces to finding the minimum of bw(n) over the set Ω. To this end, let us
introduce the sequence {nq}q∈IN defined by

nq = 1 +
⌊

2−qδ
⌋

, q ∈ IN, (1)

and note that nq > nq+1 for all for q ∈ IN. These numbers will play a key role
in determining the optimal solution, as will be shown below.

As an example on the above, Figure 2 shows the function bw(n) for s=2000
bytes and δ=100 ms. Note that nmin = 2, nmax = 101 and n6 = 2. The
minimum of bw(n) is 16.36 and is obtained for n = n6 = 2. The frame size is
f(n6)=1000 bytes and the bag is 26 ms.

Figure 3 shows the function bw(n) for s=2000 bytes and δ=400 ms. Here
we have nmin = 2, nmax = 401 and n7 = 4. The minimum of bw(n) is 4.27
and is obtained for n = n7 = 4. The frame size is f(n7)=500 bytes and the
bag is 27 ms.

We shall first state several properties of the functions f(n) and k(n) that
will be helpful in determining the optimal strategy.

Lemma 2 For all integers n ≥ 1 and all integers q ∈ {0, . . . , 6}, we have
k(n) = q if and only if nq+1 < n ≤ nq. Moreover k(n) = 7 if and only if
n ≤ n7.

Proof See Appendix A.3. %&

8 Ahmad Al Sheikh et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50

bw(n)

Fig. 2: Function bw(n) for δ=100 ms and s=2000 bytes.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50

bw(n)

Fig. 3: Function bw(n) for δ=400 ms and s=2000 bytes.

Lemma 3 For all q ∈ IN, 2nq+1 − 1 ≤ nq ≤ 2nq+1.

Proof See Appendix A.4. %&

Lemma 4 We have (a) f(n) = fmin if and only if n ≥
⌈

s
fmin

⌉

, and (b)

f(n) =
⌈

s
n

⌉

if and only if n <
⌈

s
fmin

⌉

. Therefore, f(n) is a non-increasing

function of n over Ω, which implies that f(nq) ≤ f(nq+1) for all q ∈ IN.

Proof See Appendix A.5. %&

Optimal Design of Virtual Links in AFDX Networks 9

We now study the minimum of bw(n) over Ω. We proceed in two steps. We
show (a) that the minimum of bw(n) is attained at a point n∗ in {n0, n1, . . . , n7},
and (b) that n∗ is the minimum value of the sequence {nq}q∈IN in Ω. To prove

(a), we first prove that this function is piecewise non-increasing.

Lemma 5 For all n ≤ n7 we have bw(n) ≥ bw(n7). Moreover, for all q ∈
{0, 1, . . . , 6} and for all n ∈ (nq+1, nq], bw(n) ≥ bw(nq).

Proof See Appendix A.6. %&

Using the piecewise monotonic behaviour of bw(n), Lemma 6 below proves
that the minimum of bw(n) over Ω is necessarily attained at a point of the
sequence {nq}q∈IN.

Lemma 6 Let J = Ω ∩ {n0, n1, . . . , n7}. There exists n∗ ∈ J such that
bw(n∗) ≤ bw(n) for all integers n ∈ Ω.

Proof See Appendix A.7. %&

Since the minimum of bw(n) is in {n0, n1, . . . , n7}, we will now compare
the values of this function at these points. Lemma 7 shows that bw(nq) >
bw(nq+1).

Lemma 7 For all integers q ∈ {0, 1, . . . , 6}, it holds that bw(nq) > bw(nq+1).

Proof See Appendix A.8. %&

We can now prove that the minimum of bw(n) is attained by the smallest
value of the sequence {nq}q∈IN belonging to the set Ω. This is formally stated
in the following proposition.

Proposition 2 Let n∗ = min{x : x ∈ J }. Then, (n∗, f(n∗), k(n∗)) is an
optimal solution of Problem (OPT).

Proof See Appendix A.9. %&

We are now in position to state our main result.

Theorem 1 If s ≤ fmax, then n∗ = n7, f
∗ = f(n7) and k∗ = 7 is an optimal

strategy. Otherwise, k∗ = min
(

7,
⌊

log2

(

δ
nmin−1

)⌋)

, n∗ = 1 +
⌊

2−k∗

δ
⌋

and

f∗ = f(n∗) is an optimal strategy.

Proof From Proposition 2, an optimal strategy is obtained by choosing the
largest value of k in {0, . . . , 7} such that nk = 1+

⌊

2−kδ
⌋

≥ nmin. If nmin = 1,

this value of k is clearly k = 7. Otherwise, k ≤
⌊

log2

(

δ
nmin−1

)⌋

, that is

k = min
(

7,
⌊

log2

(

δ
nmin−1

)⌋)

. %&

10 Ahmad Al Sheikh et al.

To summarize, the above results prove that an optimal strategy for sending
the message is always obtained by sending n7 frames and choosing k = 7 when
the message size is lower than or equal to fmax. Otherwise, an optimal strategy

is obtained by setting k = min
(

7,
⌊

log2

(

δ
nmin−1

)⌋)

, with nmin =
⌈

s
fmax

⌉

,

and fragmenting the message into nk frames of size f(nk) that are transmitted
one after the other, separated by 2k ms.

Before concluding this section, we present below two basic properties of the
optimal solution that will be used in the following. The next lemma provides
bounds on the optimal number of frames.

Lemma 8 If s > fmax and if δ ≤ 27 (nmin − 1), nmin ≤ n∗ ≤ 2 [nmin − 1].

