
HAL Id: hal-00665434
https://hal.science/hal-00665434v1

Submitted on 1 Feb 2012 (v1), last revised 2 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric PCA of curves and images
Jérémie Bigot, Raul Gouet, Alfredo Lopez

To cite this version:
Jérémie Bigot, Raul Gouet, Alfredo Lopez. Geometric PCA of curves and images. 2012. �hal-
00665434v1�

https://hal.science/hal-00665434v1
https://hal.archives-ouvertes.fr


Geometric PCA of curves and images
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Abstract

We describe a new method for analyzing the shape variability of images, called geomet-
ric PCA. Our approach is based on the use of random deformation operators to model the
geometric variability of images around the same mean pattern. This leads to a new algo-
rithm for estimating shape variability, and the consistency of this procedure is analyzed in
statistical deformable models. Some numerical experiments on real and simulated data sets
are proposed to highlight the benefits of this approach.
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1 Introduction

In many applications observations are in the form of a set of n gray-level images y1, . . . , yn

(e.g. in geophysics, biomedical imaging or in signal processing for neurosciences), which can be
considered as square-integrable functions on a domain Ω, a convex subset of R

d. Such data are
generally two or three dimensional images. In many situations the observed images share the
same structure. This may lead to the assumption that these observations are random elements,
which vary around the same mean pattern. Estimating such a mean pattern and characterizing



the modes of individual variations around this common shape, is of fundamental interest. Princi-
pal components analysis (PCA) is a widely used method to estimate the variations in intensity of
images around the usual Euclidean mean ȳn = 1

n

∑n
i=1 yi. However, such data typically exhibit

not only a classical source of photometric variability (a pixel intensity changes from one image
to another) but also a (less standard) geometric source of variability in shape, which cannot
be recovered by standard PCA. The goal of this paper is to describe a method for analyzing
the shape variability of images, called geometric PCA. We present some numerical experiments
to highlight the benefits of this approach in applications, and we study the consistency of this
procedure in statistical deformable models.

1.1 PCA in a Hilbert space

First, let us introduce some tools and notations to perform a standard PCA in a Hilbert space
that will be used throughout the paper. Let H a separable Hilbert space endowed with inner
product 〈·, ·〉 and associated norm ‖ · ‖. Let Z be an H-valued random variable. If E‖Z‖ < +∞,
then Z has expectation EZ ∈ H which happens to be the unique element satisfying 〈EZ, h〉 =
E〈Z, h〉, for all h ∈ H. If E‖Z‖2 < +∞, then the (population) covariance operator K : H → H
corresponding to Z is given by

Kh = E〈Z − EZ, h〉(Z − EZ) for h ∈ H.

Moreover, the operator K is self-adjoint, positive semidefinite and trace-class. Hence, K is com-
pact, with nonnegative (population) eigenvalues (γλ)λ∈Λ and orthonormal (population) eigen-
vectors (φλ)λ∈Λ and such that

Kh =
∑

λ∈Λ

γλ〈h, uλ〉uλ

where Λ = {1, . . . , dim(H)}, if dim(H) < ∞ or Λ = N otherwise. If we assume that the
eigenvalues are arranged in decreasing order γ1 ≥ γ2 ≥ . . . ≥ 0, the λ-th mode of variation of
the random variable Z, is defined as the function EZ + ρ

√
γλuλ, for λ ∈ Λ, where ρ is a real

playing the role of a weight parameter (typically one takes ρ between −1 and 1). Thus, the
PCA of Z is obtained by diagonalizing the covariance operator K.

Now, let z1, . . . , zn ∈ H and K̂n : H → H, their (empirical) covariance operator defined as

K̂nh =
1

n

n
∑

i=1

〈zi − z̄n, h〉(zi − z̄n), for h ∈ H,

where, z̄n = 1
n

∑n
i=1 zi. As K̂n is also self-adjoint, positive semidefinite and compact, it admits

the decomposition

K̂nh =
∑

λ∈Λ

γ̂λ〈h, ûλ〉ûλ,

where γ̂1 ≥ γ̂2 ≥ . . . ≥ 0 are the (empirical) eigenvalues, and (ûλ)λ∈Λ is the set of (empiri-
cal) orthonormal eigenvectors of K̂n. Now, the λ-th (empirical) mode of variation of the data
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z1, . . . , zn is defined as z̄n + ρ
√
γ̂λûλ, for λ ∈ Λ. Thus, the empirical PCA of the data z1, . . . , zn

is obtained by diagonalizing the operator K̂n.
If H is finite-dimensional, diagonalizing K̂n corresponds to the empirical PCA for vectors in

a finite dimensional Euclidean space. If H = L2(Ω) =
{

f : Ω → R, ‖f‖2
2 :=

∫

Ω |f(x)|2dx <∞
}

diagonalizing K̂n is usually referred to as the method of functional PCA in nonparametric
statistics (see e.g. [RS05] for an introduction to functional data analysis). Various authors (see
e.g. [DPR82], [Sil96] and references therein), under standard probabilistic assumptions on the
data, have studied the consistency of empirical PCA in Hilbert spaces and proposed sufficient
conditions to ensure that the empirical eigenvalues and eigenvectors converge to the population
eigenvalues and eigenvectors as n→ +∞.

Empirical PCA, with H = L2(Ω), applied to a set of n images y1, . . . , yn, is a method to
compute the principal directions of photometric variability of the yi’s around the usual Euclidean
mean ȳn. However, in many situations, images also exhibit a large variability in shape, see the
example of images of handwritten digits displayed in Figure 1 and Figure 2. In such cases, the
standard Euclidean mean ȳn is not a satisfying estimator of the typical shape of each individual
image, see Figure 1 (a) and Figure 2 (a), and standard PCA does not meaningfully reflect the
modes of variability of the data, see Figure 1 (b),(c) and Figure 2 (b),(c). In particular, the
second empirical modes of variation are no longer a single digit but rather the superposition of
two digits in different orientations.

(a) ȳn (b) ȳn + γ̂1û1 (c) ȳn + γ̂2û2

Figure 1: Digit 1. Two first rows: a sample of 8 images out of n = 100 taken from the Mnist
data base [LBBH98] - Last row: standard Euclidean mean, first and second empirical modes of
variation.
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(a) ȳn (b) ȳn + γ̂1û1 (c) ȳn + γ̂2û2

Figure 2: Digit 5. Two first rows: a sample of 8 images out of n = 100 taken from the Mnist
data base [LBBH98] - Last row: standard Euclidean mean, first and second empirical modes of
variation.

It is well known that the usual Euclidean mean ȳn is the minimizer of the sum-of-squares
Euclidean distances to each of the data points, namely

ȳn = arg min
f∈L2(Ω)

1

n

n
∑

m=1

‖f − ym‖2
2.

The idea underlying PCA is that the Hilbert space L2(Ω), equipped with the standard inner
product, is well suited to model natural images. However, the set of such objects (as those
in Figures 1-2) typically cannot be considered as a linear sub-space of L2(Ω). Therefore, the
Euclidean distance ‖f1−f2‖2 is generally not well suited, since it is not adapted to the geometry
of the set to which the images f1 and f2 truly belong. Actually one can see that the images in
Figures 1-2 have mainly a geometric variability in space, which is much more important than
the photometric variability.

1.2 Organization of the paper

In Section 2, we define the geometric PCA of random images. We describe the numerical
implementation of this method, and we illustrate its advantages over standard PCA for the
analysis of handwritten digits. A review of PCA-like methods to analyze geometric variability
of images is also given. In Section 3, we study the consistency of geometric PCA in statistical
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deformable models. We conclude the paper in Section 4 by a short discussion. All proofs are
gathered in a technical Appendix.

2 Geometric PCA

For convenience, we prefer to present the ideas of geometric PCA under the assumption that the
images are observed on a continuous domain Ω. In practice, such data are obviously observed
on a discrete set of time points or pixels. However, assuming that the data are random elements
of L2(Ω) is more convenient for dealing with statistical aspects of an inferential procedure, as it
avoids the treatment of the bias introduced by any discretization of the domain Ω.

2.1 Grenander’s pattern theory of deformable templates

Following the ideas of Grenander’s pattern theory (see [GM07] for a recent overview), one may
consider that the data y1, . . . , yn are obtained through the deformation of the same reference
image. In this setting, images are treated as points in L2(Ω) and the geometric variations of
the images are modeled by the action of Lie groups on the domain Ω. Recently, there has
been a growing interest in Lie groups of transformations to model the geometric variability of
images (see e.g. [BMTY05, TY05a, TY05b, You10] and references therein), and applications
are numerous in particular in biomedical imaging, see e.g. [FLPJ04, JDJG04].

Grenander’s pattern theory leads to the construction of non-Euclidean distances between
images. In this paper, we propose to model shape variability through the use of deformation
operators (acting on Ω) that are parameterized by a separable Hilbert space V, with inner
product 〈·, ·〉. We also assume that Ω is equipped with a metric denoted by dΩ.

Definition 2.1. Let V be a Hilbert space. A deformation operator parameterized by V is a
mapping ϕ : V ×Ω → Ω such that, for any v ∈ V, the function x 7→ ϕ(v, x) is a homeomorphism
on Ω. Moreover, ϕ(0, ·) is the identity on Ω and, for any v ∈ V, there exists v∗ ∈ V such that
ϕ−1(v, ·) = ϕ(v∗, ·).

In this paper, we will study as illustrative examples of deformation operators the cases of
translations, rigid deformations and non-rigid deformations generated by stationary vector fields.

