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Abstract 

The present work deals with the use of asymptotic numerical methods (ANM) to manage crack 

onset and crack growth in the framework of Continuum Damage Mechanics (CDM). More 

specifically, an application of regularization techniques to a 1D cohesive model is proposed. The 

standard “triangle” damageable elastic model, often used in finite element codes to describe 

fracture of brittle materials, was chosen. Results associated with load-unload cycle showed that 

ANM is convenient to take numerically this specific non regular behaviour into account. 

Moreover, the present paper also shows that the chosen damageable interface model can be 

introduced in the generalized standard material formalism which unables us to define a complete 

energy balance associated with the damage process. In such a framework, the new damage state 

variable is a displacement. Finally, a 1D finite element application to a simple elastic damageable 

structure is shown to emphasize the potentialities of such an approach.  
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1 Introduction 

Asymptotic numerical methods (ANM) are based on the computation of a Taylor series 

expansion per step [1]. Because this is a high order computation technique, it is able to yield very 

accurate solutions, which is useful to follow highly non-linear response curves as for instance in 

unilateral contact or in the presence of bifurcations or quasi-bifurcations. Clearly crack 

propagation and damage mechanics lead to such very non-linear responses. So there is a need to 

adapt ANM in the case of damage mechanics and this is the subject of the present paper.  

ANM has been widely applied to smooth partial differential equations such as non-linear 

elasticity [2, 3] and Newtonian fluid mechanics [4, 5]. It cannot be used directly for non smooth 

models such as unilateral contact, plasticity or damage, because the Taylor series exists only if 

the governing equations are defined by smooth functions. Nevertheless the non smooth 

constitutive equations can be regularised, as proposed in [6]. The study of anelastic problems by 

ANM has begun with deformation plasticity [7, 8]. Unilateral frictionless contact is the simplest 

example of non smooth mechanics and ANM has proved to be efficient in this case [9, 10]. 

Application of ANM for problems combining several strong non-linearities can be found in [11, 

12]. The treatment of incremental plasticity is more difficult because there one has to manage two 

unilateral conditions, the first one to describe the elastic-plastic transition, the second for the 

elastic unloading. Corresponding regularization procedures have been proposed by Assidi et al 

[13] that permits to solve structural problems with elastic-plastic constitutive equations. A similar 

procedure could be applied in other cases, such as Coulomb friction law or damage mechanics, 

because these models combine also two different unilateral conditions, the first one in terms of 

stress and the second one in terms of strain rate, stress rate or of damage rate. In this paper we try 

to define a relevant ANM computational procedure for damage mechanics using cohesive zone 



model (CZM) to predict crack propagation. 

The subject of the present paper is the use of asymptotic numerical methods (ANM) to manage 

crack onset and crack growth in the framework of Continuum Damage Mechanics (CDM) with 

cohesive zone model. [14-16]. For the sake of simplicity, we limited hereafter our analysis to 1-D 

damageable interface. The interface model considered here is of a classical type, i.e. it relates 

load to normal displacement discontinuities. This type of model is often used to model initiation 

of composite delamination [17-19] or crack propagation using CZM. The chosen damageable 

interface law is the classical “triangle” damageable elastic model [20-22]. However, it must be 

noticed that extensions of such an analysis to multiaxial loadings and/or non-linear cohesive law 

[23, 24] can be considered using the same approach.  

The paper is composed as follows: the constitutive equations of the chosen damageable elastic 

behaviour are presented in section 2. Their non-regular and regularized versions are successively 

shown. After a brief reminder of the numerical techniques associated with ANM approaches, 

various results are shown to underline the relevance and efficiency of the ANM predictions once 

an appropriate set of regularization parameters has been identified. Section 3 introduces a 

physically equivalent formulation of the chosen elastic damageable behavior compatible with 

generalized standard materials formalism [15-16]. The new formulation allows us to define a 

complete energy balance associated with the damage process. The mechanical equivalent of such 

a formulation change is then shown comparing results directly derived from the physical 

constitutive equations with those obtained using their thermomechanical version. Finally, Section 

4 presents the results associated with interfacial crack propagation. The progressive degradation 

of a cohesive surface between two cantilever beams was considered, highlighting the interest of 

ANM approaches for simulating the ruin of engineering structures. 