Proof See Appendix A.10. %&

It is worthwhile noticing that the above lemma implies that if fmax < s <
2fmax, i.e., if nmin = 2, then n∗ = 2. The following lemma is concerned with
the optimal size of the frames.

Lemma 9 If s > fmax and if δ ≤ 27 (nmin − 1), then f∗ > fmin.

Proof See Appendix A.11. %&

3 Optimal strategy for sending multiple messages

3.1 Problem statement

We now consider the situation where the source partition (application program
unit) has to send multiple messages to the destinations. Let M > 1 be the
number of messages and assume that they are numbered from 1 to M . We
let M = {1, . . . ,M} denote the set of messages. Message i ∈ M has a size
equal to si bytes and has to be delivered before δi ms after the first bit has
been transmitted1. In the rest of this section, the term partition is used in the
set-theoretic sense and, unless indicated otherwise, is not to be confused with
the previous description of application program units.

When we consider the transmission of multiple messages, several strategies
are possible. The system designer can choose to use a separate VL for each
message, or he can choose to aggregate all data into a single message and thus
to use a single VL. Of course, intermediate strategies are also possible, i.e., the
system designer can choose to partition the set M into K ∈ {2, . . . ,M − 1}
subsets A1, . . . ,AK such that Ai ∩ Aj = ∅ for i)= j and ∪iAi = M, and to
send all the messages belonging to each subset Ai as a single super-message

1 In practice, all messages sent by a partition share the same maximum delivery time.
The analysis presented here does not rely on this assumption, but it of course also applies
in this case. The numerical results presented in this article consider both the case where the
δi are equal and the case where they are different.

Optimal Design of Virtual Links in AFDX Networks 11

of size s(Ai) =
∑

m∈Ai
sm. Note that in this case the upper bound on the

delivery time of the super-message i is δ(Ai) = minm∈Ai
δm.

The question we want to answer here is that of the strategy that mini-
mizes the reserved bandwidth. For any subset A ⊂ M, let bw(A) denote the
minimum bandwidth to send a super-message of size s(A) =

∑

m∈A
sm with

a delivery time lower than δ(A) = minm∈A δm. Note that the optimal pa-
rameters k(A), n(A) and f(A) for the associated Virtual Link are given in
Theorem 1. We let also P(A) denote the set of all partitions of a subset A of
M. The problem amounts to finding a partition {Ai}i=1,...,K ofM minimizing

the total bandwidth
∑K

i=1 bw(Ai). Formally,

minimize
K
∑

i=1

bw(Ai) (PART)

subject to

{Ai}i=1,...,K ∈ P(M)

K ∈ {1, . . . ,M}

A solution to problem PART is thus a partition of the setM of all messages.
Note that the number of solutions correspond to the cardinality of P(M) and
that it is given by the Bell number of order M :

|P(M)| =
1

e

∞
∑

k=0

kM

k!
, (2)

which implies that we cannot hope finding the optimal solution by an exhaus-
tive enumeration of all solutions for large values of M . We thus first consider
some simple special cases for which closed-form results can be obtained in
Section 3.2, before presenting general numerical approaches in Section 3.3 and
3.4.

3.2 Some simple special cases

In the following, we will focus on the case where the message sizes are lower
than or equal to fmax and the upper bound on the delivery time of the super-
message is strictly below 128 ms. This is formally stated in the following
assumption.

Assumption 2 For each message m ∈ M, we have fmin ≤ s(m) ≤ fmax and
δ(m) < 27.

Throughout this section, this assumption is adopted. This is clearly the
most interesting case, and it is also the most tractable as indicated by the
following lemma.

12 Ahmad Al Sheikh et al.

Lemma 10 Let A ⊂ M and {Ai}i=1,...,K be a partition of A such that
s(Ai) ≤ fmax for all i. It holds that k(Ai) = 7, n(Ai) = 1 for all i, and
∑K

i=1 bw(Ai) = 2−7 (s(A) +Kc).

Proof See Appendix B.1. %&

Note that Lemma 10 implies that the total reserved bandwidth depends
on the particular partition that is considered only through the number K of
super-messages, as long as the size of each one is below fmax. We immediatly
get the following corollary.

Corollary 1 We have

bw(A)
∑K

i=1 bw(Ai)
= 27−k(A) f(A) + c

s(A) +Kc
, (3)

for any subset A ⊂ M and any partition {Ai}i=1,...,K of A such that s(Ai) ≤
fmax for all i.

Using Corollary 1 we first show that as long as s(A) ≤ fmax, the total
reserved bandwidth is minimized by sending all messages of A in a single
Virtual Link.

Proposition 3 For A ⊂ M such that s(A) ≤ fmax and a partition {Ai}i=1,...,K

of A, it holds that

bw(A)
∑K

i=1 bw(Ai)
= 1− (K − 1)

c

s(A) +Kc
, (4)

which implies that bw(A) <
∑K

i=1 bw(Ai) if K ≥ 2.

Proof Since s(A) ≤ fmax, Lemma 10 implies that k(A) = 7, n(A) = 1 and

bw(A) = 2−7 (s(A) + c). Thus, with Corollary 1 we obtain bw(A)
∑

K
i=1

bw(Ai)
=

s(A)+c

s(A)+Kc
. %&

Note that in practice, most partitions (program units) send a small number
of short messages with a maximum delivery time that is smaller than 128 ms.
In this case, we can directly apply the above proposition and assert that the
total reserved bandwidth is minimized by aggregating all messages into a single
super-message.