Translations: Let Ω = [0, 1)d, for some integer d ≥ 1 and V = R
d. Let also

ϕ(v, x) = (mod(x1 + v1, 1), . . . ,mod(xd + vd, 1)) , (2.1)

with
ϕ−1(v, x) = (mod(x1 − v1, 1), . . . ,mod(xd − vd, 1)) ,

for all v = (v1, . . . , vd) ∈ R
d and x = (x1, . . . , xd) ∈ Ω, where mod(a, 1) denotes the modulo

operation between a real a and 1. Clearly, ϕ(0, ·) is the identity in Ω and v∗ = −v. Moreover,
it can be shown (see Section 3.3) that ϕ(v, ·) is an homeomorphism.
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Rigid deformations of 2D images: Let Ω = R
2 and V = R × R

2. Let also

ϕ(v, x) = Rαx+ b,

with
ϕ−1(v, x) = R−α(x− b),

for all v = (α, b) ∈ R × R
2, and x ∈ R

2 where Rα is the rotation matrix of angle α and b ∈ R
2

defines a translation. Observe that, ϕ((0, 0), ·) is the identity in Ω and v∗ = (−α,−R−αb).
Clearly, ϕ(v, ·) is an homeomorphism.

Diffeomorphic deformations generated by stationary vector fields: Let Ω = [0, 1]d for some integer
d ≥ 1, and V a separable Hilbert space of smooth vector fields such that V is continuously
embedded the set of functions v : Ω → R

d which are continuously differentiable and such v and
its derivatives vanish at the boundary of Ω. For x ∈ Ω and v ∈ V, define ϕ(v, x) as the solution
at time t = 1 of the following ordinary differential equation (O.D.E.)

dφt

dt
= v(φt), (2.2)

with initial condition φ0 = x ∈ Ω. It is well known (see e.g. [You10]) that, for any v ∈ V,
the function x 7→ ϕ(v, x) is a C1 diffeomorphism on Ω. The inverse of x 7→ ϕ(v, x) is given by
x 7→ ϕ(−v, x), and thus v∗ = −v. Hence, ϕ(v, ·) satisfies the conditions in Definition 2.1.

2.2 Registration

Registration is a widely used method in image processing that consist in geometric transforms
of a set of images y1, . . . , yn ∈ L2(Ω), so that they be compared. This method can be described
as an optimization problem which amounts to minimizing a dissimilarity functional between
images.

Definition 2.2 (Dissimilarity functional). Let ϕ be a deformation operator, as described in
Definition 2.1, v = (v1, . . . , vn) ∈ V := Vn and y = (y1, . . . , yn), with yi ∈ L2(Ω), i = 1, . . . , n.
(a) The template dissimilarity functional corresponding to v, y and f ∈ L2(Ω) is defined as

M t(v,y, f) :=
1

n

n
∑

i=1

∫

Ω

(

yi(ϕ(vi, x)) − f(x)
)2
dx. (2.3)

(b) The groupwise dissimilarity functional corresponding to v and y is defined as

Mg(v,y) :=
1

n

n
∑

i=1

∫

Ω

(

yi(ϕ(vi, x)) −
1

n

n
∑

j=1

yj(ϕ(vj , x))
)2
dx. (2.4)
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Template registration of the images y1, . . . , yn onto some known template f ∈ L2(Ω), is
defined as the problem of minimizing the criterion given by the dissimilarity functional (2.3),
with respect to v in

Vµ := {v = (v1, . . . , vn), vi ∈ Vµ} ,
where Vµ := {v ∈ V : ‖v‖ ≤ µ}, for some regularization parameter µ ≥ 0 whose choice has to
be discussed. Note that imposing the constraint ‖vi‖ ≤ µ allows to explicitly control the norm
of the vector vi which is generally proportional to the distance between the deformation ϕ(vi, ·)
and the identity.

On the other hand, groupwise registration of y1, . . . , yn is defined as the problem of mini-
mizing the functional (2.4) with respect to v in U ⊆ Vµ. Two possible choices for U , defined in
terms of linear constraints on v, are

U0 :=
{

v ∈ Vµ,

n
∑

m=1

vm = 0
}

and U1 :=
{

v ∈ Vµ, v1 = 0
}

. (2.5)

Choosing U = U0 amounts to imposing that the deformation parameters (v1, . . . , vn) used
to align the data have an empirical mean equal to zero, while taking U = U1 corresponds to
choosing y1 as a reference template onto which y2, . . . , yn will be aligned.

Geometric PCA applied to a set of images y = (y1, . . . , yn) is the following two step proce-
dure. In the first step, one applies either a template or a groupwise registration, which leads to
the computation of

v̂ ∈ arg min
v∈Vµ

M t(v,y, f) or v̂ ∈ arg min
v∈U

Mg(v,y). (2.6)

In the second step, a standard PCA is carried out on v̂ = (v̂1, . . . , v̂n), based on the following
covariance operator

K̂nv =
1

n

n
∑

i=1

〈v̂i − vn, v〉(v̂i − vn), for v ∈ V, (2.7)

with vn = 1
n

∑n
i=1 v̂i. This operator admits the decomposition

K̂nv =
∑

λ∈Λ

κ̂λ〈v, φ̂λ〉φ̂λ, (2.8)

where κ̂1 ≥ κ̂2 ≥ . . . ≥ 0 and (φ̂λ)λ∈Λ are the eigenvalues and orthonormal eigenvectors of K̂n.
We now state the definition of geometric PCA of a set of images.

Definition 2.3 (Geometric PCA). Let ϕ be a deformation operator parametrized by V, as
described in Definition 2.1. Let (κ̂λ, φ̂λ)λ∈Λ be the eigenvalues and orthonormal eigenvectors of
the operator K̂n in (2.7). For λ ∈ Λ, the λ-th empirical mode of geometric variation of the data
y1, . . . , yn is the homeomorphism ψ̂λ : Ω → Ω defined by

ψ̂λ(x) = ϕ−1(vn +
√

κ̂λφ̂λ, x), x ∈ Ω. (2.9)

We also denote ψ̂λ,ρ(x) = ϕ−1(vn + ρ
√
κ̂λφ̂λ, x), where ρ ∈ R is a weighting value.

7



After the registration step, we obtain a set of deformed images y1 ◦ϕ(v̂1, ·), . . . , yn ◦ϕ(v̂n, ·),
each of them aligned either with respect to f in the case of template registration, or with respect
to f̂ := 1

n

∑n
j=1 yj(ϕ(v̂j , x)), in the case of groupwise registration. Hence, in the case of template

registration, f ◦ ψ̂λ can be used to visualize the λ-th mode of geometric variation of the data.
Similarly, in the case of groupwise registration, one uses f̂ ◦ ψ̂λ. Note that f̂ can be interpreted
as a mean pattern image. Moreover, the computation of f̂ is closely related to the notion of
Fréchet mean of images, recently studied in [BC11], from a statistical point of view.

2.3 Numerical implementation and application of geometric PCA to hand-

written digits data

In this section we explain in detail the implementation of geometric PCA, in the case of groupwise
registration, using the class of diffeomorphic deformation described in Section 2.1. The method
is applied to a set of n = 30 images, defined on the domain Ω = [0, 1]2, taken from the Mnist
data base of handwritten digits [LBBH98].

2.3.1 Specification of the Hilbert space of parameter V

We choose V as the vector space of functions from Ω to R
2, generated by a B-Splines basis

of functions, because they have good properties for approximating continuous functions and
implementing efficient computations [UAE93a, UAE93b]. Let {bk : Ω → R, k = 1, . . . , p} denote
a set of bi-dimensional tensor product B-Splines, with knots defined on a regular grid of Ω, and
p some integer whose choice has to be discussed. We define V as the space of vector fields of the

form v =
∑p

k=1 ṽkbk, where ṽk = (ṽ
(1)
k , ṽ

(2)
k ) ∈ R

2, k = 1, . . . , p. We denote by v(1), v(2) : Ω → R

the coordinates of v ∈ V, i.e., v(x) = (v(1)(x), v(2)(x)) for x ∈ Ω. Note that the dimension of V
is 2p and that a basis is given by

{(b1, 0), . . . , (bp, 0), (0, b1), . . . , (0, bp)}. (2.10)

We endow V with the inner product

〈u, v〉 := 〈u(1), v(1)〉L + 〈u(2), v(2)〉L, u, v ∈ V,
where 〈u(1), v(1)〉L :=

∫

Ω Lu
(1)(x)Lv(1)(x)dx, 〈u(2), v(2)〉L :=

∫

Ω Lu
(2)(x)Lv(2)(x)dx and L is

a differential operator. As suggested in [BMTY05] we take L = γI + α∆, where I is the
identity operator, ∆ is the laplacian operator and γ, α are positive scalars. By using the basic
properties of differentiation and integration of B-Splines [UAE93a], we derive an explicit formula
for computing the inner product in V, that can be implemented using convolution filters. By an
adequate design of the B-Spline grid, we ensure that the values of v and its derivatives are zero
at the boundary of Ω.

2.3.2 Minimization of the dissimilarity functional Dg

In the case of groupwise registration, we minimize the dissimilarity functional (2.4) over the
set U0 defined in (2.2). Thanks to the above choice for V, the minimization of the criterion
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(2.4) has to be performed over a subset of R
2p. In order to take into account the constraint

‖vi‖ ≤ µ, 1 ≤ i ≤ n, we use a logarithmic barrier approach to obtain an approximate solution.
Then, for the minimization, we use a gradient descent algorithm, with an adaptive step. Such an
algorithm requires the computation of the deformation operator ϕ : V ×Ω → Ω and its gradient,

with respect to the coefficients ṽk = (ṽ
(1)
k , ṽ

(2)
k ) that parameterize the vector field v. In the case

of diffeomorphic deformation operators, ϕ(v, x) corresponds to the solution at time t = 1 of the
ODE (2.2). We solve the O.D.E. using a forward Euler integration scheme. For a comparison
of different methods for solving such O.D.E., we refer to [BZO08]. It can be shown (see Lemma

2.1 in [BMTY05]), that the gradient of ϕ with respect to the ṽk = (ṽ
(1)
k , ṽ

(2)
k )’s has a closed-form

expression.