  

2 A smooth approximation for the cohesive model 

As mentioned above, we limited hereafter our analysis to 1D linear (triangle) damage threshold. 

Figure 1 illustrates the classical triangular cohesive zone model (CZM) where f stands for the 

load applied to a material element while x symbolizes its elongation. The damage threshold can 

then be represented by a yield function: 

  
g f ,x( ) = f ! ( fc ! kcx)

+
= 0 , (1)  

 where fc and kc are material constants. The elongation at rupture is then defined by xc = fc/kc. The 

function <.>+ stands for the positive part defined by A + = max A,0( ) . The accessible physical 

domain is defined by the negative values of the function   F = f ! ( fc ! kcx)  where   f ! 0  . It 

implies that 
  
H F f ,x( )( ) =1 uniquely for the boundary values defined by 

  
g f ,x( ) = 0  

when H is the Heaviside function defined by: 

  

H A( ) = 1 if A ! 0

H A( ) = 0 if A < 0

"
#
$

%$
, (2) 

The elastic constitutive equation is then written as follow: 

  
f = k0 1! d( )x for  F( f ,x) " 0 and f # 0  (3) 

where d represents the damage variable classically defined over [0,1], 0 being associated with a 

virgin material element and 1 with a cracked element. Let us remind that the region where F 

would be positive, is not physically admissible. Equation 3 translates the elastic response of the 



material, k0 denoting the elastic stiffness of the virgin material. The damage only increases when 

the material state is on the threshold line (  F = 0 ) and remains on it  (   !F = 0 ) with    !x > 0 . The use 

of Eqs (1-3) allows then deriving the rate of damage by: 

   

!d =

0 if F f ,x( ) < 0 or (F f ,x( )=0 and !x ! 0)

kcxc

k0x2
!x H 1"

x
xc

#

$%
&

'(
if F f ,x( ) = 0 and !x > 0

)

*
++

,
+
+

. (4) 

Equation 4 can be simplified into a unique expression of d!  in order to simplify the regularization 

process:  

   

!d =
kcxc

k0

!x
+

x2 H 1!
x
xc

"

#$
%

&'
H (F f ,x( ))  with   F ! 0  (5) 

Where the positive part of   !x  was introduced to ensure that damage does not occur during elastic 
unloading. 

The constitutive equations can be grouped in the following system where the condition 

  
F f , x( ) ! 0 was translated by 

  
H !F f ,x( )( ) : 

   

f = k0 1! d( )x (a)

!d =
kc

k0

xc !x
+

x2 H 1!
x
xc

"

#$
%

&'
H F f ,x( )( )H !F f ,x( )( ) (b)

(

)
**

+
*
*

 (6) 

Solving this system by using ANM just requires the regularization of the differential equation 

(6.b.). 

2.1 Regularization procedure of the damage law 

Computing a solution of the system (Eq 6) by using ANM requires the regularization of various 



functions and operators. As in plasticity [3], specific regular functions 
0
( )P x+

! , 
  
H!0

(x) and 

  
!"0

(x)  named respectively “positive part”, Heaviside and “sampling” functions were introduced 

to regularize the operator < . >+, the Heaviside function in the damage rate (Eq 6) and in the 

threshold function 
  
g f , x( )  (Eq 1) . These functions are defined by: 
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!"0

(x)  is the regularized version of a function which returns 1 for all values of the criterion 

  x = 0  and 0 if   x ! 0 . The function 
  
!"0

(x) composed with the threshold function
  
g f ,x( )  can be 

used instead of 
  
H!0

F f ,x( )( )  in the damage rate to take into account that 
  

f ,x( )  is located upon 

the damage threshold. In Figure 2 the influence of the dimensionless regularization parameter !0  

on curves 
  
!"0

(x) , 
  
H!0

x( )  and 
  
P!0

+ x( )  is presented. We note in Figure 2(a) that for values of 

!0 =10−4 the solution is close to the Heaviside function . So by using Eqs (6-8), the following 

regularized expression of the damage rate can be proposed: 

 
   

!d =
kc

k0

!x0 P!0

+ !x
!x0

"

#$
%

&'

x2 xc H!0
1(

x
xc

"

#$
%

&'
)!0

F f ,x( )( )  (10) 

The arbitrary parameter    !x0 is introduced to normalize the elongation rate, in order to use the same 



dimensionless regularizing parameter for all functions (eq 10). In what follows displacement 

controlled test will be performed and    !x0 will be taken equal to the imposed elongation rate. 

