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Empirical Mode Decomposition: An Analytical
Approach for Sifting Process

Eric Deléchelle, Jacques Lemoine, and Oumar Niang

Abstract—The present letter proposes an alternate procedure
that can be effectively employed to replace the essentially algo-
rithmic sifting process in Huang’s empirical mode decomposition
(EMD) method. Recent works have demonstrated that EMD acts
essentially as a dyadic filter bank that can be compared to wavelet
decompositions. However, the origin of EMD is algorithmic in
nature and, hence, lacks a solid theoretical framework. The
present letter proposes to resolve the major problem in the EMD
method—the mean envelope detection of a signal—by a parabolic
partial differential equation (PDE)-based approach. The proposed
approach is validated by employing several numerical studies
where the PDE-based sifting process is applied to some synthetic
composite signals.

Index Terms—Empirical mode decomposition (EMD), mean en-
velope, parabolic equation.

1. INTRODUCTION

HIS LETTER puts forth an alernative to the problem of

mean-envelope estimation of a signal, which is a crucial
step in the empirical mode decomposition (EMD) method, orig-
inaly proposed by Huang et al. [1]. Although it showed remark-
able effectiveness in some applications [2]—[5], this method is
essentially algorithmic in nature and, hence, suffers from the
drawback that there is no well-established analytical formula-
tion on the basis of which any theoretical analysis and perfor-
mance evaluation can be carried out. The purpose of this letter,
therefore, is to contribute an analytical framework for a better
understanding of the EMD method. Therefore, we propose a
fourth-order nonlinear partial differential equation system that
can solve the problem of local mean estimation of a signal. The
asymptotic solution of this system of coupled equations leads
to the so-called “mean envelope” and intrinsic mode functions
(IMFs) of the signal.

II. EMD

This section presents the EMD method in a nutshell. All the
details regarding the implementation of the EMD algorithm and
Matlab EMD codes are fully available in [6] and [7]. Essentials
of the EMD method iteratively decomposes a complex signal
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(i.e., a signal with several characteristic time scales coexisting)
into several elementary AM-FM-type components, called IMFs.
The underlying principle of this decomposition is to locally
identify the most rapid oscillations in the signal, defined as a
waveform interpolating interwoven local maxima and minima.
To do so, the local maxima points (and, respectively, the local
minima points) are interpolated with a cubic spline, to determine
the upper (and, respectively, the lower) envelope. The mean en-
velope (i.e., the half sum of the upper and the lower envelopes)
is then subtracted from the initial signal, and the same interpola-
tion scheme is reiterated on the remainder. The so-called sifting
process terminates when the mean envelope is reasonably zero
everywhere, and the resultant signal is designated as the first
IMF. The higher order IMFs are iteratively extracted, applying
the same procedure for the initial signal, after removing the pre-
vious IMFs. In the original definition of IMF [1], to be an IMF
a signal must satisfy two criteria, the first one being that the
number of local maxima and the number of local minima must
differ by at most one and the second that the mean of its upper
and lower envelopes must equal zero. So, for any one-dimen-
sional discrete signal s,, = s[n], EMD can finally be presented
with the following representation:

K

sn =y imfyy + 7y M

k=1

where imfy, is the kth mode (or IMF) of the signal, and r is the
residual trend (a low-order polynomial component). The sifting
procedure generates a finite (and limited) number of IMFs that
are nearly orthogonal to each other [1]. In accordance with the
nature of this decomposition procedure, the technique decom-
poses data into K fundamental components, each with a dis-
tinct time scale where the first component has the smallest time
scale. As the decomposition proceeds, the time scale increases,
and hence, the mean frequency of the mode decreases.

A. EMD-Related Works

Several research efforts on the EMD method have been
specifically addressed to the algorithm improvement [8],
experimental characterization of fractional Gaussian noise
decomposition showing spontaneous emergence of a filter
bank structure, almost dyadic and self-similar, and resulting
in a possible Hurst’s exponent estimation [9]-[12]. Several
works have proposed different approaches for two-dimensional
(2-D) extension of EMD, including a row-wise/columnwise
decomposition, in the spirit of the popular nonstandard wavelet
transform, or a truly two-dimensional version of EMD [13],
[14] and more recently in [15]. If one is permitted to draw a
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fast conclusion, the EMD method will appear as a simple one,
a local and fully data-driven approach, adapted to nonlinear
oscillations. Moreover, the combination of the EMD method
and the associated Hilbert spectral analysis can offer a powerful
method for nonlinear and nonstationary data analysis [1].

