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Solving fracture problems using an asymptotic numerical method

The present work deals with the use of asymptotic numerical methods (ANM) to manage crack onset and crack growth in the framework of Continuum Damage Mechanics (CDM). More specifically, an application of regularization techniques to a 1D cohesive model is proposed. The standard "triangle" damageable elastic model, often used in finite element codes to describe fracture of brittle materials, was chosen. Results associated with load-unload cycle showed that ANM is convenient to take numerically this specific non regular behaviour into account.

Moreover, the present paper also shows that the chosen damageable interface model can be introduced in the generalized standard material formalism which unables us to define a complete energy balance associated with the damage process. In such a framework, the new damage state variable is a displacement. Finally, a 1D finite element application to a simple elastic damageable structure is shown to emphasize the potentialities of such an approach.

Introduction

Asymptotic numerical methods (ANM) are based on the computation of a Taylor series expansion per step [START_REF] Cochelin | Méthode Asymptotique Numérique: une technique de résolution des équations non linéaires[END_REF]. Because this is a high order computation technique, it is able to yield very accurate solutions, which is useful to follow highly non-linear response curves as for instance in unilateral contact or in the presence of bifurcations or quasi-bifurcations. Clearly crack propagation and damage mechanics lead to such very non-linear responses. So there is a need to adapt ANM in the case of damage mechanics and this is the subject of the present paper.

ANM has been widely applied to smooth partial differential equations such as non-linear elasticity [START_REF] Cochelin | Méthode asymptotique-numérique pour le calcul non-linéaire géométrique[END_REF][START_REF] Cochelin | Asymptotic-Numerical Method and Padé approximants for non-linear elastic structures[END_REF] and Newtonian fluid mechanics [START_REF] Cadou | ANM for stationary Navier-Stokes equations and with Petrov-Galerkin formulation[END_REF][START_REF] Medale | A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities[END_REF]. It cannot be used directly for non smooth models such as unilateral contact, plasticity or damage, because the Taylor series exists only if the governing equations are defined by smooth functions. Nevertheless the non smooth constitutive equations can be regularised, as proposed in [START_REF] Potier-Ferry M | Traitement des fortes non-linéarités par la méthode asymptotique numérique[END_REF]. The study of anelastic problems by ANM has begun with deformation plasticity [START_REF] Braikat | Méthodes asymptotiques numériques pour la plasticité[END_REF][START_REF] Zahrouni | Asymptotic Numerical Method for nonlinear constitutive laws[END_REF]. Unilateral frictionless contact is the simplest example of non smooth mechanics and ANM has proved to be efficient in this case [START_REF] Aggoune | Asymptotic numerical methods for unilateral contact[END_REF][START_REF] Elhage- | A numerical continuation methodbased on Padé approximants[END_REF].

Application of ANM for problems combining several strong non-linearities can be found in [START_REF] Brunelot | Simulation de la mise en forme à chaud par une méthode asymptotique numérique[END_REF][START_REF] Abichou | Asymptotic numerical method for problems coupling several non-linearities[END_REF]. The treatment of incremental plasticity is more difficult because there one has to manage two unilateral conditions, the first one to describe the elastic-plastic transition, the second for the elastic unloading. Corresponding regularization procedures have been proposed by Assidi et al [START_REF] Assidi | Regularization and perturbation techniques to solve plasticity problems[END_REF] that permits to solve structural problems with elastic-plastic constitutive equations. A similar procedure could be applied in other cases, such as Coulomb friction law or damage mechanics, because these models combine also two different unilateral conditions, the first one in terms of stress and the second one in terms of strain rate, stress rate or of damage rate. In this paper we try to define a relevant ANM computational procedure for damage mechanics using cohesive zone model (CZM) to predict crack propagation.