2.2 Computational techniques 

This section focuses on the numerical implementation of Eq.(10) in the ANM framework. 

Considering the problem as a function of time and noting U t( ) = x t( )
d t( )
!

"
#

$

%
& , ANM proposes to 

develop the unknow U(t), as a time power series: 

 U t( ) !U0 = t ! t0( )nUn
n=1

N

"  (11) 

where U0 =
x t0( )
d t0( )
!

"
#
#

$

%
&
&

 and t0  refers to the starting point of the current step. The truncation of the 

series is denoted by N. Recurrence formulae, that can be obtained in a standard way [3-6] yield 

the coefficients Un =
xn
dn

!

"
#

$

%
&  of the series. There are now two strategies to solve the system Eq.(6) ; 

The first one is to develop in series f and d. The second one is to reduce system (6) to only one 

scalar equation by introducing the definition of f(x) (Eq 6a) into the equation defining  !d . 

depending only on (d(t), x(t)) and to develop in series only d(t). We chose the second one. 

Classically, the length of a ANM step, denoted R, is defined automatically by a simple formula 

introduced in [5]: 

 R = !
U1

UN

"

#$
%

&'

1
N (1

 (12) 



where ε  is a small given number used to check the accuracy of the solution [1], ||.|| is a norm, for 

instance the Euclidian norm. To evaluate the performance of this method, first, we consider a 

simple loading-unloading tensile test. The material parameters used for the computational 

parameter study are -1 -2
c c 0{ 1N.mm ,  1mm,  1N.mm }f x k= = = . The ANM parameters are {N = 

10, ε = 10−4}. 

2.3 Numerical results 

All calculations presented hereafter were made using the formal computational code Maple®. In 

Figure 3, we present the influence of !0  on the numerical step length defined in Eq 12, where 

each marker materializes the end of a computational step. It is worth noting that only the ten first 

steps were taken into account for each !0  value in order to highlight a classical result of AMN 

which is an accumulation of steps at damage inception which correspond to stiff damage rate 

evolution. This has been already underlined in previous works dealing with other regularized 

problems [3, 8, 13]. The curves presented in Figures 4 to 6 are obtained for a displacement 

controlled test such as    x(t) =  - at(t -1) !x0 . In this numerical simulation, we use 

   !x0 = 1 mm.s!1 and   a = 3 s!1 . The damage rate is evaluated by Eq.(10). Figures (4-6) present 

numerical results showing respectively the influence of the regularized parameter !0 on the 

following responses: adimensional load, damage and damage rate with respect to adimensional 

elongation. Figure 4 shows the adimensional load-elongation diagram. Three stages can be easily 

pointed out: the linear elastic loading (i), the softening induced by damage growth (ii) and finally 

the elastic unloading (iii). The influence of !0  is clearly observed on these curves small values of 

!0  inducing a response close to the non-regularized behaviour. Figure 5 shows the associated 

damage responses for the same values of !0 . During stage (i) the damage increases all the less 



since !0 is low. During stage (ii) damage increases with respect to eq 10. During stage (iii), a 

damage steady state can be observed whatever the !0 value. The trends observed in the previous 

figure are amplified in Figure 6 where the damage rate has been plotted. In particular the quasi 

perfect steady state evolution of the damage during elastic loading can be verified ( !d ! 0s"1 ). 

3  A smooth approximation of cohesive model in the thermomechanical 
framework 

Cohesive models describe the progressive degradation of material interfaces. The existence of 

irreversible deformation processes legitimates the use of thermodynamics and the introduction of 

intrinsic dissipation induced by the damage progress. We used the formalism of generalized 

standard materials (GSM) [15] to define a complete energy balance (1rst principle of 

Thermodynamics) associated with the deformation process. Amounts of elastic and stored 

energy, intensity of dissipation and coupling heat sources predicted by the model will be allowed 

to be compared with experimental assessments as soon as they will be available. This 

confrontation should then lead to a strengthening of the model consistency [25- 27].  