Example 1 Assume that there are M = 6 messages to be sent and that the
sum of their sizes is 148 bytes. According to formula (4), we can reduce by
about 55% the total reserved bandwidth by sending all messages as a single
super-message instead of sending each one in a separate Virtual Link.

Optimal Design of Virtual Links in AFDX Networks 13

Is it always optimal to aggregate the messages? The answer is no, as indi-
cated by the following proposition which considers the case where a partition
(program unit) has to send two messages satisfying the assumptions of Lemma
10, and proves that it is optimal to send each message separately if the sum
of their sizes is greater than fmax.

Proposition 4 Let A ⊂ M be such nmin(A) = 2 and {A1,A2} be a partition
of A such that s(Ai) ≤ fmax, i = 1, 2. Then bw(A) ≥ bw(A1) + bw(A2).

Proof See Appendix B.2. %&

Example 2 Assume that there are two messages to be sent with the following
parameters : s1 = s2 = 1024 bytes and δ1 = δ2 = 30 ms. In this case, we obtain
bw({1})+ bw({2}) = 2 1024+47

27 = 1024+47
26 . However, since nmin({1, 2}) = 2 we

obtain k({1, 2}) = ,log2(30)- = 4 and n({1, 2}) = 2, which yields bw({1, 2}) =
1024+47

24 . Aggregating the messages thus requires four times more bandwidth
than sending them separately.

Proposition 4 implies that aggregating messages of relatively small sizes,
under Assumption 2 that is, in one super-message is not trivial if its size
exceeds fmax. In addition, solving PART for general cases, especially when
Assumption 2 does not hold, is not an easy task. Resorting to numerical al-
gorithms becomes hence inevitable to determine optimal strategies. For this
purpose, an exact branch-and-bound algorithm is first introduced in Section
3.3, then followed by a greedy one in Section 3.4.

3.3 Branch-and-bound algorithm

Problem PART can be solved using the branch-and-bound algorithm 1. As a
reminder, a branch-and-bound algorithm works in two steps: the branching
step consists of splitting the problem in two or more sub-problems whereas
the bounding step defines a lower and an upper bound for the current sub-
problem. When the lower bound meets the upper bound, it is not necessary to
continue exploring from this state. The recursive algorithm 1 takes as input
the current partial solution which is defined by a set of super-messages and a
set of messages not yet handled. The initial state is defined by an empty set
of super-messages. Starting from a partial solution, the algorithm generates
another partial solution by taking a message that is not present in any super-
message and merging it to a super-message or putting it alone.

In the following, we describe the details of this algorithm.

3.3.1 Initial upper bound

The branch-and-bound algorithm is started with an initial value of the upper
bound. In our implementation, we have used the cost returned by the greedy
algorithm described in Section 3.4. As will be shown later, this heuristic often
provides near-optimal solutions. As described in Algorithm 1, the upper bound
is updated each time an improving complete solution is discovered.

14 Ahmad Al Sheikh et al.

Algorithm 1

1: procedure BandB(S: set of super-messages, N : set of remaining messages)
2: if |N | > 0 then

3: if lowerbound(N) + bw(S) ≥ bw(sol) then

4: return " Prune.
5: end if

6: for i ← 1 to |S| do
7: C ← S " Let C =

⋃
Cj represent the set of super-messages.

8: Ci ← Ci ∪ {N1} " Merge N1 to the existing super-message Ci.
9: BandB(C,N \ {N1})
10: end for

11: S ← S ∪ {{N1}} " Add the message alone.
12: BandB(S,N \ {N1})
13: else

14: if bw(sol) > bw(S) then

15: sol ← S
16: end if

17: end if

18: end procedure

19:
20: sol ← Greedy(M) " Initial upper bound.
21: BandB({}, M) " Run the Branch and Bound.

3.3.2 Lower bound

A lower bound on the optimal cost-to-go is generated in each node of the
search tree. This lower bound is based on the following conjecture.

Conjecture 1 It holds that

K
∑

i=1

bw(Ai) >
∑

m∈A

⌈

s(m)

n(m)

⌉

2−k(m) (5)

∀ {Ai}i=1,...,K ∈ P(A), ∀A ⊂ M

We show below that this conjecture holds true in an important special case.
The proof is based on the following lemma.

Lemma 11 Under assumption 2, Conjecture 1 is equivalent to

bw(A) > 2−7 s(A) ∀A ⊂ M. (6)

Proof See Appendix C.1. %&

The interest of Lemma 11 is that it provides an equivalent formulation of
Conjecture 1 that is independent of a particular solution: it depends only on
the sum of the sizes of the messages in the set A and on the minimum of their
delivery times. This allows to obtain the following Proposition.

Optimal Design of Virtual Links in AFDX Networks 15

Proposition 5 Under Assumption 2, Conjecture 1 holds true for all A ⊂ M.

Proof See Appendix C.2 %&

3.3.3 Variable ordering

As in most cases, ordering plays an important role in ameliorating the perfor-
mance of a branch-and-bound algorithm. In our work, messages were sorted
following a decreased order of sizes. Implementing this ordering scheme had a
great impact on resolution times as it helped in obtaining greater lower bounds
faster and hence pruning the search tree earlier (due to starting with messages
of larger size).

3.4 Greedy algorithm

An initial upper bound is determined using a greedy algorithm that selects
the state with the best lower bound until no messages are left (Algorithm 2).
This greedy algorithm performs in O(M2) so it can be used for large-scale
problems.