B. Drawbacks of EMD

During the sifting process of the standard EMD [1], a cubic
spline-based interpolation method is a crucial step to create the
upper and the lower envelopes of the data set. If the cubic splines
are fitted at the extreme points, that can produce several incon-
veniences: 1) problems can occur near the terminating points,
2) end swings can eventually propagate inward, and 3) the over-
shoots and the undershoots may become a common phenom-
enon. In 2-D versions, the main drawbacks of EMD are the def-
initions of the extrema of an image (or a surface) and the choice
of the interpolation method for application on a set of scattering
points. Moreover, such a decomposition in two dimensions [13],
[14] is extremely time consuming. Note that a B-spline method
is proposed in [15] and is O(N), where N is the number of ele-
ments in the 2-D image. The main drawback is that EMD is lim-
ited to the numerical simulations and suffers from the lack of a
formal mathematical framework beyond it. Despite some works
reported in [16], EMD formalism remains an exciting challenge.

III. PARTIAL DIFFERENTIAL EQUATION
(PDE)-BASED FORMULATION

In order to implement sifting procedure in a PDE-based
framework, the following processes are based on the definition
of characteristic points of a function: turning points and cur-
vature points. The present letter focuses its interest on turning
points, which are minima, maxima, and inflection points, de-
fined by the zeros of their first and/or second derivatives, when
these exist. The discussions in the following two subsections
make use of fourth-order parabolic equations of the form

St = _g(x)srmmm (2)

where s = s(z,t). Equation (2) can be viewed as a long-range
diffusion (LRD) equation! with variable coefficient g(z) that
depends on position and more precisely on some characteristic
points of the signal to be decomposed. As a first proposition, we
define a coupled PDE’s system in place of the sifting process to
estimate lower and upper envelopes. To continue, a second for-
mulation is given in order to directly estimate the mean envelope
through the inflection points.

In the following, we use the notation so(z) = s(z,t = 0)
for the initial condition and s..(z) = s(z,t = oo) for the
asymptotic solution of (2).

A. Coupled PDE’s Formulation

A simple method to estimate the mean envelope is to formu-
late a coupled PDE’s system to mimic the sifting process ex-
actly, based on the estimation of the upper and the lower en-
velopes. Here, the turning points are constituted of the maxima

ILRD equations usually incorporate short- and long-range terms. See [17, p.
244] for further details.
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Fig. 1. Decomposition of a Dirac impulse. Five first components (right

column) and residuals (left column) of the decomposition of an impulse signal
(shown in the top plot). The components labeled ¢; to c¢5 (right) are equivalent
to impulse responses of a filter bank (compare with the results from EMD
reported in [12]).

and the minima of the signal to be decomposed, respectively.
This coupled PDE’s system can be described as

{5?' = —g+((80)z, (So)zm)sjzm.r 3)

5 = _g_((80)17 (So)l“-r)sz_zz.r'

When the system (3) described in the equation converges, the
asymptotic solutions s (x) and s () represent the upper and
the lower envelops of the signal sg, respectively. Hence, the
mean envelope is obtained by

1 -
s00() = S [s% () + s (@)]- @
In (3), stopping functions g* depend on both the first- and the
second-order signal derivatives, with g* > 0. For example

gt = %Hsign((so)zﬂ +sign((so)ee) + 1. (5)

In this manner, g% = 0 at maxima of sg and g~ = 0 at minima
of sg. So, LRD acts only between the two consecutive maxima
(similarly minima) points until the fourth-order derivative of
s(x,t) gets canceled. Consequently, after convergence, the re-
sulting signal st (x) [similarly s, ()] is a piecewise cubic
polynomial curve interpolating the successive maxima (simi-
larly minima) of a signal.