Hereafter the damageable elastic model described by Eq. (6) is resumed; a simplified form of the 

energy balance is chosen to make the thermomechanical model as close as possible to the 

previous mechanical one. 

3.1  Hypotheses 
Generally speaking the deformation energy spent during a mechanical loading involves energy 

dissipation, internal energy variation and heat induced by the thermomechanical coupling 

mechanisms [25]. In the case of the “triangle” damageable elastic interface behavior, we 

supposed that damage is a pure dissipative mechanisms and the only one. So the following 

hypotheses were considered; 



 
(i) Deformation energy is either dissipated by damage mechanisms or elastically stored as long as 

a load can be applied.  

(ii) All the thermomechanical coupling effects are neglected and namely the thermoelastic effects 

induced by thermal dilatation. 

(iii) Only isothermal processes are considered. Consequently the thermodynamic potential does 

not take into account the heat stored or released and the dissipation potential does not consider 

irreversibility induced by heat diffusion. The energy dissipation is then only due to damage 

mechanisms.  

3.2 Choice of state variables 
Quite systematically, thermomechanical models dealing with damage consider d as a state 

variable. In this work, we proposed to swap d for its equivalent elongation variable xd to simplify 

the writing of the yield function associated with the dissipation potential. The state variable set is 

then here (x, xd). 

Figure 1 shows that as soon as damage develops, x  = xd and   f = fd  so that: 

  

fd = ( fc ! kcxd ) = kc xc ! xd( )
= k0(1! d)xd

 (12) 

The equivalent elongation due to damage is then the bounded variable, xd: 

  
xe =

kc
k0 + kc

xc ! xd =
kc

k0(1" d) + kc
xc ! xc  (13) 

 

3.3 State equations 
According to the previous energy hypotheses and with the chosen set of state variables, the free 

energy is written as: 



  
!(x,xd ) =

kc
2

xc " xd
+ x2

xd
, (14) 

The following state equations can then be derived: 

  

fx = kc xc ! xd
+ x

xd
(a)

fxd
= !

kc
2

xc
x
xd

"

#
$

%

&
'

2

H xc ! xd( ) (b)

(

)

*
**

+

*
*
*

, (15) 

The conjugated variables associated with x and xd are respectively   fx  and 
dxf , xf  classically 

representing the reversible part of the load. It is worth noting that the free energy has been 

constructed so that this reversible part of the load equals the load itself,   f = fx , in order to 

impose damage as the unique source of irreversibility, as decided before.   

3.4 Evolution equation 
Within GSM formalism, evolution laws are derived from the dissipation potential, a non negative 

convex function of the flux of state variables. After a Legendre-Fenchel transform, the dissipation 

potential becomes a dual function of the associated thermodynamic forces. When the behaviour 

requires the introduction of a threshold, (e.g. elastic domain, solid-solid transition diagram), a 3rd 

formulation, particularly convenient, is often adopted. This latter directly uses the threshold 

function and the normality rule to express the evolution equations. The irreversible part of the 

load vanishing here, the unique thermodynamic force is dX  such that 
  
Xd = ! fxd

 [16]. The 

triangle shape of the damage threshold can then be translated into a function G of dX  that reads: 

 
  
G( Xd ) = Xd !

fc
2

" 0 , (16) 

The normality rule leads to: 



   

!xd =
0 if G < 0 (a)

!
dG
dXd

= !, ! " 0 if G( Xd ) = 0 (b)

#

$
%%

&
%
%

 (17) 

The Lagrange multiplier λ is strictly positive when damage develops, i.e. when the 

thermodynamic state is and remains on the threshold function. As expected, this can be written: 

   !xd = !x if G( Xd ) = 0 and !G( Xd ) = 0  (18) 

Using the Heaviside function introduced in Eq.(5), the rate of xd can be rewritten whatever the 

situation: 