Algorithm 2

1: function greedy(M : the set of messages)
2: S ← {} " The super-messages of the partial solution.
3: for ∀m ∈ M do

4: Q ← {}
5: for i ← 1 to |S| do
6: C ← S " Let C =

⋃
Cj represent the set of super-messages.

7: Ci ← Ci ∪ {m} " Merge m to the existing super-message Ci.
8: Q ← Q ∪ {C}
9: end for

10: S ← S ∪ {{m}} " Message alone.
11: Q ← Q ∪ {S}
12: S ← argminQx∈Q(bw(Qx)) " Best partial solution.
13: end for

14: return S
15: end function

4 Optimal Routing of the VLs

As illustrated in Figure 4, let N = {1, . . . , N} be a set of N nodes representing
the AFDX network (n ∈ N may correspond to an AFDX switch or End
System). Here an End System corresponds to a processing module. Denote by E
the set of directed edges (links) between nodes such that no edge exists between

16 Ahmad Al Sheikh et al.

Fig. 4: Notations for modeling an AFDX network.

two End System nodes, that is to say, End Systems are interconnected through
AFDX switches only. The set C = {ce : e ∈ E} represents link capacities.

Consider a set V = {1, . . . , V } of V VLs to be deployed in the AFDX
network. After its definition following the analysis in Section 3, VL v ∈ V is
characterized by the following:

– a source node (End System) src(v) ∈ N ,
– a set of destination nodes (End Systems) dest(v) ⊆ N \ {src(v)}, and the

corresponding number of destinations Kv = |dst(v)|,
– and a bandwidth bv.

As the VLs need to be routed in the AFDX network, the problem amounts
to finding one and only one Steiner tree for each VL, thereby indicating the
links that shall be traversed.

In order to ensure an increased residual capacity in the network, the opti-
mization associated to the VL routing problem is taken to be the minimization
of the maximum link load (links actually represent switch interfaces), that is,

Minimize ρ = max
e∈E

(

ye
ce

)

,

where ye represents the total reserved bandwidth on link e.

In this paper, we opted for an exact node-link formulation [1] based on
Mixed Integer Linear Programming (MILP). Thus, for every node n ∈ N , let
Γ+(n) ⊆ E denote the set of incoming links to n and Γ−(n) ⊆ E the set of
outgoing links from n as can be seen in Figure 5.

Optimal Design of Virtual Links in AFDX Networks 17

Fig. 5: Links to and from node n.

The formulation is hence as follows,

min ρ

s.t.
∑

e∈Γ+(n)

xe
v −

∑

e∈Γ−(n)

xe
v = hn,v , ∀n, v, (7)

yev M ≥ xe
v , ∀v, e, (8)

yev ≤ xe
v , ∀v, e, (9)

∑

e∈Γ+(n)

yev ≤ 1 , ∀n, v, (10)

ye =
∑

v∈V

yev bv , ∀e, (11)

ye ≤ ce ρ , ∀e, (12)

yev ∈ {0, 1} , ∀v, e, (13)

xe
v ∈ {0, . . . ,Kv} , ∀v, e, (14)

where xe
v can be thought of as the number of destinations VL v is addressing

via link e (cf. Figure 6). The equality in constraint (7) indicates that the
difference in the number of addressed destinations by VL v between before
and after entering a node n should be equivalent to hn,v where,

hn,v =







−Kv if n = src(v),
1 if n ∈ dst(v),
0 otherwise.

Evidently the source node (End System) should address all of the desti-
nations. A destination node (End System) should be the last in the chain as
it cannot re-route information, and only receives what is addressed to it from
VL v and hence the value of hn,v = 1. Finally, an intermediate node (switch)
should transfer whatever is addressed by the VLs from its input links to its
output links.

The constant value M in (8) is considered as a large number, e.g., a value
greater than the maximum number of destinations in the VLs. Consequently,

18 Ahmad Al Sheikh et al.

Fig. 6: An example on the number of destinations xe
v addressed by a VL v on

the links, following a given multicast tree between End System 1 (source) and
End Systems 2 and 3 (destintations).

the boolean yev indicates whether link e is traversed by VL v or not, i.e. if
xe
v > 0 then yev = 1 indicating the passage of v in this link, otherwise it

can be either 0 or 1 but will be set to 0 due to constraint (9). Constraint (10)
ensures that each VL is routed along a tree where no node is visited more than
once. Constraints (11) and (12) define the total reserverd bandwidths and the
maximum utilization rates on the links, respectively. Constraints (13) and (14)
represent the domains for the decision variables yev and xe

v, respectively.
As a result of the preceding node-link formulation, Steiner trees for the

various VLs can be assigned based on the decision variables yev.

5 Results

5.1 Message Aggregation

The optimal strategy for sending multiple messages (cf. Section 3) was first
compared to the strategy which consists of sending each message separately
in a different VL (“1/VL”). In addition, the strategy of grouping all messages
together and defining one unique VL was also considered (“All in 1”). Fur-
thermore, the results of the greedy algorithm from Section 3.4 are presented
to demonstrate the efficiency of this algorithm.

To compare these different strategies, several experiment sets, with 100
instances each, were considered. Each instance consisted of n randomly gen-
erated messages, defined by their sizes (in bytes) and their maximum deliv-
ery times δ (in ms). The message sizes were chosen uniformly from the set
{16, 32, 64, 128, 256, 512, 1024} bytes, thereby favoring small sizes (as the mean
is at 290 bytes). As observed in [15], adopting small sizes is more represen-
tative for messages in real-world instances. In addition, values for maximum
delivery times (δ) were chosen to respect assumption 2.