The subject of the present paper is the use of asymptotic numerical methods (ANM) to manage crack onset and crack growth in the framework of Continuum Damage Mechanics (CDM) with cohesive zone model. [START_REF] Perales | Two field multibody method for periodic homogenization in fracture mechanics of nonlinear heterogeneous materials[END_REF][START_REF] Halphen | On generalized standards materials[END_REF][START_REF] Nguyen Qs | Continuum thermodynamics[END_REF]. For the sake of simplicity, we limited hereafter our analysis to 1-D damageable interface. The interface model considered here is of a classical type, i.e. it relates load to normal displacement discontinuities. This type of model is often used to model initiation of composite delamination [START_REF] Ladevèze | A damage computational method for composite structures[END_REF][START_REF] Corigliano | Some aspect of interlaminar dégradation in composites[END_REF][START_REF] Corigliano | Simulation of damage in composites by means of interface models: parameter identification[END_REF] or crack propagation using CZM. The chosen damageable interface law is the classical "triangle" damageable elastic model [START_REF] Daridon | The stabilizing effects of fiber bridges on delamination cracks[END_REF][START_REF] Daridon | Delamination and fiber bridging modelling in composite samples[END_REF][START_REF] Alfano G | On the influence of the shape of the interface law on the application of cohesive-zone models[END_REF]. However, it must be noticed that extensions of such an analysis to multiaxial loadings and/or non-linear cohesive law [START_REF] Monerie | A model coupling adhesion to friction for the interaction between a crack and a fiber/matrix interface[END_REF][START_REF] Corigliano | Rate-dependent interface models : formulation and numerical applications[END_REF] can be considered using the same approach.

The paper is composed as follows: the constitutive equations of the chosen damageable elastic behaviour are presented in section 2. Their non-regular and regularized versions are successively shown. After a brief reminder of the numerical techniques associated with ANM approaches, various results are shown to underline the relevance and efficiency of the ANM predictions once an appropriate set of regularization parameters has been identified. Section 3 introduces a physically equivalent formulation of the chosen elastic damageable behavior compatible with generalized standard materials formalism [START_REF] Halphen | On generalized standards materials[END_REF][START_REF] Nguyen Qs | Continuum thermodynamics[END_REF]. The new formulation allows us to define a complete energy balance associated with the damage process. The mechanical equivalent of such a formulation change is then shown comparing results directly derived from the physical constitutive equations with those obtained using their thermomechanical version. Finally, Section 4 presents the results associated with interfacial crack propagation. The progressive degradation of a cohesive surface between two cantilever beams was considered, highlighting the interest of ANM approaches for simulating the ruin of engineering structures.

A smooth approximation for the cohesive model

As mentioned above, we limited hereafter our analysis to 1D linear (triangle) damage threshold.

Figure 1 illustrates the classical triangular cohesive zone model (CZM) where f stands for the load applied to a material element while x symbolizes its elongation. The damage threshold can then be represented by a yield function:

g f , x ( ) = f ! ( f c ! k c x) + = 0 , (1) 
where f c and k c are material constants. The elongation at rupture is then defined by x c = f c /k c . The function <.> + stands for the positive part defined by A + = max A, 0 ( ). The accessible physical domain is defined by the negative values of the function

F = f ! ( f c ! k c x) where f ! 0 . It implies that H F f , x ( ) (
) =1 uniquely for the boundary values defined by g f , x ( ) = 0 when H is the Heaviside function defined by:

H A ( ) = 1 if A ! 0 H A ( ) = 0 if A < 0 " # $ % $ , (2) 
The elastic constitutive equation is then written as follow:

f = k 0 1 ! d ( ) x for F( f , x) " 0 and f # 0 (3)
where d represents the damage variable classically defined over [0,1], 0 being associated with a virgin material element and 1 with a cracked element. Let us remind that the region where F would be positive, is not physically admissible. Equation 3 translates the elastic response of the material, k 0 denoting the elastic stiffness of the virgin material. The damage only increases when the material state is on the threshold line ( F = 0 ) and remains on it ( ! F = 0 ) with ! x > 0 . The use of Eqs (1-3) allows then deriving the rate of damage by:

! d = 0 if F f , x ( ) < 0 or (F f , x ( ) = 0 and ! x ! 0) k c x c k 0 x 2 ! x H 1 " x x c # $ % & ' ( if F f , x ( ) = 0 and ! x > 0 ) * + + , + + . ( 4 
)
Equation 4 can be simplified into a unique expression of d ! in order to simplify the regularization process:

! d = k c x c k 0 ! x + x 2 H 1 ! x x c " # $ % & ' H (F f , x ( ) ) with F ! 0 (5) 
Where the positive part of ! x was introduced to ensure that damage does not occur during elastic unloading.