   
!xd = !x

+
H (G( Xd ))  (19) 

3.5 Energy balance  

Let us consider now an elongation-controlled loading. For the sake of simplicity we only consider 

loads starting from the virgin state (i.e. d e( 0)x t x= = ). At this point, two elementary cases can be 

considered: 

Elastic loading: in this case, the elongation range xmax is less than xe. No damage occurs, the 

dissipated energy remains equal to zero and the deformation energy is elastically stored: 

max
2

e max
max e def e max0

d ( )
2

x k x
x x w f x w x! = = ="  (20) 

No dissipation occurring during the unloading from xmax to 0, the mechanical cycle is then a 

thermodynamic cycle. 

Loading with damage: The maximal elongation xmax is now greater than xe, as we consider the 

operating point on the damage threshold, we have xmax= xd then the energy balance can be written 



as: 

  

xmax > xe wdef = we + wd

wdef = f dx
0

xmax! =
kc
2

ke xc
2

ke + kc
" xc " xmax( )2

#

$
%
%

&

'
(
(

we =
1
2

fdxd =
kc
2

xc " xmax( )xmax

wd = Xd dxdxe

xmax! =
fc
2

xmax " xe( )

)

*

+
+
+
+
+

,

+
+
+
+
+

 (21) 

The elastic energy being fully released during the unloading from xmax to 0, the deformation 

energy associated with the cycle is then completely dissipated and the loading cycle is no longer 

a thermodynamic cycle even if the free energy variation vanishes over such a cycle. 

Figure (7) shows in the load elongation diagram, the areas corresponding to the different terms of 

the energy balance. Figure (8) presents the evolution of the energy balance until rupture. 

3.6 Numerical results 

As in the previous approach the elongation depends on time, it is natural to sight that the 

development parameter of the unknown, denoted U(t), is the time, where U t( ) = x t( )
xd t( )
!

"
#

$

%
& . In this 

case all the unknowns are displacement. We perform, now, numerical simulation using equation 

19 as elongation damage rate, equation 16 as damage threshold function and equation 15 as state 

laws. The curves presented Figures 9 to 12 are obtained for the same parameters and loading 

condition as the first study, namely an imposed displacement  x(t) =  - 3t(t -1) !x0 . The material 

parameters used for the computational parameter study are 

{ fc  =  1Nmm-1,  xc  =  1mm,  k0 =  1Nmm-2} . To determine the convergence radius of each step 



we use equation eq 12 with ! = 10"4 . In this section we present the influence of !0 on the 

thermodynamics quantities introduced previously. 

First of all we present the influence of !0  on the curve adimensional thermodynamic force 
  

Xd
fc

 

versus the adimensional elongation. We recall that the damage threshold is 
  

Xd
fc

=
1
2

It is clear on 

Figure 9 that more !0  is small more the regularized threshold function is close to the theoretical 

one. This implies for large values of !0 , typically 10-2,   Xd  increases as well before one is on the 

theoretical threshold (Figure 11) because    
!Xd  is positive instead of null (Figure 12). In Figure 10, 

we observe that the chosen threshold function is the good one to obtain the triangular cohesive 

model. In this Figure (Figure 10) we notice the same influence of !0  on the state variable fx than 

those observed previously in figure 4, namely you need small value of !0 to get a good agreement 

between the regularised problem and the real one. The main difference between the two 

approaches lies in the choice of state variables and threshold function you have to regularise. 

4 Finite element formulation 

We present here, a one-D finite element formulation of this cohesive zone model. The structure 

problem we study is a beam over a damageable elastic foundation defined in Figure 13. This type 

of modelling is used to study interfacial crack propagation in composite when there is no initial 

crack [28] or to study crack propagation in adhesive layer [29]. We use a classical Bernoulli 

displacement field associated with linear elasticity under the small strain hypothesis to describe 

the beam behaviour. We use the thermodynamic framework to describe the constitutive law of 

the foundation. Then, the variational formulation of the problem is based on the following total 



potential energy: 

Pot s, xd( ) = !
1
2
EI ""v s( )( )2 ds

0

L

# !
kc
2

xc ! xd s( ) + v s( )2
xd s( ) ds0

L

# + Fv L( )  (22) 

where s which belongs to [0,L] is the abscissa along the beam, v s( )  is the vertical displacement, 

E  the Young modulus, I  the quadratic moment, kc , xc{ }  the characteristic of the damageable 

foundation and xd x( )  the state variable previously introduce associated to its evolution law (Eq 

18). 