2.3.3 Spectral decomposition of the empirical covariance operator

Let v̂1, . . . , v̂n be the vector fields in V obtained after the registration step described above. Recall
that the empirical covariance operator of the v̂i’s is defined as K̂nv = 1

n

∑n
i=1〈v̂i − vn, v〉(v̂i −

vn), v ∈ V. In what follows, we describe how to perform the spectral decomposition of K̂n.

Let ṽi = (ṽ
(1)
i , ṽ

(2)
i ) with ṽ

(1)
i = (ṽ

(1)
i,1 , . . . , ṽ

(1)
i,p ) and ṽ

(2)
i = (ṽ

(2)
i,1 , . . . , ṽ

(2)
i,p ) being the coefficients

of v̂i with respect to the base (2.10), i.e. v̂i =
∑p

k=1(ṽ
(1)
i,k , ṽ

(2)
i,k )bk. We identify the Hilbert space

V with R
2p endowed by the inner product

〈ũ, ṽ〉 := ũΣũt, ũ, ṽ ∈ R
2p, (2.11)

where Σ is a 2p × 2p matrix with entries Σj,k = Σj+p,k+p := 〈bj , bk〉L for j, k = 1, . . . , p and

Σj,k := 0 in the other cases. Hence, the operator K̂n can be identified with a 2p × 2p matrix
K̃n, given by

K̃n :=
1

n
ṽṽtΣ,

where ṽ is the 2p × n matrix with i-th column equals to ṽt
i − 1

n

∑n
j=1 ṽ

t
j . The matrix Σ is

symmetric, hence admits a diagonalization Σ = PΛP with Λ diagonal matrix and P tP =
PP t = I. The idea now is to reduce the problem to a standard diagonalization of the symmetric
matrix M := 1

nΛ
1
2P tṽṽtPΛ

1
2 , namely we find the decomposition M = WDW t with D diagonal

matrix and W tW = WW t = I. We obtain the following spectral decomposition of K̃n respect
to the inner product (2.11)

K̃n = UDU tΣ,

where U := P tW . Remark that the columns of U are orthonormal vectors in R
2p with respect

to the inner product (2.11). Indeed, it holds that U tΣU = I. Finally, we define κ̂λ as the λ-th
elements of the diagonal matrix D and we let φ̂λ :=

∑p
k=1(Uk,λ, Uk+p,λ)bk, for λ = {1, . . . , 2p}.

It can be checked that (φ̂λ)2p
λ=1 are orthonormal vectors of V, and we thus obtain that K̂nv =

∑2p
λ=1 κ̂λ〈v, φ̂λ〉Lφ̂λ. If we assume that κ̂1 ≥, . . . ,≥ κ̂2p, then

ψ̂λ,ρ = ϕ−1(vn + ρ
√

κ̂λφ̂λ, ·)
is the λ-th empirical mode of geometric variation according to Definition 2.3.
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2.3.4 Application of geometric PCA to handwritten digits data and comparison

with standard PCA

We now describe the application of geometric PCA to handwritten digits, taken from the Mnist
data base [LBBH98], based on the numerical framework we had described so far. Also, we
illustrate the benefits of geometric PCA over standard PCA.

For the B-Spline base of V, we choose a B-Spline degree equals to 3, as it provides a good
trade-off among smoothness and the size of the support. The number of B-Spline knots is p = 81
arranged in a 9 × 9 regular grid. Such value of p provides a fine B-Spline grid with respect to
an image size of 28 × 28. For defining the differential operator L, we take γ = 100 and α = 1.
Note that γ >> α in order to compensate for scaling factor associated to the inter knot spacing.
Finally, we choose a regularization parameter µ = 10. This value was determined experimentally,
by trying to obtain a good compromise among regularity of the vector fields and matching of
the images, at the registration step.

For each available digit (from 0 to 9), we took n = 30 images and we carried out a geometric
PCA on each of these image sets. In this database, for each digit, one observes a large source
of geometrical variability that can be modeled by diffeomorphic deformations. We proceed by
groupwise registration, as there are no reference images available. To illustrate the advantages
of our procedure, we have also carried out a standard PCA of each digit, which amounts to
analyzing the photometric variability of the data. Thus we compute

ȳn + ρ
√

γ̂λûλ,

the λ-th standard empirical mode of photometric variation of the data as described in Section
1.1. Figures 3, 4 and 5 show the geometric modes of variations by displaying the images

f̂ ◦ ψ̂λ,ρ where f̂(x) =
1

n

n
∑

j=1

yj(ϕ(v̂j , x)),

with λ = 1, 2 and ρ = 2,−2. Results using the standard PCA are also displayed in the same
Figures. We observe that geometric PCA better reflects the main modes of variability of the
digits. In contrast, standard PCA fails in several cases in representing the geometric variability
of some digits, and it results sometimes in a blurring of the images. Also, it can be seen that f̂
is a much better mean pattern of the data than the Euclidean mean ȳn.

2.4 PCA-like methods for analyzing geometric variability

The idea of applying a PCA analysis to the resulting transformation parameters after registration
of a set of images is at the core of several methods to estimate the geometrical variability of
images.
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Figure 3: Visualization of the geometric PCA and standard PCA results for digits 1 to 3. For
each digit, the superior row from left to right corresponds to ȳ, ȳn − 2

√
γ̂1û1, ȳn + 2

√
γ̂1û1,

ȳn − 2
√
γ̂2û2 and ȳn + 2

√
γ̂2û2 respectively. The inferior row from left to right corresponds to

f̂ , f̂ ◦ ψ̂1,−2 , f̂ ◦ ψ̂1,2 , f̂ ◦ ψ̂2,−2 and f̂ ◦ ψ̂2,2. We observe, in several cases, that standard PCA
results (first row of each digit) do not recover well shapes of the digits and produce a blurring of
the images. In contrast, geometric PCA results (second row of each digit) recover the geometric
features of the digits.
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Figure 4: Visualization of the geometric PCA and standard PCA results for digits 4 to 6. For
each digit, the superior row from left to right corresponds to ȳ, ȳn − 2

√
γ̂1û1, ȳn + 2

√
γ̂1û1,

ȳn − 2
√
γ̂2û2 and ȳn + 2

√
γ̂2û2 respectively. The inferior row from left to right corresponds to

f̂ , f̂ ◦ ψ̂1,−2 , f̂ ◦ ψ̂1,2 , f̂ ◦ ψ̂2,−2 and f̂ ◦ ψ̂2,2. We observe, in several cases, that standard PCA
results (first row of each digit) do not recover well shapes of the digits and produce a blurring of
the images. In contrast, geometric PCA results (second row of each digit) recover the geometric
features of the digits.
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Figure 5: Visualization of the geometric PCA and standard PCA results for digits 7 to 9. For
each digit, the superior row from left to right corresponds to ȳ, ȳn − 2

√
γ̂1û1, ȳn + 2

√
γ̂1û1,

ȳn − 2
√
γ̂2û2 and ȳn + 2

√
γ̂2û2 respectively. The inferior row from left to right corresponds to

f̂ , f̂ ◦ ψ̂1,−2 , f̂ ◦ ψ̂1,2 , f̂ ◦ ψ̂2,−2 and f̂ ◦ ψ̂2,2. We observe, in several cases, that standard PCA
results (first row of each digit) do not recover well shapes of the digits and produce a blurring of
the images. In contrast, geometric PCA results (second row of each digit) recover the geometric
features of the digits.
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In [RFS03], a linear and finite dimensional space of non rigid transformations is considered
as the admissible space of deformations on which PCA is carried out. This is the so-called sta-
tistical deformation model that succeed Coote’s active shape models. An important limitation
of this approach is the lack of invertibility of the deformations. In several cases, the invert-
ibility is a desirable property from the point of view of physical (for instance when analyzing
shape variability of a determined organ) and mathematical modelling. Within the context of
linear space of deformations, the non-invertibility issue had been addressed by enforcing the
positivness of the Jacobian determinant [HM06, Sdi08]. However, such methods are unsuited
for further statistical analysis, as statistical procedures on resulting transformation parameters
(such the empirical Euclidean mean), does not lead to invertible transforms. Moreover, the
inverse transforms do not belong to the initial space of transformations.

More recently, diffeomorphisms have been used to model deformations between images in the
context of Grenander’s pattern theory [BMTY05, HBO09, Ash07]. In this framework, the set of
admissible diffeomorphic deformations is considered as a Riemmaniann manifold, and thus first
and second order statistics analysis on manifolds [FLPJ04, Pen06] can be applied to perform
statistical analysis of diffeomorphic deformations [WBR+07, ACPA06, BHO07, HBO07]. Such
diffeomorphisms are constructed as solution of a differential equation governed by a time depen-
dent vector field [BMTY05]. The optimal diffeomorphism after the registration of two images
can be fully characterized by the initial point in time (or equivalently by the initial momentum)
of the associated time dependent vector field. This important momentum conservation property
allows to carry out PCA on the Hilbert space of initial momentums [WBR+07].