The constitutive equations can be grouped in the following system where the condition

F f , x ( ) ! 0 was translated by H ! F f , x ( ) ( ) : f = k 0 1 ! d ( ) x (a) ! d = k c k 0 x c ! x + x 2 H 1 ! x x c " # $ % & ' H F f , x ( ) ( ) H ! F f , x ( ) ( ) (b) ( ) * * + * * (6) 
Solving this system by using ANM just requires the regularization of the differential equation (6.b.).

Regularization procedure of the damage law

Computing a solution of the system (Eq 6) by using ANM requires the regularization of various functions and operators. As in plasticity [START_REF] Cochelin | Asymptotic-Numerical Method and Padé approximants for non-linear elastic structures[END_REF], specific regular functions 0 ( )

P x + !
, H ! 0 (x) and ! " 0 (x) named respectively "positive part", Heaviside and "sampling" functions were introduced to regularize the operator < . > + , the Heaviside function in the damage rate (Eq 6) and in the threshold function g f , x

( ) (Eq 1) . These functions are defined by: ( ) ( )

( ) ( ) ( ) ( ) 0 0 1 0 0 2 0 2 0 0 2 0 1 2 1 1 2 4 P x x x x H x x x H xH x x + ⎧ = + + ⎪ ⎪ ⎪ ⎛ ⎞ ⎪ ⎜ ⎟ = + ⎨ ⎜ ⎟ + ⎪ ⎝ ⎠ ⎪ ⎪ Π = = - ⎪ + ⎩ η η η η η η η η η (7) 
! " 0 (x) is the regularized version of a function which returns 1 for all values of the criterion x = 0 and 0 if x ! 0 . The function ! " 0 (x) composed with the threshold function g f , x

( ) can be used instead of H ! 0 F f , x ( ) (
) in the damage rate to take into account that f , x ( ) is located upon the damage threshold. In Figure 2 the influence of the dimensionless regularization parameter ! 0 on curves ! " 0 (x) , H ! 0 x ( ) and P ! 0 + x ( ) is presented. We note in Figure 2(a) that for values of ! 0 =10 -4 the solution is close to the Heaviside function . So by using Eqs (6-8), the following regularized expression of the damage rate can be proposed:

! d = k c k 0 ! x 0 P ! 0 + ! x ! x 0 " # $ % & ' x 2 x c H ! 0 1 ( x x c " # $ % & ' ) ! 0 F f , x ( ) ( ) (10) 
The arbitrary parameter ! x 0 is introduced to normalize the elongation rate, in order to use the same dimensionless regularizing parameter for all functions (eq 10). In what follows displacement controlled test will be performed and ! x 0 will be taken equal to the imposed elongation rate.

Computational techniques

This section focuses on the numerical implementation of Eq.( 10) in the ANM framework.

Considering the problem as a function of time and noting U t

( ) = x t ( ) d t ( ) ! " # $ % & , ANM proposes to
develop the unknow U(t), as a time power series:

U t ( ) ! U 0 = t ! t 0 ( ) n U n n =1 N " (11) 
where

U 0 = x t 0 ( ) d t 0 ( ) ! " # # $ % & &
and t 0 refers to the starting point of the current step. The truncation of the series is denoted by N. Recurrence formulae, that can be obtained in a standard way [START_REF] Cochelin | Asymptotic-Numerical Method and Padé approximants for non-linear elastic structures[END_REF][START_REF] Cadou | ANM for stationary Navier-Stokes equations and with Petrov-Galerkin formulation[END_REF][START_REF] Medale | A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities[END_REF][START_REF] Potier-Ferry M | Traitement des fortes non-linéarités par la méthode asymptotique numérique[END_REF] yield

the coefficients U n = x n d n ! " # $
% & of the series. There are now two strategies to solve the system Eq.( 6) ;

The first one is to develop in series f and d. The second one is to reduce system (6) to only one scalar equation by introducing the definition of f(x) (Eq 6a) into the equation defining ! d .

depending only on (d(t), x(t)) and to develop in series only d(t). We chose the second one.