Let us now describe the ANM algorithm is the case of the monotonic loading. The weak 

formulation of the problem can be express by the following equations : 

 

EI !!v s( )" !!v s( ) # kcv s( )"v s( )ds
0

L

$ + kced s( )v s( )"v s( )ds
0

L

$ = F t( )"v L( )

ed s( ) = xc
xd s( )

wd s( ) = v s( )
xd s( ) #1

td s( ) = wd s( )( )2

!xd s( ) = !v s( ) %0
td s( ) +%0

&

'

(
(
(
(
(
(

)

(
(
(
(
(
(

 (23) 

The functions ed s( ),wd s( ),td s( ){ } are introduced to simplify equations. Following the ANM 

methodology, truncated Taylor series are introduced in  (23). 



xd s( ) = xdk s( )t k
k=0

N

!    ;   v s( ) = vk s( )t k
k=0

N

!

ed s( ) = edk s( )t k
k=0

N

!    ;   wd s( ) = wdk s( )t k
k=0

N

!

td s( ) = tdk s( )t k
k=0

N

!     ;    F t( ) = Fkt
k

k=0

N

!

"

#

$
$
$

%

$
$
$

&

'

$
$
$

(

$
$
$

  (24) 

The two last equations of Eq 23 can be rewritten as follow to simplify the introduction of 

truncated Taylor series in the non-linear problem to get linear problem at each order. 

 

ed s( )xd s( ) = xc
!xd s( ) td s( ) +!0( ) = !v s( )!0

"
#
$

%$
 (25) 

This yields to N linear problems given by: 

At the order 0 the initial solution verifies : 

EI !!v0 s( )" !!v s( ) # kcv0 s( )"v s( )ds
0

L

$ + kc ed0 s( )v0 s( )( )"v s( )ds
0

L

$ = F0"v L( )

ed0 s( ) = xc
xd0 s( )

xd0 s( ) = kc

k0 + kc

xc

wd0 s( ) = v0 s( )ed0 s( )
xc

#1

td0 s( ) = wd0 s( )wd0 s( )

%

&

'
'
'
'
'
'

(

'
'
'
'
'
'

 

 (27) 

at the order 1 : 



EI !!v1 s( )" !!v s( ) # kcv1 s( )"v s( )ds
0

L

$ + kc ed0 s( )v1 s( ) + ed1 s( )v0 s( )( )"v s( )ds
0

L

$ = F1"v L( )

ed1 s( ) = #
xd1 s( )ed0 s( )

xd0 s( )

xd1 s( ) = v1 s( )%
0

td0 +%0

wd1 s( ) = v0 s( )ed1 s( ) + v1 s( )ed0 s( )
xc

td1 s( ) = 2wd0 s( )wd1 s( )

&

'

(
(
(
(
(
((

)

(
(
(
(
(
(
(

 

 (28) 

at the order k : 

EI !!vk s( )" !!v s( ) # kcvk s( )"v s( )ds
0

L

$ + kc ed0 s( )vk s( ) + edk s( )v0 s( )( )"v s( )ds
0

L

$ = Fk"v L( ) + FkMAN

edk s( ) = #
xdk s( )ed0 s( )

xd0 s( ) #
xdk# i s( )edi s( )

xd0 s( )i=1

k#1

%

xdk s( ) = vk s( )&
0

td0 +&0

# k # i( ) xdk# i s( )tdi s( )
xd0 s( )i=1

k#1

%

wdk s( ) = edi s( )vk# i s( )
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4.1 Numerical results 
 

We present here a numerical parametric study for a cantilever beam over a 

damageable foundation, defined on Figure 13. The geometrical parameters for the 

beam are: length L=0,3 m, width b=0,01 m and height h=0,02 m. The elastic 

parameters are: E= 200.109 Pa and ν =0,3. For the damageable foundation we used 

the following parameters: k0=200 Pa, kc=20 Pa, and xc=0,05 m. The load applied at 

the end of the beam, x=L, is given by  F(t) = !F0t  where  
!F0 = 10 Ns-1 , the beam is 

clamped at x=0. 