A particular sub-class of diffeomorphic deformations is of the set of diffeomorphisms gener-
ated by an O.D.E. governed by stationary vector fields. In this way, diffeomorphisms are directly
characterized by vector fields in a Hilbert space and statistical analysis like PCA can be carried
on these vector fields. Compared to the case of diffeomorphisms generated by nonstationary
vector fields, the computational cost of the registration is considerably smaller, while keeping
comparable accuracy according to experimental results reported in [HBO09, Ash07]. Moreover,
diffeomorphisms generated by stationary vector fields have some desirable properties that allow
simple and fast computations of exponential and logarithms, that is, computing the diffeomor-
phism associated to a vector field and vice versa. Hence, PCA methods for manifolds can be
implemented to analyze shape variability of diffeomorphic deformations generated by stationary
vector fields, see [ACPA06, BHO07, HBO07].

3 Consistency of geometric PCA in statistical deformable mod-

els

In the last decades, in the framework of Grenander’s pattern theory, there has been a growing
interest in the use of first order statistics for the computation of mean pattern from a set of images
[AAT07, AKT10, BC11, BGV09, BGL09] and in the construction of consistent procedures.
However, there is not so much work in the statistical literature on the consistency of second
order statistics for the analysis of geometric variability of images. In particular, the convergence
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of such procedures in simple statistical models has generally not been established.
We study the consistency of geometric PCA, in the context of the following statistical de-

formable model
Yi(x) = f∗(ϕ−1(Vi, x)) + ǫWi(x), x ∈ Ω, i = 1, . . . , n, (3.1)

where

• f∗ is an unknown mean pattern belonging to L2(Ω),

• ϕ is a deformation operator associated to a Hilbert space V, (in the sense of Definition
2.1), equipped with inner product 〈·, ·〉 and induced norm ‖ · ‖,

• V1, . . . , Vn are independents copies of V , a zero-mean, square-integrable V-valued random
variable (i.e. EV = 0 and E‖V ‖2 <∞),

• There exists µ > 0 (regularization parameter) such that P(V ∈ Vµ) = 1,

• ǫ > 0 is a noise level parameter,

• W1, . . . ,Wn are independents copies of a zero mean Gaussian process W ∈ L2(Ω), such
that E‖W‖2

2 = 1,

• (V1, . . . , Vn) and (W1, . . . ,Wn) are mutually independent.

Additionally, we assume that the eigenvalues κ1 ≥ κ2 ≥ . . . ≥ 0 of the population covariance
operator K, defined as

Kv = E〈V, v〉V , v ∈ V, (3.2)

have algebraic multiplicity 1, i.e. κ1 > κ2 > . . . ≥ 0. This implies that the λ-th eigen-gap,
defined as δλ := minλ′∈Λ\{λ} |κλ − κλ′ |, is strictly positive, for any λ ∈ Λ.

Observe that the function f∗ in (3.1) models the common shape of the Yi’s. The Wi’s
represent the individual variations in intensity of the data around the mean pattern f∗, and
thus correspond to a classical source of variability that could be analyzed by standard PCA.
To the contrary, the random elements ϕ−1(Vi, ·) model deformations of the domain Ω, and thus
correspond to a source of shape variability in the data.

Definition 3.1 (Population geometric modes of variations). Let K be the population covariance
operator, defined in (3.2), with (population) eigenvalues κ1 > κ2 > . . . ≥ 0 and (population)
orthonormal eigenvectors φ1, φ2, . . .. For λ ∈ Λ, the λ-th population mode of geometric variation
of the random variable V is the homeomorphism ψλ : Ω → Ω defined by

ψλ(x) = ϕ−1(
√
κλφλ, x), x ∈ Ω.

In this paper we say that geometric PCA is a consistent procedure if, for data Y =
(Y1, . . . , Yn) following model (3.1), and for all λ ∈ Λ, the λ-th empirical mode of geometric
variation ψ̂λ (see equation (2.9)) tends to the λ-th population mode of geometric variation ψλ,
as n → +∞ and ǫ → 0, in a sense to be made precise later on. In this context, the empirical
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modes of geometric variation are obtained from the eigenvalues κ̂λ and the eigenvectors φ̂λ of
the empirical covariance operator

K̂nv =
1

n

n
∑

i=1

〈V̂i − V n, v〉(V̂i − V n), for v ∈ V, (3.3)

where (V̂1, . . . , V̂n) belongs to arg minv∈Vµ M
t(v,Y , f∗) or arg minv∈U M

g(v,Y ). Consequently,
from now on, empirical eigenvalues, eigenvectors and modes of geometric variations will be con-
sidered as random elements.

Remark 3.1. Observe that, for template registration, where v̂ ∈ argminv∈VµM
t(v,y, f∗), each

coordinate v̂i depends only on vi. This fact implies that V̂1, . . . , V̂n are i.i.d. However, this is
not the case for groupwise registration, where v̂i may depend on all the vi’s.

The asymptotic n→ +∞ is rather natural and correspond to the setting of a growing num-
ber of images. On the other hand, the setting ǫ→ 0 corresponds to the analysis of the influence
of the additive term ǫWi in model (3.1). The main result of this section is that geometric PCA is
consistent only in the double asymptotic setting n→ +∞ and ǫ→ 0. This result illustrates the
fact that the photometric perturbations ǫWi, i = 1, . . . , n in model (3.1) have to be sufficiently
small in order to recover the geometric modes of variation.

Definition 3.2. A deformation operator ϕ (see Definition 2.1) is said to be µ-regular if there
exists µ > 0 such that

¡1

=0 o
∫

Ω
f2(ϕ−1(v, x))dx ≤ Aµ

∫

Ω
f2(x)dx, (3.4)

for all f ∈ L2(Ω), v ∈ Vµ and some constant Aµ > 0; and

the mapping v → ϕ(v, ·) from Vµ to C(Ω,Ω) is continuous, where C(Ω,Ω) is the space of
continuous function from Ω to Ω, endowed with the metric dC(ψ, φ) := supx∈Ω dΩ(ψ(x), φ(x)).

Note that if ϕ(v, ·) is sufficiently smooth such that the determinant of its Jacobian matrix
is bounded, that is |det(J(ϕ(v, x))| ≤ Aµ for all v ∈ Vµ and x ∈ Ω, then (3.4) follows from a
change of variable.

Finally, before stating our consistency results, we define convergence in probability in the
double asymptotic setting n → ∞, ǫ → 0. Let Xn,ǫ,Xn,Xǫ,X, n = 1, 2, . . . , ǫ > 0 ran-
dom variables with values on a metric space (S, d). The notation plim

ǫ
Xn,ǫ = Xn stands for

d(Xn,ǫ,Xn) → 0 in probability as ǫ → 0; plim
n

Xn,ǫ = Xǫ denotes d(Xn,ǫ,Xǫ) → 0 in probabil-

ity as n → ∞. Finally, plim
n,ǫ

Xn,ǫ = X is equivalent to plim
n

plim
ǫ
Xn,ǫ = plim

ǫ
plim

n
Xn,ǫ = X.

In this paper, all equalities and inequalities involving random variables are understood in the
almost sure sense. We require the following definition, in our main results: for u, v ∈ V,

sin(u, v) :=
√

1 − 〈u/‖u‖, v/‖v‖〉2.
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3.1 Case of template registration

Let Y = (Y1, . . . , Yn) i.i.d. observations of model (3.1), with deformation operator ϕ and
regularization parameter µ. Let κ̂λ and φ̂λ, λ ∈ Λ, be the empirical eigenvalues and eigenvectors
corresponding to template registration of Y , with f = f∗. Suppose that ϕ is µ-regular and the
mapping ϕ∗ : Vµ → L2(Ω), defined by ϕ∗(v) := f∗ ◦ ϕ−1(v, ·) for v ∈ Vµ, is injective and its

inverse ϕ∗−1 : ϕ∗(Vµ) → Vµ is continuous. Then plim
n,ǫ

κ̂λ = κλ and plim
n,ǫ

sin2(φ̂λ, φλ) = 0, for all

λ ∈ Λ.

Remark 3.2. Observe that, under the hypothesis of Theorem 3.1, the λ-th empirical mode of
geometric variation ψ̂λ converges the population mode of geometric variation ψλ in probability,
when n → +∞ and ǫ → 0, as elements of (C(Ω,Ω), dC). Indeed, this result follows from the
continuity of the mapping v → ϕ(v, ·), which is guaranteed by the µ-regularity of ϕ.

We show below how a stronger regularity assumption on ϕ, allows one to obtain rates of
convergence for κ̂λ and φ̂λ, via a concentration inequality that depends explicitly on n and ǫ.

Under the hypothesis of Theorem 3.1 and if ϕ∗−1 is uniformly Lipschitz (in the sense that
‖u − v‖2 ≤ L(f∗, µ)‖ϕ∗(u) − ϕ∗(v)‖2

2, for every u, v ∈ Vµ and some constant L(f∗, µ) > 0
depending only on f∗ and µ), then

P

(

|κ̂λ − κλ|2 > C(f∗, µ)max(h(u, n, ǫ) +
√

h(u, n, ǫ); g(u, n))
)

≤ exp(−u),

for any u > 0, where C(f∗, µ) > 0 is a constant depending only on f∗ and µ; h(u, n, ǫ) =

ǫ2
(

1 + 2u
n + 2

√

u
n

)

and g(u, n) =

(

u
n +

√

u2

n2 + u
n

)2

.

Take now u∗ > 0 such that

C(f∗, µ)max(h(u∗, n, ǫ) +
√

h(u∗, n, ǫ); g(u∗, n)) < (δλ/2)
2,

then for any 0 < u ≤ u∗

P

(

sin2(φ̂λ, φλ) > (2/δλ)2C(f∗, µ)max(h(u, n, ǫ) +
√

h(u, n, ǫ); g(u, n))
)

≤ 2 exp(−u).