Classically, the length of a ANM step, denoted R, is defined automatically by a simple formula introduced in [START_REF] Medale | A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities[END_REF]:

R = ! U 1 U N " # $ % & ' 1 N (1 ( 12 
)
where ε is a small given number used to check the accuracy of the solution [START_REF] Cochelin | Méthode Asymptotique Numérique: une technique de résolution des équations non linéaires[END_REF], ||.|| is a norm, for instance the Euclidian norm. To evaluate the performance of this method, first, we consider a simple loading-unloading tensile test. The material parameters used for the computational parameter study are

-1 -2 c c 0 { 1N.mm , 1mm, 1N.mm } f x k = = = .
The ANM parameters are {N = 10, ε = 10 -4 }.

Numerical results

All calculations presented hereafter were made using the formal computational code Maple ® . In Figure 3, we present the influence of ! 0 on the numerical step length defined in Eq 12, where each marker materializes the end of a computational step. It is worth noting that only the ten first steps were taken into account for each ! 0 value in order to highlight a classical result of AMN which is an accumulation of steps at damage inception which correspond to stiff damage rate evolution. This has been already underlined in previous works dealing with other regularized problems [START_REF] Cochelin | Asymptotic-Numerical Method and Padé approximants for non-linear elastic structures[END_REF][START_REF] Zahrouni | Asymptotic Numerical Method for nonlinear constitutive laws[END_REF][START_REF] Assidi | Regularization and perturbation techniques to solve plasticity problems[END_REF]. The curves presented in Figures 4 to 6 are obtained for a displacement controlled test such as x(t) = -at(t -1) ! x 0 . In this numerical simulation, we use

! x 0 = 1 mm.s !1 and a = 3 s !1 .
The damage rate is evaluated by Eq. [START_REF] Elhage- | A numerical continuation methodbased on Padé approximants[END_REF]. Figures [START_REF] Cadou | ANM for stationary Navier-Stokes equations and with Petrov-Galerkin formulation[END_REF][START_REF] Medale | A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities[END_REF][START_REF] Potier-Ferry M | Traitement des fortes non-linéarités par la méthode asymptotique numérique[END_REF] present numerical results showing respectively the influence of the regularized parameter ! 0 on the following responses: adimensional load, damage and damage rate with respect to adimensional elongation. Figure 4 shows the adimensional load-elongation diagram. Three stages can be easily pointed out: the linear elastic loading (i), the softening induced by damage growth (ii) and finally the elastic unloading (iii). The influence of ! 0 is clearly observed on these curves small values of ! 0 inducing a response close to the non-regularized behaviour. Figure 5 shows the associated damage responses for the same values of ! 0 . During stage (i) the damage increases all the less since ! 0 is low. During stage (ii) damage increases with respect to eq 10. During stage (iii), a damage steady state can be observed whatever the ! 0 value. The trends observed in the previous figure are amplified in Figure 6 where the damage rate has been plotted. In particular the quasi perfect steady state evolution of the damage during elastic loading can be verified ( ! d ! 0s "1 ).

A smooth approximation of cohesive model in the thermomechanical framework

Cohesive models describe the progressive degradation of material interfaces. The existence of irreversible deformation processes legitimates the use of thermodynamics and the introduction of intrinsic dissipation induced by the damage progress. We used the formalism of generalized standard materials (GSM) [START_REF] Halphen | On generalized standards materials[END_REF] to define a complete energy balance (1 rst principle of Thermodynamics) associated with the deformation process. Amounts of elastic and stored energy, intensity of dissipation and coupling heat sources predicted by the model will be allowed to be compared with experimental assessments as soon as they will be available. This confrontation should then lead to a strengthening of the model consistency [START_REF] Chrysochoos | Use of Full-Field Digital Image Correlation and Infrared Thermography Measurements for the Thermomechanical Analysis of Material Behavior[END_REF][START_REF] Balandraud | Influence of the thermomechanical coupling on the propagation of a phase change front[END_REF][START_REF] Wattrisse | Thermomechanical effects accompanying the localized necking of semi-crystalline polymers[END_REF].

Hereafter the damageable elastic model described by Eq. ( 6) is resumed; a simplified form of the energy balance is chosen to make the thermomechanical model as close as possible to the previous mechanical one.