Optimal Design of Virtual Links in AFDX Networks 19

Table 1: Average relative gap in % to the optimal solution, for n = 10 and δ
variable.

δ {30, 60, 100} {60, 100, 120} 30 60 100

1/VL 12.12 11.58 12.19 10.54 10.69
Greedy .06 .31 <.01 <.01 .01
All in 1 282.62 96.93 293.57 98.98 .90

Table 2: Average relative gap in % to the optimal solution, for δ ∈ {30, 60, 100}
and n variable.

n 5 10 15

1/VL 10.35 12.12 11.64
Greedy .03 .06 .06
All in 1 176.81 282.62 301.61

Tables 1 and 2 demonstrate the relative gap, in percentage, between the
optimal solution of PART and the various strategies, while varying δ and n
respectively.

We observe that the strategy of placing all messages in a single VL gives
severly unoptimized solutions, unless the maximum delivery time is large
enough. Indeed, with an average message size of 290 bytes, instances with
only 5 messages can have a total size which exceeds fmax. Hence, in most
cases and similar to proposition 4, it is not optimal to aggregate the messages
in a single VL. This is also verified in Table 2, where the relative gap to the
optimal solution exceeds 170% when grouping all messages in a single VL, so
as to repect the maximum delivery times. As the total size exceeds fmax and
the minimum value of the maximum delivery times has to be respected, it be-
comes favorable to choose a small bag value, which maximizes the bandwidth
in the process.

We can also observe that the strategy of sending each message separately
in different VLs has a better performance at average, where the total band-
width consumption is approximatively 12% greater than the optimal solution.
However, as shown in Figure 7, the relative gap between the solution obtained
by sending one message per VL and the optimal one highly depends on the set
of messages considered. A closer look at the extreme cases shows that using
a separate VL for each single message leads to acceptable performances when
the message sizes are close to fmax, but that it leads to a significant waste of
bandwidth when message sizes are small.

Finally, the greedy algorithm performs very well in all cases. The worst
solution obtained, among all the tested instances (1400 instances in all, in-
cluding ones with a greater number of messages and not presented in this
paper), is only 2.6% above the optimal solution. Thus, this algorithm could
replace the optimal algorithm when the number of messages becomes large (>
20-25 messages).

20 Ahmad Al Sheikh et al.

 0

 20

 40

 60

 80

 100

n=10, d=100

n=10, d=30 60 100

n=10, d=60

n=10, d=60 100 120

n=15, d=30 60 100

n=5, d=30 60 100

min
avg
max

Fig. 7: Relative gap to the optimal solution in % when using one VL per
message.

5.2 Routing

Assuming that the messages have been aggregated, and the VLs have been de-
fined, we hereafter demonstrate the performance of the node-link formulation
presented in Section 4 for routing the different VLs in the network. For solv-
ing the associated MILPs, the linear program solver CPLEX [10] from IBM
ILOG was used. As for the topology, and for depicting as much as possible the
AFDX network found on board aircrafts, the one shown in Figure 8 was con-
sidered. This topology consists of 7 AFDX switches and 6 End Systems. The
End Systems represent the group of sources and destinations (e.g. partitions)
for VLs.

All links are full duplex at 100Mbps. Given nbV L VLs, all End Systems
were evenly attributed a number of VLs in which they act as a source (e.g. if
nbV L = 12 then each End System in our topology would act as source for 2
VLs). For each VL, the destinations were chosen so that 1 to 5 End Systems
(other than the source) would be uniformly selected. Bandwidth requirements
were chosen based on an exponential distribution with an average of 125Kbps
(so that for large examples link capacities are not exceeded). Several examples
were generated with nbV L = {100, 300, 500, 700, 1000}.

For each case of nbV L, 100 instances were generated and solved follow-
ing the exact node-link formulation. In all of the cases, optimal solutions for
routing the VLs where obtained under 10 seconds.

Optimal Design of Virtual Links in AFDX Networks 21

Fig. 8: Topology considered for experimentations. Set of 7 AFDX switches and
6 End Systems.

5.3 Benchmark

In order to validate the benefit of both the message aggregation and routing
approaches in industrial applications, a benchmark was generated. The topol-
ogy was considered similar to that of Figure 8, except that each End System
was replaced with 12 separate ones depicting different processing modules, and
connected to the same switch. Each module itself hosted a set of 12 partitions
(application program units), giving a total of 864 partitions in the system.

Messages were first generated in such a way that each partition would be a
source to a number of messages uniformly chosen from 2 to 9. Each message was
destined to partitions uniformly chosen among all possible partitions (the num-
ber of destinations was limited between 1 and 43). Message sizes and maximum
delivery times were chosen from the sets {16, 32, 64, 128, 256, 512, 1024}bytes
and {30, 60, 100}ms respectively. All these considerations lead to a total num-
ber of 5305 messages.

The optimal strategy for message aggregation lead to the definition of 1568
distinct super-messages, and hence VLs, in a couple of seconds. This reduction
in the total number of VLs as compared to sending each of the 5305 messages
in a separate VL, reduced the total demand in the network by about 10% from
114.3Mbps to 103.5Mbps.