3.2 Case of groupwise registration

In order to prove consistency for groupwise registration, we require model (3.1) to satisfy the
set of identifiability assumptions, shown below. For u,v ∈ V = Vn, let

Dg(u,v) := Mg(u, (f∗1 , . . . , f
∗
n)) =

1

n

n
∑

i=1

∫

Ω



f∗i (ϕ(ui, x)) −
1

n

n
∑

j=1

f∗j (ϕ(uj , x))





2

dx, (3.5)

where f∗i (x) := f∗(ϕ−1(vi, x)), x ∈ Ω, i = 1, . . . , n. Observe that, Dg(u,V ) = Mg(u,Y ) when
Y = (Y1, . . . , Yn) follows model (3.1) with ǫ = 0.
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Definition 3.3 (g-identifiability). Model (3.1) is said to be g-identifiable if

¡1

=0 othere exists a measurable function u∗ : Vµ → U such that for every η > 0 there exists a
constant C > 0 not depending on n, with Dg(u,v)−Dg(u∗,v) > C, for every u ∈ U satisfying
d̄2(u∗,u) > η, and

plim
n

d̄2(u∗(V ),V ) = 0, where d̄2(u,v) := 1
n

∑n
i=1 ‖ui − vi‖2, for u,v ∈ V.

Observe that condition (i) above implies that, for every v ∈ Vµ, Dg(u,v) has a unique
measurable minimizer u∗(v) on U .

Let Y = (Y1, . . . , Yn) i.i.d. observations of model (3.1), with deformation operator ϕ and
regularization parameter µ. Let κ̂λ and φ̂λ, λ ∈ Λ, be the empirical eigenvalues and eigenvectors
corresponding to groupwise registration of Y . Suppose that ϕ is µ-regular and that (3.1) is
g-identifiable. Then plim

n,ǫ
κ̂λ = κλ and plim

n,ǫ
sin2(φ̂λ, φλ) = 0, for all λ ∈ Λ.

Remark 3.3. Observe that, as in the case of template registration, it can be shown that under
the hypothesis of Theorem 3.2, ψ̂λ converges to ψλ in probability, as n→ +∞ and ǫ→ 0.

3.3 Translation operators

We study the applicability of Theorems 3.1, 3.1 and 3.2 to translation operator ϕ given by (2.1).
In this case, Ω = [0, 1)d, for some integer d ≥ 1, is equipped with the distance dΩ(x, y) :=
∑d

k=1 min{|xk − yk|, 1− |xk − yk|}, for x = (x1, . . . , xd) ∈ Ω. Let also V = R
d, be equipped with

the usual Euclidean inner product.
Now, let us show that ϕ is a deformation operator in the sense of Definition 2.1. It holds

that ϕ(0, ·) is the identity in Ω and ϕ−1(v, ·) = ϕ(−v, ·). Last, from (i) in Lemma C, it follows
that the mapping ϕ(v, ·) is continuous for all v ∈ V. Moreover, we prove that ϕ is µ-regular, for
all µ > 0: for (i) in Definition 3.2, take f ∈ L2(Ω) and consider its periodic extension fper to
R

d. Then (3.4) is a consequence of f(ϕ(v, x)) = fper(x + v) which holds for all v ∈ R
d, x ∈ Ω.

Finally, condition (ii) in Definition 3.2, follows from (ii) in Lemma C.
We impose further conditions on model (3.1) implying that ϕ∗−1, defined in Theorem 3.1

is Lipschitz. Let θk, k = 1, . . . , d, be the low frequency Fourier coefficients of the template f∗,
that is

θk :=

∫

Ω
f∗(x)e−i2πxkdx 6= 0 for all 1 ≤ k ≤ d. (3.6)

Suppose that f∗ is such that θk 6= 0 for all 1 ≤ k ≤ d and let µ < 1/2, then ϕ∗ is injective
and ϕ∗−1 is uniformly Lipschitz.

Hence, if θk 6= 0 for all 1 ≤ k ≤ d and µ < 1/2, the hypotheses of Theorems 3.1 and 3.1
are verified. Thus the geometric PCA is consistent, in the case of template registration, with
translation operator. Observe that hypotheses of Lemma 3.3 imply that translation invariant
templates f∗ are excluded.
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We now turn our attention to groupwise registration. We have to impose further conditions
on model (3.1) ensuring g-identifiability, so that Theorem 3.2 applies. The set of deformations
parameters U ⊂ Vµ over which Mg(v,y) will be minimized, is U = U0, given in (2.2). We have
the following.

Suppose θk 6= 0 for all 1 ≤ k ≤ d, and that P(V ∈ [−ρ, ρ]d) = 1 with ρ = min(µ
2 ,

µ√
d
) and

0 < µ < 1
12 . Then

Dg(u,v) −Dg(u∗(v),v) ≥ C(f∗, µ)d̄2(u,u∗(v)), for all u ∈ U , (3.7)

where u∗(v) :=
(

v1 − 1
n

∑n
i=1 vi, . . . , vn − 1

n

∑n
i=1 vn

)

and C(f∗, µ) > 0 is a constant depending
only on f∗ and µ.

Remark that in Proposition 3.3, Dg(u∗(v),v) = 0. This shows that Dg(u,v) is bounded
below by a quadratic functional.

We are now ready to prove g-identifiability under the hypotheses of the previous proposition.
Observe that (i) in Definition 3.3 follows at once from (3.7). For (ii) note that d̄2(u∗(V ),V ) =
‖ 1

n

∑n
i=1 Vi‖. Hence, given that EV = 0, from Bernstein’s inequality for bounded random

variables in a Hilbert space (see e.g. [Bos00], Theorem 2.6) we conclude that, for any η > 0,

P (d(u∗(V ),V ) > η) ≤ 2 exp

(

− nη2

2E‖V ‖2 + µ
3η

)

.

Therefore d̄2(u∗(V ),V ) converges in probability to 0 as n→ +∞.
Finally, having checked the g-identifiability of the model, we conclude that the geometric

PCA is consistent, in the case of groupwise registration, with translation operator.

4 Conclusion and discussion

The contribution of this paper is two folds. First, the use of deformation operators (as introduced
in this paper) provides a general framework for modelling and analyzing the shape variability of a
set of images. As a particular case, it allows the use of diffeomorphic deformations parametrized
by stationary vector fields. In the case of diffeomorphims computed with nonstationary vector
fields as in [BMTY05], the link with our framework is not straightforward. Indeed, in this setting,
there are two possibilities for defining the deformation operators. One can parameterizing them
either by the Hilbert space of time-dependent vector fields, or by the Hilbert space of initial
velocities. Both cases are rather complex from the analytical and the computational point of
views and treating them is beyond the scope of this paper. In contrast, due to its analytical
and numerical tractability, we have preferred to focus on diffeomorphic deformation operators
parametrized by stationary vector fields.

The second contribution of this paper is the study of the consistency of geometric PCA in
statistical deformable models which, to the best of our knowledge, has not been investigated
before. We also hope that the methods presented in this paper will stimulate further investigation
into the development of consistent statistical procedures for the analysis of shape variability.
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A Preliminary technical results

In this sub-section, we give a deviation in probability of supv∈Vµ
|Dg(v) − Mg(v,Y )| under

appropriate assumptions on the deformation operators and the additive noise in model (3.1),
where Mg(v,Y ) and Dg(v) are defined in (2.4) and (3.5) respectively.

Consider model (3.1), with µ-regular deformation operator ϕ. Let

Q(v) =
ǫ2

n

n
∑

i=1

∫

Ω
W 2

i (ϕ(vi, x))dx, v ∈ Vµ. (A.1)

Then, for any s > 0,

P

(

sup
v∈Vµ

Q(v) ≥ Aµh(s, n, ǫ)

)

≤ exp(−s),

where Aµ is given in Definition 3.2 (i) and h(s, n, ǫ) = ǫ2
(

1 + 2 s
n + 2

√

s
n

)

.

Proof. From Definition 3.2 (i), we have, for v ∈ Vµ,

Q(v) ≤ Aµ
ǫ2

n

n
∑

i=1

∫

Ω
W 2

i (x)dx. (A.2)

Let g ∈ L2(Ω) and KW g(x) =
∫

Ω k(x, y)g(y)dy be the covariance operator of the random process
W , where k(x, y) = EW (x)W (y) for x, y ∈ Ω. Then, there exist orthonormal eigenfunctions
(φλ)λ∈Λ in L2(Ω) and positive eigenvalues (wλ)λ∈Λ, such that KWφλ = wλφλ, with w1 ≥ w2 ≥
. . . ≥ 0 and Λ = {1, 2, . . .}. For any 1 ≤ i ≤ n, the Gaussian process Wi can thus be decomposed
as

Wi =
∑

λ∈Λ

w
1/2
λ ξi,λφλ,

where ξi,λ = w
−1/2
λ 〈Wi, φλ〉2 is a Gaussian variable with zero mean and variance 1, such that

Eξi,λξi,λ′ = 0 for λ 6= λ′. Therefore, ‖Wi‖2
2 =

∑+∞
λ=1wλξ

2
i,λ where ξi,k, i = 1 . . . , n, k ≥ 1 are

i.i.d. standard Gaussian random variables. We have, from the assumptions on W , E‖Wi‖2
2 =

∑+∞
λ=1 wλ = 1 < +∞, and one can thus consider the following centered random variable

Z =

n
∑

i=1

+∞
∑

λ=1

wλ(ξ2i,λ − 1).