Hypotheses

Generally speaking the deformation energy spent during a mechanical loading involves energy dissipation, internal energy variation and heat induced by the thermomechanical coupling mechanisms [START_REF] Chrysochoos | Use of Full-Field Digital Image Correlation and Infrared Thermography Measurements for the Thermomechanical Analysis of Material Behavior[END_REF]. In the case of the "triangle" damageable elastic interface behavior, we supposed that damage is a pure dissipative mechanisms and the only one. So the following hypotheses were considered;

(i) Deformation energy is either dissipated by damage mechanisms or elastically stored as long as a load can be applied.

(ii) All the thermomechanical coupling effects are neglected and namely the thermoelastic effects induced by thermal dilatation.

(iii) Only isothermal processes are considered. Consequently the thermodynamic potential does not take into account the heat stored or released and the dissipation potential does not consider irreversibility induced by heat diffusion. The energy dissipation is then only due to damage mechanisms.

Choice of state variables

Quite systematically, thermomechanical models dealing with damage consider d as a state variable. In this work, we proposed to swap d for its equivalent elongation variable x d to simplify the writing of the yield function associated with the dissipation potential. The state variable set is then here (x, x d ).

Figure 1 shows that as soon as damage develops, x = x d and f = f d so that:

f d = ( f c ! k c x d ) = k c x c ! x d ( ) = k 0 (1 ! d)x d (12) 
The equivalent elongation due to damage is then the bounded variable, x d :

x e = k c k 0 + k c x c ! x d = k c k 0 (1 " d) + k c x c ! x c ( 13 
)

State equations

According to the previous energy hypotheses and with the chosen set of state variables, the free energy is written as:

!(x, x d ) = k c 2 x c " x d + x 2 x d , (14) 
The following state equations can then be derived:

f x = k c x c ! x d + x
x d (a)

f x d = ! k c 2 x c x x d " # $ % & ' 2 H x c ! x d ( ) (b) ( ) * * * + * * * , (15) 
The conjugated variables associated with x and x d are respectively f x and

d x f , x f classically
representing the reversible part of the load. It is worth noting that the free energy has been constructed so that this reversible part of the load equals the load itself, f = f x , in order to impose damage as the unique source of irreversibility, as decided before.

Evolution equation

Within GSM formalism, evolution laws are derived from the dissipation potential, a non negative convex function of the flux of state variables. After a Legendre-Fenchel transform, the dissipation potential becomes a dual function of the associated thermodynamic forces. When the behaviour requires the introduction of a threshold, (e.g. elastic domain, solid-solid transition diagram), a 3 rd formulation, particularly convenient, is often adopted. This latter directly uses the threshold function and the normality rule to express the evolution equations. The irreversible part of the load vanishing here, the unique thermodynamic force is d X such that X d = ! f x d [START_REF] Nguyen Qs | Continuum thermodynamics[END_REF]. The triangle shape of the damage threshold can then be translated into a function G of d X that reads:

G( X d ) = X d ! f c 2 " 0 , (16) 
The normality rule leads to:

! x d = 0 if G < 0 (a) ! dG dX d = !, ! " 0 if G( X d ) = 0 (b) # $ % % & % % (17) 
The Lagrange multiplier λ is strictly positive when damage develops, i.e. when the thermodynamic state is and remains on the threshold function. As expected, this can be written:

! x d = ! x if G( X d ) = 0 and ! G( X d ) = 0 (18) 
Using the Heaviside function introduced in Eq.( 5), the rate of x d can be rewritten whatever the situation:

! x d = ! x + H (G( X d )) (19) 

Energy balance

Let us consider now an elongation-controlled loading. For the sake of simplicity we only consider loads starting from the virgin state (i.e. d e ( 0) x t x = = ). At this point, two elementary cases can be considered:

Elastic loading: in this case, the elongation range x max is less than x e . No damage occurs, the dissipated energy remains equal to zero and the deformation energy is elastically stored:

max 2 e max max e def e max 0 d ( ) 2 x k x x x w f x w x ! = = = " ( 20 
)
No dissipation occurring during the unloading from x max to 0, the mechanical cycle is then a thermodynamic cycle.

Loading with damage: The maximal elongation x max is now greater than x e , as we consider the operating point on the damage threshold, we have x max = x d then the energy balance can be written as:

x max > x e w def = w e + w d w def = f dx 0 x max ! = k c 2 k e x c 2 k e + k c " x c " x max ( ) 2 # $ % % & ' ( ( 
w e = 1 2 f d x d = k c 2 x c " x max ( ) x max w d = X d dx d x e x max ! = f c 2 x max " x e ( 
)

) * + + + + + , + + + + + (21) 
The elastic energy being fully released during the unloading from x max to 0, the deformation energy associated with the cycle is then completely dissipated and the loading cycle is no longer a thermodynamic cycle even if the free energy variation vanishes over such a cycle.