Furthermore, routing the arising VLs using the exact node-link formu-
lation, with an objective of minimizing the maximum link utilization rates,
gave a solution at about 39% maximum utilization in a couple of minutes. To
demonstrate the importance of obtained results, we need to consider the strat-
egy that might be followed in avionics. The messages would be first placed in
separate VLs, which are then routed to obtain a feasible solution while min-
imizing route lengths, for example. Doing so will not only give an increased
total bandwidth requirement (aforementioned 10%), but also a routing scheme
with a maximum link utilization rate of about 53%.

22 Ahmad Al Sheikh et al.

This clearly shows that, using our strategies (aggregation and link uti-
lization rate minimization) leads to more flexibility in the network. That is,
residual capacities are increased in the network so as to allow any future evo-
lution, that is the introdution of new messages or VLs. In worst-case scenarios
this might not be possible if messages are not efficiently aggregated and link
utilization rates are not decreased.

6 Conclusion

In AFDX networks, bandwidth is a valuable resource that should not be
wasted. We have shown how to compute the optimal transmission parame-
ters of a VL so as to minimize the bandwidth consumption while transmit-
ting the data within their maximum delivery times. We have also shown that
the aggregation of messages destined to the same set of receivers can lead
to significant bandwidth savings, and we have presented efficient algorithms
to compute the optimal aggregation strategy. Finally, we have also proposed
an exact integer-linear programming formulation of the VL routing problem
allowing to maximize the residual capacity of the network links, thereby pro-
viding more flexibility for adding new VLs or modifying existing ones. The
proposed methods provide the basis for a more efficient design of the VLs, and
have to be completed later on by the verification of the worst-case network
latencies.

A Proofs of the results in Section 2.1

A.1 Proof of Lemma 1

Assume that n is fixed. Then there exists at least one value of f ∈ IN such

that max
(

fmin,
⌈

s
n

⌉)

≤ f ≤ fmax if and only if
⌈

s
n

⌉

≤ fmax, i.e., n ≥
⌈

s
fmax

⌉

.

Similarly, there exists at least one value of k ∈ {0, 1, . . . , 7} such that (n −
1)2k ≤ δ if and only if n ≤ 1+ δ. We conclude that the problem has a solution
(n, f, k) if and only if we can find at least one value of n ∈ IN such that both

conditions are satisfied, i.e.,
⌈

s
fmax

⌉

≤ 1 + δ holds.

A.2 Proof of Proposition 1

Assume that the value of n ∈ Ω is fixed. The minimum value of f is f(n) =

max(fmin,
⌈

s
n

⌉

) and the maximum value of k is k(n) = min(7,
⌊

log2

(

δ
n−1

)⌋

).

Thus, the minimum bandwidth for this fixed value of n is bw(n). The optimal
value of n is the value n∗ which minimizes bw(n) in the interval Ω.

Optimal Design of Virtual Links in AFDX Networks 23

A.3 Proof of Lemma 2

Assume first that k(n) = q < 7. We have q ≤ log2

(

δ
n−1

)

< q + 1 if and only

if 2q ≤ δ
n−1 < 2q+1. This is equivalent to n > 1 + 2−(q+1)δ and n ≤ 1 + 2−qδ.

Since n is integer, this is equivalent to nq+1 < n ≤ nq. Assume now that

k(n) = 7. Note that 7 ≤
⌊

log2

(

δ
n−1

)⌋

is equivalent to 27 ≤ δ
n−1 , which holds

if and only if n ≤ 1 +
⌊

2−7δ
⌋

= n7.

A.4 Proof of Lemma 3

From the definition of nq+1, we have 2−(q+1)δ < nq+1 ≤ 1 + 2−(q+1)δ, which
yields 2−qδ < 2nq+1 ≤ 2 + 2−qδ. But since 2nq+1 ∈ IN, 2nq+1 > 2−qδ implies
that 2nq+1 ≥ 1 + ,2−qδ- = nq. Moreover, since 2nq+1 ∈ IN, 2nq+1 ≤ 2 + 2−qδ
implies that 2nq+1 ≤ 1 + (1 + ,2−qδ-) = 1 + nq, i.e., nq ≥ 2nq+1 − 1.

A.5 Proof of Lemma 4

To prove (a), observe that
⌈

s
n

⌉

≤ fmin if and only if s
fmin

≤ n, which is

equivalent to n ≥
⌈

s
fmin

⌉

. Statement (b) is just the contrapositive of (a).

Finally, statement (b) implies that f(n) is strictly decreasing on the interval
[

1,
⌈

s
fmin

⌉]

, while statement (a) implies that f(n) is constant for n ≥
⌈

s
fmin

⌉

.

A.6 Proof of Lemma 5

Let n ≤ n7. From Lemma 2, k(n) = 7. Since f(n) is non-increasing on the
interval [1, n7], it yields bw(n) ≥ bw(n7), as claimed. Let us now consider
n such that nq+1 < n ≤ nq with q ∈ {0, 1, . . . , 6}. According to Lemma 2,
k(n) = q for nq+1 < n ≤ nq. Moreover, f(n) is a non-increasing function of n.
Therefore, bw(n) is non-increasing on (nq+1, nq] and thus bw(n) ≥ bw(nq) for
all integers n such that nq+1 < n ≤ nq.