B. Simple PDE Formulation

Here, the main challenge that lies ahead of us is a direct es-
timation of the mean envelope. Here, the function g(z) is now
a positive function of second derivative of the signal so(z). For
example, g(z) = |(S0)z=| and the equation can be described as

The process of LRD is stopped at characteristic points of the
signal s where the second-order derivatives of so(z) undergoes
change of sign. These points are inflection points and are located
between two successive extrema of so(z). So, LRD acts only
between two consecutive inflection points until the fourth-order
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Fig. 2. PDE-based signal decomposition. In this first example, a composite signal (left, first row), resulting from the superposition of 2 triangular (s; and s3)
waveforms and one tone (s2), is decomposed into its three expected elementary components labeled ¢; to ¢z (right, rows 2 to 4). Residual component of the
decomposition is also given in the first row (compare these results with those obtained using EMD algorithm [8, Fig. 2]).

derivative of s(z,t) gets canceled. Consequently, after conver-
gence, the resulting signal s..(z) is a piecewise cubic poly-
nomial curve interpolating the successive inflection points of
so(x). An interesting modification of (6) is

St = _ISign((SO)zz)lszxxw- (7)
In (5) and (7), the sign function sign(z) is replaced by a regular-
ized version. A possible expression can be given by sign, (z) =
(2/m)atan(rz /).

C. Numerical Solution

The numerical solution for the coupled PDE’s system is im-
plemented with a Crank—Nicolson scheme (with A = 0.5 and
Neumann boundary condition)

SR —gi (Dlsom D280n)

x Dy(AsET 4 (1 — X\)sk)

5 ®)
where s = sT stands for the upper or the lower envelope signal,
and Dy = DYD~, Dy = DyD5, where DT and D~ are for-
ward and backward first difference operators on the & dimen-
sion. On other hand, the approximation of the stopping func-

tions demands much attention and can be described by

9((50) (50)zz) = g(D150, D2so) 9

with D1z = m(D%z,D™z). Here, m(a,b) stands for the
minmod limiter, which can be expressed as

m(a,b) = (10)

%(sign(a) + sign(b)) - min(|al, |b]).

For (7), the Crank—Nicolson implicit method is also used.
Hence, the discretization of (7) (with A = 0.5) can be repre-
sented as

R+l ok
- At " = Isign,, (Dason)|

X Dy(AspT 4 (1= A)sh).

n

(11

IV. RESULTS

To give a concise presentation, the following illustrating re-
sults were obtained using the coupled PDE’s process (3). Equa-
tion (7) is also capable of producing similar results but requires
a careful—and, hence, time consuming—attention to step-time
value At. Contrary to the solutions of (11), solutions of (8) are
less sensitive to step time. All IMFs were obtained in a small
number (<8) of iterations in the PDE-based sifting procedure
and with a constant time step (for example At = 20) to assure
relatively fast convergence of the process. In order to make a
proper comparison, the examples described in [8] and [12] are
again considered. Fig. 1 illustrates the modewise decomposition
of a Dirac impulse. It can be easily seen that the wavelet-like
form of the successively extracted five first components are in
agreement with the results reported in [12]. The first example of
signal decomposition consists of a sum of two triangular wave-
forms and a tone (presented in Fig. 2). The second example is a
composite signal originating from the superposition of two sinu-
soidal FM signals and one Gaussian logon? (presented in Fig. 3).
In this case, the components overlap in both time and frequency,
thus disabling the components to be separated by any nonadap-
tive filtering technique. In all these examples, both linear and
nonlinear oscillations are effectively separated.

2A Gaussian logon is an FM tone modulated by a Gaussian, so it is defined
on a portion of a time-frequency space.
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PDE-based signal decomposition. In this second example, a composite signal (left column, first row), resulting from the superposition of two sinusoidal

FM signals (s; and s») and one Gaussian logon (s3), is decomposed in its three expected elementary components labeled ¢; to ¢5 (right column, rows 2 to 4). The
residual component of the decomposition is also given in the first row. For comparison, IMF and the residual resulting from classical EMD are also shown (IMFs

are labeled as imf; to imf3, shown in the middle column).

V. CONCLUSION

It is a well-known fact that the EMD method is developed
on the basis of an algorithm, and hence, it suffers from a lack
of a full, generally accepted theoretical framework. Hence, it is
of immense importance that an analytical formulation for the
so-called mean envelope be developed for characterization of
this method. The main problems are associated with the fact
that the local mean of a signal depends on its characteristic local
time scales. A novel approach has been presented in this letter,
which estimates the mean envelope of a signal in a PDE-based
framework. The utility of the proposed method has been suc-
cessfully demonstrated with the help of several synthetic sig-
nals, which demonstrate that this approach performs as well as
the classical EMD method. The main objective of this formu-
lation is to contribute analytically to a better understanding of
the EMD method. Furthermore, PDE-based formulation for the
sifting process results in an easier implementation, and it is less
time consuming for 2-D extension of image decomposition than
the method described in [13]. The PDE-based EMD codes are
fully available in [7].
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