Figure [START_REF] Braikat | Méthodes asymptotiques numériques pour la plasticité[END_REF] shows in the load elongation diagram, the areas corresponding to the different terms of the energy balance. Figure [START_REF] Zahrouni | Asymptotic Numerical Method for nonlinear constitutive laws[END_REF] presents the evolution of the energy balance until rupture.

Numerical results

As in the previous approach the elongation depends on time, it is natural to sight that the development parameter of the unknown, denoted U(t), is the time, where U t

( ) =
x t ( )

x d t ( ) ! " # $ % & .
In this case all the unknowns are displacement. We perform, now, numerical simulation using equation 

{ f c = 1Nmm -1 , x c = 1mm, k0 = 1Nmm -2 } .
To determine the convergence radius of each step we use equation eq 12 with ! = 10 "4 . In this section we present the influence of ! 0 on the thermodynamics quantities introduced previously.

First of all we present the influence of ! 0 on the curve adimensional thermodynamic force

X d f c
versus the adimensional elongation. We recall that the damage threshold is

X d f c = 1 2
It is clear on Figure 9 that more ! 0 is small more the regularized threshold function is close to the theoretical one. This implies for large values of ! 0 , typically 10 -2 , X d increases as well before one is on the theoretical threshold (Figure 11) because ! X d is positive instead of null (Figure 12). In Figure 10, we observe that the chosen threshold function is the good one to obtain the triangular cohesive model. In this Figure (Figure 10) we notice the same influence of ! 0 on the state variable f x than those observed previously in figure 4, namely you need small value of ! 0 to get a good agreement between the regularised problem and the real one. The main difference between the two approaches lies in the choice of state variables and threshold function you have to regularise.

Finite element formulation

We present here, a one-D finite element formulation of this cohesive zone model. The structure problem we study is a beam over a damageable elastic foundation defined in Figure 13. This type of modelling is used to study interfacial crack propagation in composite when there is no initial crack [START_REF] Tian | Nonlinear static/dynamic analysis for elasto-plastic laminated plates with interfacial damage evolution[END_REF] or to study crack propagation in adhesive layer [START_REF] Högberg | Constitutive behaviour of mixed mode loaded adhesive layer[END_REF]. We use a classical Bernoulli displacement field associated with linear elasticity under the small strain hypothesis to describe the beam behaviour. We use the thermodynamic framework to describe the constitutive law of the foundation. Then, the variational formulation of the problem is based on the following total potential energy:

P ot s, x d ( ) = ! 1 2 EI "" v s ( ) ( ) 2 ds 0 L # ! k c 2 x c ! x d s ( ) + v s ( ) 2
x d s ( )

ds 0 L # + Fv L
( ) (22) where s which belongs to [0,L] is the abscissa along the beam, v s ( ) is the vertical displacement, E the Young modulus, I the quadratic moment, k c , x c { } the characteristic of the damageable foundation and x d x ( ) the state variable previously introduce associated to its evolution law (Eq 18).

Let us now describe the ANM algorithm is the case of the monotonic loading. The weak formulation of the problem can be express by the following equations :

EI !! v s ( )" !! v s ( ) # k c v s ( )"v s ( )ds 0 L $ + k c ed s ( )v s ( )"v s ( )ds 0 L $ = F t ( )"v L ( ) ed s ( ) = x c x d s ( ) wd s ( ) = v s ( ) x d s ( ) # 1 td s ( ) = wd s ( ) ( ) 2 ! x d s ( ) = ! v s ( ) % 0 td s ( ) + % 0 & ' ( ( ( ( ( ( ) ( ( ( ( ( ( (23) 
The functions ed s ( ),wd s ( ),td s ( ) { } are introduced to simplify equations. Following the ANM methodology, truncated Taylor series are introduced in (23).