Let 0 < t < (2w1)
−1. Since the generating function of a χ2 random variable, with one degree of

freedom, is E

(

esξ
2
i,λ

)

= (1 − 2s)−1/2, for s > 0, it follows that

log
(

E
(

etZ
))

= −n
+∞
∑

λ=1

(

twλ +
1

2
log(1 − 2twλ)

)

. (A.3)
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Then, using the inequality −s− 1
2 log(1 − 2s) ≤ s2

1−2s , which holds for all 0 < s < 1
2 , from (A.3)

we obtain

log
(

E
(

etZ
))

≤ n
+∞
∑

λ=1

t2w2
λ

1 − 2twλ
≤ t2n

1 − 2tw1

(

+∞
∑

λ=1

wλ

)2

=
t2n

1 − 2tw1
<∞.

Arguing e.g. as in [BM98], the above inequality implies that, for any s > 0,

P
(

Z > 2w1s+ 2
√
ns
)

≤ exp(−s). (A.4)

By (A.2), it follows that

sup
v∈Vµ

Q(v) ≤ Aµ
ǫ2

n

n
∑

i=1

∫

Ω
W 2

i (x)dx = Aµ
ǫ2

n

n
∑

i=1

+∞
∑

λ=1

wλξ
2
i,λ = Aµ

ǫ2

n
(Z + n).

Hence, it follows from (A.4) that

P

(

sup
v∈Vµ

Q(v) > Aµ
ǫ2

n

(

n+ 2w1s+ 2
√
ns
)

)

≤ exp(−s),

for any s > 0. The conclusion follows noting that w1 ≤ E‖W‖2
2 = 1.

Consider model (3.1), with µ-regular deformation operator ϕ. Let

Dt(v) :=
1

n

n
∑

i=1

∫

Ω
(f∗i (ϕ(vi, x)) − f∗(x))2 dx, v ∈ V , (A.5)

with f∗i (x) := f∗(ϕ−1(Vi, x)), x ∈ Ω, i = 1, . . . , n. Then

P

(

sup
v∈Vµ

|Dt(v) −M t(v,Y , f∗)| > C
(

h(s, n, ǫ) +
√

h(s, n, ǫ)
)

)

≤ exp(−s), s > 0,

where M t is defined in (2.3), C > 0 is a constant depending only on f∗ and µ, and h(s, n, ǫ) is
defined in Lemma A.

Proof. For v ∈ V = Vn, let

R(v) = 2ǫ
1

n

n
∑

i=1

∫

Ω
(f∗i (ϕ(vi, x)) − f∗(x))W ∗

i (ϕ(vi, x))dx.

For any v ∈ Vµ, we have the decomposition

M t(v,Y , f∗) = Dt(v) +Q(v) +R(v), (A.6)
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where Q is defined in (A.1).
By applying the Cauchy-Schwartz inequality in L2(Ω) and in R

n we obtainR(v) ≤ 2
√

Dt(v)
√

Q(v).
Also, the µ-regularity of ϕ implies Dt(v) ≤ 4A2

µ‖f∗‖2
2, and therefore R(v) ≤ 4Aµ‖f∗‖2

√

Q(v).
Now, using the decomposition (A.6), one obtains

sup
v∈Vµ

|Dt(v) −M t(v,Y , f∗)| ≤ max (1, 4Aµ‖f∗‖2)

(

sup
v∈Vµ

Q(v) + sup
v∈Vµ

√

Q(v)

)

and the result follows from Lemma A.

Consider model (3.1), with µ-regular deformation operator ϕ. Then

P

(

sup
v∈Vµ

|Dg(v,V ) −Mg(v,Y )| > C
(

h(s, n, ǫ) +
√

h(s, n, ǫ)
)

)

≤ exp(−s), s > 0,

where Mg and Dg are defined in (2.4) and (3.5) respectively; C > 0 is a constant, depending
only on f∗ and µ, and h(s, n, ǫ) is defined in Lemma A.

Proof. Let

Qg(v) =
ǫ2

n

n
∑

i=1

∫

Ω



Wi(ϕ(vi, x)) −
1

n

n
∑

j=1

Wj(ϕ(vj , x))





2

dx, v ∈ V

and

R(v) = 2ǫ
1

n

n
∑

i=1

∫

Ω





1

n

n
∑

j=1

f∗j (ϕ(vj , x)) − f∗i (ϕ(vi, x))





×





1

n

n
∑

j=1

W ∗
j (ϕ(vj , x)) −W ∗

i (ϕ(vi, x))



 dx, v ∈ V .

Then, for any v ∈ Vµ, we have the decomposition

Mg(v,Y ) = Dg(v) +Qg(v) +R(v). (A.7)

From the Cauchy-Schwartz inequality in L2(Ω) and in R
n, we have R(v) ≤ 2

√

Dg(v)
√

Qg(v).

Also, from the µ-regularity of ϕ, we obtain Dg(v) ≤ 1
n

∑n
i=1

∫

Ω

(

f∗i (ϕ−1(vi, x))
)2
dx ≤ A2

µ‖f∗‖2
2.

So R(v) ≤ 2Aµ‖f∗‖2

√

Qg(v). Now, using the decomposition (A.7), one obtains

sup
v∈Vµ

|Dg(v) −Mg(v,Y )| ≤ max (1, 2Aµ‖f∗‖2)

(

sup
v∈Vµ

Qg(v) + sup
v∈Vµ

√

Qg(v)

)

and the result follows from the fact that Qg ≤ Q (see (A.1)) and Lemma A.
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Remark A.1. Observe that Lemma A and Lemma A imply

plim
ǫ

sup
v∈Vµ

|Dt(v) −M t(v,Y , f∗)| = plim
ǫ

sup
v∈Vµ

|Dg(v,V ) −Mg(v,Y )| = 0, (A.8)

and

plim
n,ǫ

sup
v∈Vµ

|Dt(v) −M t(v,Y , f∗)| = plim
n,ǫ

sup
v∈Vµ

|Dg(v,V ) −Mg(v,Y )| = 0. (A.9)

The proofs of Theorems 3.1, 3.1 and 3.2 rely on the following two propositions that establish
the consistency of the registration procedures described in Section 2.2.

Let V̂ ∈ arg minv∈Vµ M
t(v,Y , f∗) the parameters obtained from template registration of

Y on f∗. Then,

¡1

=0 ounder the hypotheses of Theorem 3.1, plim
n,ǫ

d̄2(V̂ ,V ) = 0, and

under the hypotheses of Theorem 3.1,

P

(

d̄2(V̂ ,V ) > C
(

h(s, n, ǫ) +
√

h(s, n, ǫ)
))

≤ exp(−s), s > 0,

where C > 0 is a constant, depending only on f∗, µ and h(s, n, ǫ) is defined in Lemma A.

Proof. Observe that Dt(V ) = 0 and so

Dt(v) = Dt(v) −Dt(V ) ≤ 2 sup
v∈Vµ

|M t(v,Y , f∗) −Dt(v)|, v ∈ Vµ, (A.10)

where Dt and M t are defined in (A.5) and (2.3) respectively. On the other hand, from Definition
3.2 (i),

1

n

n
∑

i=1

‖ϕ∗(Vi) − ϕ∗(vi)‖2
2 ≤ AµD

t(v), v ∈ Vµ.

Hence,

1

n

n
∑

i=1

‖ϕ∗(Vi) − ϕ∗(V̂i)‖2
2 ≤ 2Aµ sup

v∈Vµ

|M t(v,Y , f∗) −Dt(v)|. (A.11)

We proceed now to prove part (i). From (A.11) and (A.8) we have plim
ǫ

‖ϕ∗(Vi)−ϕ∗(V̂i)‖2
2 = 0,

that is, plim
ǫ
ϕ∗(V̂i) = ϕ∗(Vi) for i = 1, . . . , n. From the continuity of ϕ∗−1 we have plim

ǫ
V̂i = Vi,

for i = 1, . . . , n, therefore

plim
n

plim
ǫ

1

n

n
∑

i=1

‖Vi − V̂i‖2 = 0.
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Now, the fact that ‖V1 − V̂1‖2 is bounded by 2µ and tends to 0 in probability as ǫ→ 0, implies
that E‖V1− V̂1‖2 → 0 as ǫ→ 0. Noting that (Vi− V̂i)i≥1 are i.i.d. (see Remark 3.1), we conclude
from the weak law of large number that

plim
ǫ

plim
n

1

n

n
∑

i=1

‖Vi − V̂i‖2 = 0

thus proving part (i).
For (ii), note that inequality A.11 and that ϕ∗−1 is uniformly Lipschitz, with constant

L(f∗, µ) > 0, imply

d̄2(u,v) ≤ 2AµL(f∗, µ) sup
v∈V

|M t(v,Y , f∗) −Dt(v)|

and the result follows from Lemma A.

Let V̂ ∈ arg minv∈U M
g(v,Y ) the parameters obtained from groupwise registration of Y .

Then, under the hypotheses of Theorem 3.2, plim
n,ǫ

d̄2(V̂ ,V ) = 0.

Proof. Let u∗(V ) be the unique minimizer of Dg(u,V ) on U , which exists because the model
is g-identifiable. Since (by definition) V̂ ∈ arg min

v∈U

Mg(v,Y ), one obtains that

Dg(V̂ ,V ) −Dg(u∗,V ) ≤ 2 sup
u∈U

|Mg(u,Y ) −Dg(u,V )|

≤ 2 sup
u∈Vµ

|Mg(u,Y ) −Dg(u,V )|.

Therefore, from (A.9) and the g-identifiability of the model, we have plim
n,ǫ

d̄2(V̂ ,u∗) = 0. Also,

the g-identifiability implies that plim
n,ǫ

d̄2(u∗,V ) = 0. Finally, the conclusion follows from the

inequality d̄2(V̂ ,V ) ≤ 2d̄2(V̂ ,u∗) + 2d̄2(u∗,V ).