 

The ANM parameter used for studies presented in Figures 14 and 15 is ε=10-4, on 

the presented curves each mark corresponds to the end of a step. Figure 14 presents 

the mesh influence on the convergence radius, when η0 =5.10-3 and N=15. The 

increase of the number element induces a slight decrease of the convergence radius 

for the large radius (smooth nonlinearity), and the opposite for the zone where the 

nonlinearity is stiff (small radius). Figure 15 (a) and (b) show the influence of η0 on 

the convergence radius, for a mesh with nelem =15. In figures 15 (a) and (b) the 

curves are respectively obtained for N=10 and N =20. In the both cases, it is clear 

that, as in the 1D analysis, a decrease of η0 induces a decrease of the convergence 

radius and an increase of N induces an increase of the convergence radius until the 

theoretical convergence radius is reach. So for a given value of the adimensional 

displacement at the beam edge, namely V L( ) / xc = 1 , the number of steps needed 

to achieve this operating point varies from 9 (N=20 and η0 =1.10-1) to 74 (N=20 

and η0 =1.10-3). Knowing that in a calculation step we calculate and build a tangent 

operator and N right-hand sides, the optimum time for a complete calculus will 

depend on relative time of the these two operations. Nevertheless the radius slightly 

increases for the first step because for small value of η0 the occurrence of damage 

is delayed. In Figure 16, we point out the influence of the regularized parameter η0 



on the adimentional thermodynamical state variables 
 

fxd

fc
and 

 

fx
fc

 evaluated at x=L. 

The regularization effect of η0 clearly appears on these curves : the more η0 is 

small the nearest of the real problem we are.  

 

Figure 17 presents the distribution along the beam of Xd, the thermodynamic force 

associated with xd captured at the end of different loading steps. In the same way, 

Figure 18 shows the distributions of fx . In Figure 19, we present the influence of 

the mesh density on xd and v(x), the vertical displacement of the neutral axis. We 

notice no localisation of the damage with an increase of numbers of element. 

 

5 Conclusions. 
We present in this paper an application of the ANM for the cohesive triangle zone 

model. We also propose a new thermodynamic formulation of this damageable 

model. This new formulation will facilitate the development of experimental 

studies regarding the thermodynamical effect that accompanies the damage 

process. We have implemented in a finite element code the developed model and 

performed a numerical simulation in the case of a cantilever beam over a non-linear 

elastic foundation. The obtained results for this 1-D modelling are encouraging. 

With the chosen material parameters for the interface, we observe that there is no 



localisation of the damage with mesh resizing. In further development, we then 

propose to tackle the complete crack propagation problem with a FE 

implementation of the ANM based on Automatic Differentiation technique [30, 

31]. 
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Figure 1: The “triangle” damageable elastic interface behaviour 
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Figure 2: Influence of !0  on regularized functions 
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Figure 3: Influence of!0  on the numerical step length 
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Figure 4: Influence of !0  on loading curve 
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Figure 5: Influence of !0  on damage variable 
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Figure 6 : Influence of !0  on damage rate evolution 
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Figure 7 : Energy balance at elongation x 
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Figure 8 : Evolution of the energy balance 
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Figure 9: Influence of !0  on  Xd  
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Figure 10 : Influence of !0  on xf  
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Figure 11: Influence of !0  on state variable  xd  
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Figure 12: Influence of !0  on   !xd  
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Figure 13 : Beam over damageable foundation 



 
Figure 14: Mesh influence on convergence radius 
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Figure 15 : Influence of!0  on convergence radius 
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Figure 16 : Influence of!0  on the thermodynamical state variables 
 

 
Figure 17 : Evolution of Xd along the beam 
 

 
Figure 18 :  Evolution of fx along the beam 



 
Figure 19 : Evolution of v(s) and xd(s) along the beam 
 