A.7 Proof of Lemma 6

Observe first that J)= ∅ since n0 = nmax ∈ Ω. Let nqmax
= min{x : x ∈ J }

and assume on the contrary that there exists m ∈ Ω such that bw(m) < bw(x)
for all x ∈ J . We have either m ∈ [nmin, nqmax

] or nqmax
< m ≤ nmax. If

m ≤ nqmax
, then, according to Lemma 5, we have bw(m) ≥ bw(nqmax

), i.e.,
a contradiction. Thus m > nqmax

, which is possible if and only if qmax > 0.
However, this implies that there exists q ∈ {0, 1, . . . , qmax − 1} such that

24 Ahmad Al Sheikh et al.

m ∈ (nq+1, nq]. From Lemma 5, we then have bw(m) ≥ bw(nq) which is again
a contradiction. Hence, there exists n∗ ∈ J such that bw(n∗) ≤ bw(m) for all
integers m ∈ Ω.

A.8 Proof of Lemma 7

According to Lemma 2, k(nq) = q and k(nq+1) = q+1. We thus have to show
that (f(nq) + c) 2−q > (f(nq+1) + c) 2−(q+1), i.e.,

2f(nq) + c > f(nq+1). (15)

Assume nq+1 ≥
⌈

s
fmin

⌉

. Since nq ≥ nq+1, Lemma 4.(a) states that f(nq) =

f(nq+1) = fmin. In this case, equation (15) clearly holds, which proves the re-

sult. Assume on the contrary that nq+1 <
⌈

s
fmin

⌉

which, according to Lemma

4.(b), implies that f(nq+1) =
⌈

s
nq+1

⌉

. By definition, f(nq) ≥
⌈

s
nq

⌉

, and thus

2f(nq) + c ≥ 2

⌈

s

nq

⌉

+ c ≥ 2
s

nq

+ c ≥
2s

2nq+1
+ c,

where the last inequality is a direct consequence of Lemma 3. We thus get
2f(nq) + c ≥ s

nq+1
+ c and since the left-hand side is an integer value this

implies that 2f(nq) + c ≥
⌈

s
nq+1

⌉

+ c. Since f(nq+1) =
⌈

s
nq+1

⌉

, it yields

2f(nq)+ c > f(nq+1). Thus equation (15) also holds in this case, which proves
the result.

A.9 Proof of Proposition 2

From Lemma 7, we have bw(y) > bw(z) for all y, z ∈ J such that y > z.
Hence, bw(n∗) < bw(y) for all y ∈ J \ {n∗}. However, according to Lemma 6
there exists x ∈ J such that bw(x) ≤ bw(n) for all n ∈ Ω, which is possible
if and only if x = n∗. We thus have bw(n∗) ≤ bw(n) for all n ∈ Ω. According
to Proposition 1, this implies that (n∗, f(n∗), k(n∗)) is an optimal solution of
Problem (OPT).

A.10 Proof of Lemma 8

Assume s > fmax and thus nmin > 1. Using Lemma 8, we get

n∗ ≤ 2 [nmin − 1] = 2

[⌈

s

fmax

⌉

− 1

]

≤ 2
s

fmax

= 2
s

fmin

fmin

fmax

<

⌈

s

fmin

⌉

Optimal Design of Virtual Links in AFDX Networks 25

where the last inequality is obtained using fmin = 17 < 1
2fmax = 1471

2 . Ac-
cording to Lemma 4, we can conclude that that f∗ > fmin.

A.11 Proof of Lemma 9

The assumptions imply that k∗ =
⌊

log2

(

δ
nmin−1

)⌋

. From

log2

(

δ

nmin − 1

)

− 1 < k∗ ≤ log2

(

δ

nmin − 1

)

,

we get nmin − 1 ≤ 2−k∗

δ < 2 [nmin − 1], and this implies that nmin ≤ n∗ =
1 +

⌊

2−k∗

δ
⌋

≤ 2 [nmin − 1], as claimed.

B Proofs of the results in Section 3

B.1 Proof of Lemma 10

According to Theorem 1, nmin(Ai) = 1 implies that k(Ai) = 7. Moreover,
since δ(Ai) < 27, we have n(Ai) = 1 +

⌊

2−7δ(Ai)
⌋

= 1 and thus f(Ai) =
⌈

s(Ai)
1

⌉

= s(Ai) ≥ fmin. It yields

K
∑

i=1

bw(Ai) = 2−7

(

K
∑

i=1

f(Ai) +Kc

)

= 2−7

(

K
∑

i=1

s(Ai) +Kc

)

= 2−7 (s(A) +Kc) . (16)

B.2 Proof of Proposition 4

Note first that δ(A) < 27 and nmin(A) = 2 implies that k(A) ≤ 6. Moreover,

we have n(A) = 2 and f(A) =
⌈

s(A)
2

⌉

> fmin according to Lemmata 8 and 9.

With Corollary 1, and the fact that 0x1 ≥ x, we thus obtain

bw(A)
∑2

i=1 bw(Ai)
≥ 27−k(A) s(A)/2 + c

s(A) + 2c
= 26−k(A) s(A) + 2c

s(A) + 2c

≥ 1. (17)

26 Ahmad Al Sheikh et al.

C Proofs of the results in Section 3.3

C.1 Proof of Lemma 11

We first show that the conjecture is equivalent to the following condition:

bw(A) >
∑

m∈A

⌈

s(m)

n(m)

⌉

2−k(m) ∀A ⊂ M. (18)

Indeed, if Conjecture 1 holds true, then clearly, since {A} is a partition of
A, assertion (18) also holds true. Conversely, if (18) holds true, then for any
partition {Ai}i=1,...,K of A, it holds that

K
∑

i=1

bw(Ai)>

K
∑

i=1

∑

m∈Ai

⌈

s(m)

n(m)

⌉

2−k(m)=
∑

m∈A

⌈

s(m)

n(m)

⌉

2−k(m).