In what follows, ‖‖HS denotes the Hilbert-Schmidt norm of operators on a Hilbert space H.
Recall that, given an orthonormal basis {ej}j≥1 of H, the Hilbert-Schmidt norm of an operator
K is defined as ‖K‖2

HS =
∑

j,k〈K(ej), ek〉2.
Let H be a separable Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let

{ui}n
i=1, {vi}n

i=1 in Br = {h ∈ H : ‖h‖ ≤ r} for some r > 0. Define the covariance operators
Ku,Kv : H → H by Ku(h) = 1

n

∑n
i=1〈ui − ū, h〉(ui − ū) and Kv(h) = 1

n

∑n
i=1〈vi − v̄, h〉(vi − v̄),

where ū = 1
n

∑n
i=1 ui and v̄ = 1

n

∑n
i=1 vi. Then

‖Kv −Ku‖2
HS ≤ (6r)2

1

n

n
∑

i=1

‖vi − ui‖2.
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Proof. Let define ǫi = vi − ui, so we can write vi = ui + ǫi. Let h ∈ H and write

Kv(h) =
1

n

n
∑

i=1

〈ui − ū+ ǫi − ǭ, h〉(ui − ū+ ǫi − ǭ) = Ku + L+ L∗ + S,

where L∗ denotes the adjoint the operator of L = 1
n

∑n
i=1〈ui − ū, h〉(ǫi − ǭ) and S = 1

n

∑n
i=1〈ǫi −

ǭ, h〉(ǫi − ǭ). Then, after some simple calculations, we get

‖L‖2
HS =

∑

j≥1

∑

k≥1

(

1

n

n
∑

i=1

〈ui − ū, ej〉〈ǫi − ǭ, ek〉
)2

≤ 1

n2

n
∑

i=1

n
∑

i′=1

‖ui − ū‖‖ui′ − ū‖‖ǫi − ǭ‖‖ǫi′ − ǭ‖.

Hence, since ui ∈ Br, i = 1, . . . , n, one has

‖L‖2
HS ≤

(

1

n

n
∑

i=1

‖ui − ū‖‖ǫi − ǭ‖
)2

≤ (2r)2

(

1

n

n
∑

i=1

‖ǫi − ǭ‖
)2

≤ (2r)2
1

n

n
∑

i=1

‖ǫi‖2.

Similarly, since ‖ǫi‖ ≤ ‖ui‖ + ‖vi‖ ≤ 2r,

‖S‖2
HS ≤

(

1

n

n
∑

i=1

‖ǫi − ǭ‖2

)2

≤
(

1

n

n
∑

i=1

‖ǫi‖2

)2

≤ (2r)2
1

n

n
∑

i=1

‖ǫi‖2.

Finally, ‖Kv −Ku‖HS ≤ 2‖L‖HS + ‖S‖HS ≤ 6r
(
∑n

i=1 ‖ǫi‖2
)

1
2 , which completes the proof.

The following theorem follows from the theory developed in [BDM83, DK70].
Let H be a separable Hilbert space endowed with inner product 〈·, ·〉H . Let A, Â : H → H

be self-adjoint Hilbert-Schmidt operators on H, with eigenvalues/eigenvectors pairs (κλ, φλ)λ≥1

and (κ̂λ, φ̂λ)λ≥1 respectively. Then,

sup
λ≥1

|κλ − κ̂λ| ≤ ‖A− Â‖HS . (A.12)

Moreover, if δ̂λ = minλ′∈Λ\{λ} |κλ − κ̂λ′ | > 0, then

sin(φλ, φ̂λ) ≤ δ̂−1
λ ‖A− Â‖HS . (A.13)

B Proofs of main results

B.1 Proof of Theorem 3.1

25



Proof. Let K̃n be the sample covariance operator V1, . . . , Vn, that is K̃nv = 1
n

∑n
i=1〈Vi −

V̄n, v〉(Vi − V̄n), with V̄n = 1
n

∑n
i=1 Vi. Note that

‖K̂n −K‖2

HS ≤ 2‖K̂n − K̃n‖
2

HS + 2‖K̃n −K‖2

HS , (B.1)

The first term in the right hand side of inequality (B.1) can be controlled by using Lemma A
and noting that ‖Vi‖, ‖V̂i‖ ≤ µ, i = 1, . . . , n, that is,

‖K̂n − K̃n‖
2

HS ≤ (6µ)2
1

n

n
∑

i=1

‖V̂i − Vi‖2. (B.2)

Let us now bound the second term in the right hand side of (B.1). To do so, remark that
‖V ‖, ‖Vi‖ ≤ µ, i = 1, . . . , n, and, thanks to a Bernstein’s inequality for Hilbert-Schmidt opera-
tors (see e.g. [Bos98], Chapter 3), it follows that

P

(

‖K̃n −K‖HS > η
)

≤ 2 exp

(

− nη2

C̃(µ)(1 + η)

)

, η > 0, (B.3)

for some constant C̃(µ) > 0 depending only on µ. Hence, we can combine (B.1), (B.2) and (B.3)

with Proposition A (i) to obtain that for any η > 0, limn,ǫ P

(

‖K̂n −K‖2

HS > η
)

= 0, that is,

plim
n,ǫ

K̂n = K. (B.4)

Now, from (A.12) and (B.4) we obtain plim
n,ǫ

κ̂λ = κλ, λ ∈ Λ. For λ ∈ Λ define the λ-th empirical

eigen-gap as
δ̂λ = min

λ′∈Λ\{λ}
|κλ − κ̂λ′ |.

From (A.12), it holds that δλ ≤ δ̂λ + maxλ′ |κλ′ − κ̂λ′ | ≤ δ̂λ + ‖K̂n −K‖HS . By (B.4), it follows
that

lim
n,ǫ

P

(

δ̂λ >
δλ
2

)

= 1. (B.5)

Recalling that, from the specification of model (3.1), we have δλ > 0, hence inequality (A.13)
implies

P

(

sin(φ̂λ, φλ) > η
)

≤ P

(

‖K̂n −K‖HS/δ̂λ > η
)

= P

(

‖K̂n −K‖HS/δ̂λ > η, δ̂λ > δ/2
)

+ P

(

‖K̂n −K‖HS/δ̂λ > η, δ̂λ ≤ δ/2
)

≤ P

(

‖K̂n −K‖HS > (δλη)/2
)

+ P

(

δ̂λ ≤ δ/2
)

.

From the above inequality, combined with B.4 and B.5, we obtain plim
n,ǫ

sin2(φ̂λ, φλ) = 0.
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B.2 Proof of Theorem 3.1

Proof. Combining (B.1), (B.2) and (B.3) with Proposition A (ii), we obtain

P

(

‖K̂n −K‖2
HS > Cmax(h(s, n, ǫ) +

√

h(s, n, ǫ); g(s, n))
)

≤ 2 exp(−s), s > 0,

where C > 0 is a constant depending only on f∗ and µ and g(s, n) =

(

s
n +

√

s2

n2 + s
n

)2

. Hence,

from (A.12) we obtain

P

(

|κ̂λ − κλ|2 > Cmax(h(s, n, ǫ) +
√

h(s, n, ǫ); g(s, n))
)

≤ 2 exp(−s), s > 0.

Take now s∗ > 0 such that Cmax(h(s∗, n, ǫ) +
√

h(s∗, n, ǫ); g(s∗, n)) < (δλ/2)
2. Then, thanks

to (B.5) and (A.13) we obtain, for any 0 < s ≤ s∗,

1 − 2 exp(−s) ≤ P

(

‖K̂n −K‖2
HS < Cmax(h(s, n, ǫ) +

√

h(s, n, ǫ); g(s, n))
)

= P

(

‖K̂n −K‖2
HS < Cmax(h(s, n, ǫ) +

√

h(s, n, ǫ); g(s, n)), δ̂λ > δλ/2
)

≤ P

(

(1/δ̂λ)2‖K̂n −K‖2
HS < (2/δλ)2Cmax(h(s, n, ǫ) +

√

h(s, n, ǫ); g(s, n))
)

≤ P

(

sin2(φ̂λ, φλ) < (2/δλ)2Cmax(h(s, n, ǫ) +
√

h(s, n, ǫ); g(s, n))
)

.

B.3 Proof of Theorem 3.2

Proof. We proceed similarly as in the proof of Theorem 3.1. In the case of groupwise registration,
inequalities (B.1), (B.2) and (B.3) are still valid, and can be combined with Proposition A to
obtain plim

n,ǫ
K̂n = K. The rest of proof is identical to that of Theorem 3.1.

C Technical results for translation operators

Let ϕ be defined by (2.1), then

¡1

=0 odΩ(ϕ(v, x), ϕ(v, y)) = dΩ(x, y) for all x, y ∈ Ω and v ∈ V.

dC(ϕ(u, ·), ϕ(v, ·)) ≤∑d
k=1 |uk − vk| for all x ∈ Ω and u, v ∈ V.
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Proof. Remark that, for any a ∈ R, there exists a unique k(a) ∈ Z such that mod(a, 1) = a+k(a).
Then

mod(a, 1) − mod(b, 1) = a− b+ k(a) − k(b).

Take a, b ∈ R such that |a− b| < 1 and assume that a ≥ b. Since a− b ∈ [0, 1) and mod(a, 1) −
mod(b, 1) ∈ [−1, 1], we obtain that

k(a) − k(b) =

{

0 if mod(a, 1) ≥ mod(b, 1)

−1 if mod(a, 1) < mod(b, 1).