x d s ( ) = xd k s ( )t k k = 0 N ! ; v s ( ) = v k s ( )t k k = 0 N ! ed s ( ) = ed k s ( )t k k = 0 N ! ; wd s ( ) = wd k s ( )t k k = 0 N ! td s ( ) = td k s ( )t k k = 0 N ! ; F t ( ) = F k t k k = 0 N ! " # $ $ $ % $ $ $ & ' $ $ $ ( $ $ $ (24) 
The two last equations of Eq 23 can be rewritten as follow to simplify the introduction of truncated Taylor series in the non-linear problem to get linear problem at each order.

ed s ( )x d s ( ) = x c ! x d s ( ) td s ( ) + ! 0 ( ) = ! v s ( )! 0 " # $ % $ (25) 
This yields to N linear problems given by:

The ANM parameter used for studies presented in Figures 14 and 15 is ε=10 -4 , on the presented curves each mark corresponds to the end of a step. Figure 14 presents the mesh influence on the convergence radius, when η 0 =5.10 -3 and N=15. The increase of the number element induces a slight decrease of the convergence radius for the large radius (smooth nonlinearity), and the opposite for the zone where the nonlinearity is stiff (small radius). Figure 15 (a) and (b) show the influence of η 0 on the convergence radius, for a mesh with n elem =15. In figures 15 (a) and (b) the curves are respectively obtained for N=10 and N =20. In the both cases, it is clear that, as in the 1D analysis, a decrease of η 0 induces a decrease of the convergence radius and an increase of N induces an increase of the convergence radius until the theoretical convergence radius is reach. So for a given value of the adimensional displacement at the beam edge, namely V L ( ) / x c = 1, the number of steps needed to achieve this operating point varies from 9 (N=20 and η 0 =1.10 -1 ) to 74 (N=20 and η 0 =1.10 -3 ). Knowing that in a calculation step we calculate and build a tangent operator and N right-hand sides, the optimum time for a complete calculus will depend on relative time of the these two operations. Nevertheless the radius slightly increases for the first step because for small value of η 0 the occurrence of damage is delayed. In Figure 16, we point out the influence of the regularized parameter η 0 on the adimentional thermodynamical state variables

f x d f c and f x f c evaluated at x=L.
The regularization effect of η 0 clearly appears on these curves : the more η 0 is small the nearest of the real problem we are.

Figure 17 presents the distribution along the beam of X d, the thermodynamic force associated with x d captured at the end of different loading steps. In the same way, Figure 18 shows the distributions of f x . In Figure 19, we present the influence of the mesh density on x d and v(x), the vertical displacement of the neutral axis. We notice no localisation of the damage with an increase of numbers of element.

5 Conclusions. We present in this paper an application of the ANM for the cohesive triangle zone model. We also propose a new thermodynamic formulation of this damageable model. This new formulation will facilitate the development of experimental studies regarding the thermodynamical effect that accompanies the damage process. We have implemented in a finite element code the developed model and performed a numerical simulation in the case of a cantilever beam over a non-linear elastic foundation. The obtained results for this 1-D modelling are encouraging.

With the chosen material parameters for the interface, we observe that there is no localisation of the damage with mesh resizing. In further development, we then propose to tackle the complete crack propagation problem with a FE implementation of the ANM based on Automatic Differentiation technique [START_REF] Koutsawa | A generic approach for the solution of nonlinear residual equations. Part I : The Diamant toolbox[END_REF][START_REF] Bilasse | A generic approach for the solution of nonlinear residual equations. Part II : Homotopy and complex nonlinear eigenvalue method[END_REF]. 
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 4656789 Figure 4: Influence of ! 0 on loading curve
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Figure 12 :Figure 13 :Figure 14 :Figure 15 :
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 16 Figure 16 : Influence of ! 0 on the thermodynamical state variables
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 17 Figure 17 : Evolution of X d along the beam
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 1819 Figure 18 : Evolution of f x along the beam

  

  

  19 as elongation damage rate, equation 16 as damage threshold function and equation 15 as state laws. The curves presented Figures 9 to 12 are obtained for the same parameters and loading

	condition as the first study, namely an imposed displacement x(t) = -3t(t -1) ! x 0 . The material
	parameters	used	for	the	computational	parameter	study	are

At the order 0 the initial solution verifies :

at the order 1 :

at the order k : 

Numerical results

We present here a numerical parametric study for a cantilever beam over a damageable foundation, defined on