However, since we have assumed that nmin(m) = 1, we have k(m) =
7 and since δ(m) < 27 this implies that n(m) = 1 for all m ∈ M. Thus,
under Assumption 2, condition (18) can be equivalently written as bw(A) >
2−7 s(A), ∀A ⊂ M.

C.2 Proof of Proposition 5

According to Theorem 1, Condition 6 is trivialy satisfied if s(A) ≤ fmax.
Assume therefore that s(A) > fmax, i.e., nmin(A) ≥ 2. Together with δ(A) <
27, this implies that k(A) ≤ 6. Thus, with Lemma 9, we obtain bw(A) =
(⌈

s(A)
n(A)

⌉

+ c
)

2−k(A), which implies that

bw(A) >

(

s(A)

n(A)
+ c

)

2−k(A). (19)

Assume first that k(A) = 6. Since n(A) and k(A) are solutions of problem
OPT, the constraint (n(A) − 1) 2k(A) ≤ δ(A) < 27 has to be satisfied, which
is only possible if n(A) = 2. In this case, (19) yields

bw(A) >

(

s(A)

2
+ c

)

2−6 = (s(A) + 2c) 2−7 > 2−7 s(A),

and the conjecture holds true. Let us now assume that k(A) < 6. In this case,
the condition (n(A)− 1) 2k(A) ≤ δ(A) < 27 implies that n(A) 2k(A) ≤ 27, and
we thus obtain from (19) that

bw(A) >
s(A)

n(A) 2k(A)
+ c 2−k(A) ≥

s(A)

27
+ c 2−k(A) > 2−7 s(A),

which proves that the conjecture also holds true in this case.

Optimal Design of Virtual Links in AFDX Networks 27

Acknowledgements The work presented in this paper was conducted under the research
project SATRIMMAP (SAfety and Time Critical Middleware for future Modular Avionics
Platforms) which is supported by the French National Agency for Research (ANR).

References

1. Ahuja, R., Magnanti, T., Orlin, J., Weihe, K.: Network flows: theory, algorithms, and
applications. Prentice hall Englewood Cliffs, NJ (1993)

2. Airlines electronic engineering committee (AEEC): Aircraft data network, Part 7:
Avionics Full Duplex Switched Ethernet (AFDX) Network. ARINC specification 664
(2005)

3. Al-Sheikh, A., Brun, O., Hladik, P.E., Prabhu, B.: Strictly Periodic Scheduling in IMA-
based Architectures. Real-Time Systems (2012). URL http://dx.doi.org/10.1007/

s11241-012-9148-y

4. Authority, F.: 178B, Software considerations in airborne systems and equipment certi-
fication. DO-178B/ED-12B, Radio Technical Commission for Aeronautics (1992)

5. Charara, H.: évaluation des performances temps réel de réseaux embarqués avioniques.
Ph.D. thesis, Institut national polytechniques de Toulouse (2007)

6. Charara, H., Scharbarg, J.L., Ermont, J., Fraboul, C.: Methods for bounding end-to-end
delays on an AFDX network. In: 18th Euromicro Conference on Real-Time Systems,
2006 (2006)

7. Crichigno, J., Barán, B.: A multicast routing algorithm using multiobjective optimiza-
tion. Telecommunications and Networking-ICT 2004 pp. 63–74 (2004)

8. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM Journal on Applied Mathematics
16(1), 1–29 (1968)

9. Hwang, F., Richards, D.: Steiner tree problems. Networks 22(1), 55–89 (1992)
10. ILOG CPLEX: http://www.ilog.com/products/cplex/
11. Lauer, M., Ermont, J., Boniol, F., Pagetti, C.: Latency and freshness analysis on IMA

systems. In: IEEE 16th Conference on Emerging Technologies & Factory Automation
(ETFA), pp. 1–8 (2011)

12. Martin, S., Minet, P.: Schedulability analysis of flows scheduled with FIFO: applica-
tion to the expedited forwarding class. In: 20th International Parallel and Distributed
Processing Symposium (IPDPS 2006) (2006)

13. Pióro, M., Medhi, D., service), S.O.: Routing, flow, and capacity design in communica-
tion and computer networks. Citeseer (2004)

14. SAE ARP4754: Certification considerations for highly-integrated or complex aircraft
systems. Systems Integration Requirements Task Group AS-1C, ASD, Society of Auto-
motive Engineers, Inc. (1995)

15. Scharbarg, J.L., Ridouard, F., Fraboul, C.: A Probabilistic Analysis of End-To-End
Delays on an AFDX Avionic Network. IEEE Transactions on Industrial Informatics pp.
38–49 (2009)

16. Seok, Y., Lee, Y., Choi, Y., Kim, C.: Explicit multicast routing algorithms for con-
strained traffic engineering (2002)

17. Spitzer, C.: Digital avionics systems. McGraw-Hill Inc. (1993)
18. Spitzer, C.: The avionics handbook. CRC Press (2001)
19. Watkins, C., Walter, R.: Transitioning from federated avionics architectures to Inte-

grated Modular Avionics. In: Proceedings of the IEEE/AIAA 26th Digital Avionics
Systems Conference (DASC’07) (2007)

20. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach. evolutionary computation, IEEE transactions on
3(4), 257–271 (1999)