Then

|mod(a, 1) − mod(b, 1)| =

{

a− b if mod(a, 1) ≥ mod(b, 1)

1 − (a− b) if mod(a, 1) < mod(b, 1)

We conclude that for a ≥ b

min{|mod(a, 1) − mod(b, 1)|, 1 − |mod(a, 1) − mod(b, 1)|} = min{|b− a|, 1 − |b− a|}. (C.1)

Because of the symmetry in the expression above, we conclude that (C.1) is valid for any a, b ∈ R,
such that |a− b| < 1.

For the sake of simplicity, let us prove the lemma in the one-dimensional case (i.e. d = 1),
where dΩ(x, y) := min{|x − y|, 1 − |x − y|}. Take x, y ∈ Ω and u, v ∈ V. Part (i) is directly
implied by (C.1), taking a := x + v and b := y + v. For part (ii), note that dΩ ≤ 1

2 , hence
dΩ(ϕ(u, x), ϕ(v, x)|) ≤ |u − v| if |u − v| ≥ 1. In the other had, if |u − v| < 1 we can use (C.1)
with a := x+ v and b := x+ u to obtain dΩ(ϕ(u, x), ϕ(v, x)|) ≤ dΩ(u, v) ≤ |u− v|. Finally, we
obtain dC(ϕ(u, ·), ϕ(v, ·)) ≤ |u− v|.

In order to prove Lemma 3.3 and Proposition 3.3 , denote by eℓ(x) = ei2π
Pd

k=1 ℓkxk for
x = (x1, . . . , xd) ∈ Ω = [0, 1]d and ℓ = (ℓ1, . . . , ℓd) ∈ Z

d the Fourier basis of L2([0, 1]d). Let
θℓ =

∫

Ω f(x)eℓ(x)dx, ℓ ∈ Z
d be the Fourier coefficients of f∗. For 1 ≤ k ≤ d, denote by

ℓ(k) = (ℓ
(k)
1 , . . . , ℓ

(k)
d ) the vector of Z

d such that ℓ
(k)
k′ = 0 for k′ 6= k and ℓ

(k)
k = 1. Remark that,

with this notation, θk = θℓ(k) , where θk is defined in (3.6).

C.1 Proof of Lemma 3.3

Proof. Recall that ϕ∗(v) := f∗ ◦ϕ−1(v, ·), v ∈ Vµ. For u, v ∈ [−ρ, ρ]d with 0 < ρ < 1/2, we have

‖f∗(ϕ−1(u, x)) − f∗(ϕ−1(v, x))‖2
2 ≥

d
∑

k=1

|θℓ(k)e−i2πuk − θℓ(k)e−i2πvk |2

=

d
∑

k=1

|θℓ(k) |2|e−i2πuk − e−i2πvk |2. (C.2)
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Then, by the mean value theorem, we have |e−i2πuk − e−i2πvk |2 = | cos(2πuk) − cos(2πvk)|2 +
| sin(2πuk) − sin(2πvk)|2 ≥ (2π)2cos2(ρ)|uk − vk|2, for any 0 ≤ uk, vk ≤ ρ. Hence,

‖f∗(ϕ−1(u, x)) − f∗(ϕ−1(v, x))‖2
2 ≥ (2π)2cos2(ρ) min

0≤k≤d
|θℓ(k) |2

d
∑

k=1

|uk − vk|2.

C.2 Proof of Proposition 3.3

Proof. Remark that Dg, defined in (3.5), has the following expression in the Fourier domain:

Dg(u,V ) =
1

n

n
∑

m=1





∑

ℓ∈Zd

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

θℓe
−i2π〈ℓ,Vj−uj〉 − θℓe

−i2π〈ℓ,Vm−um〉

∣

∣

∣

∣

∣

∣

2

 , u ∈ V . (C.3)

For u ∈ U0 we have

Dg(u,V ) ≥ 1

n

n
∑

m=1





d
∑

k=1

|θℓ(k) |2
∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

e
−i2π

“

V
(k)
j −u

(k)
j

”

− e
−i2π

“

V
(k)
m −u

(k)
m

”

∣

∣

∣

∣

∣

∣

2



≥
d
∑

k=1

|θℓ(k)|2


1 −
∣

∣

∣

∣

∣

1

n

n
∑

m=1

e
i2π

“

u
(k)
m −V

(k)
m

”

∣

∣

∣

∣

∣

2


 . (C.4)

Further, remark that

∣

∣

∣

∣

1

n

n
∑

m=1

e
i2π

“

u
(k)
m −V

(k)
m

”
∣

∣

∣

∣

2

=
1

n
+

2

n2

n−1
∑

m=1

n
∑

m′=m+1

cos
(

2π
((

u(k)
m − V (k)

m

)

−
(

u
(k)
m′ − V

(k)
m′

)))

.

Let 0 ≤ α < 1/4. Using a second order Taylor expansion and the mean value theorem, one has
that cos(2πu) ≤ 1−C(α)|u|2 for any real u such that |u| ≤ α, with C(α) = 2π2 cos(2πα). Under

the hypothesis of the proposition, one has that
∣

∣

∣

(

u
(k)
m − V

(k)
m

)

−
(

u
(k)
m′ − V

(k)
m′

)∣

∣

∣ ≤ 2(µ+ρ) < 1/4.

Therefore, for α = 2(µ+ ρ), it follows that

∣

∣

∣

∣

1

n

n
∑

m=1

e
i2π

“

u
(k)
m −V

(k)
m

”
∣

∣

∣

∣

2

≤ 1

n
+

2

n2

n−1
∑

m=1

n
∑

m′=m+1

1 − C(α)
∣

∣

∣

(

u(k)
m − V (k)

m

)

−
(

u
(k)
m′ − V

(k)
m′

)∣

∣

∣

2

≤ 1 − 2

n2

n−1
∑

m=1

n
∑

m′=m+1

C(α)
∣

∣

∣

(

u(k)
m − V (k)

m

)

−
(

u
(k)
m′ − V

(k)
m′

)∣

∣

∣

2
.
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Hence, using the lower bound (C.4), it follows that, for u ∈ U0,

Dg(u,V ) ≥ 2C(α)
1

n2

n−1
∑

m=1

n
∑

m′=m+1

(

d
∑

k=1

|θℓ(k)|2
∣

∣

∣

(

u(k)
m − V (k)

m

)

−
(

u
(k)
m′ − V

(k)
m′

)∣

∣

∣

2
)

. (C.5)

The following identity is obtained from elementary algebraic manipulations and the fact that

u ∈ U0 (
∑n

m=1 u
(k)
m = 0).

1

n

n−1
∑

m=1

n
∑

m′=m+1

∣

∣

∣

(

u(k)
m − V (k)

m

)

−
(

u
(k)
m′ − V

(k)
m′

)∣

∣

∣

2
=

n
∑

m=1

∣

∣

∣u(k)
m − (V (k)

m − V̄ (k)
n )

∣

∣

∣

2
,

where V̄
(k)
n = 1

n

∑n
m=1 V

(k)
m . Inserting the above equality in (C.5), we finally obtain

Dg(u,V ) ≥ C0(f
∗, µ)

1

n

n
∑

m=1

d
∑

k=1

∣

∣

∣u(k)
m − Ṽ (k)

m

∣

∣

∣

2
, (C.6)

with C0(f
∗, µ) = 2C(α)min1≤k≤d

{

|θℓ(k)|2
}

and Ṽ
(k)
m = V

(k)
m − V̄

(k)
n . Thanks to the assumption

θℓ(k) 6= 0 for all 1 ≤ k ≤ d, it follows that C0(f
∗, µ) > 0. The inequality µ ≥ 2ρ, implies that

|Ṽ (k)
m | = |V (k)

m − V̄
(k)
n | ≤ 2ρ ≤ µ for any 1 ≤ k ≤ d and all 1 ≤ m ≤ n, therefore, u ∈ U0. Then,

using inequality (C.6) and Dg(u∗,V ) = 0, the proof is completed.
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[BMTY05] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision,
61(2):139–157, 2005.

[Bos98] D. Bosq. Nonparametric statistics for stochastic processes, volume 110 of Lecture
Notes in Statistics. Springer-Verlag, New York, second edition, 1998. Estimation
and prediction.

[Bos00] D. Bosq. Linear processes in function spaces, volume 149 of Lecture Notes in Statis-
tics. Springer-Verlag, New York, 2000. Theory and applications.

[BZO08] M. Bossa, E. Zacur, and S. Olmos. Algorithms for computing the group exponen-
tial of diffeomorphisms: Performance evaluation. In Computer Vision and Pattern
Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference on,
pages 1 –8, june 2008.

[DK70] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III.
SIAM J. Numer. Anal., 7:1–46, 1970.

[DPR82] J. Dauxois, A. Pousse, and Y. Romain. Asymptotic theory for the principal compo-
nent analysis of a vector random function: some applications to statistical inference.
J. Multivariate Anal., 12(1):136–154, 1982.

[FLPJ04] P. T. Fletcher, C. Lu, Stephen M. Pizer, and S. Joshi. Principal geodesic analysis
for the study of nonlinear statistics of shape. IEEE transactions on medical imaging,
23(8):995–1005, August 2004.

31



[GM07] U. Grenander and M. Miller. Pattern Theory: From Representation to Inference.
Oxford Univ. Press, Oxford, 2007.

[HBO07] Monica Hernandez, Matias Bossa, and Salvador Olmos. Estimation of statistical
atlases using groups of diffeomorphisms. Technical Report, 2007.

[HBO09] M. Hernandez, M. Bossa, and S. Olmos. Registration of anatomical images using
paths of diffeomorphisms parameterized with stationary vector field flows. Interna-
tional Journal of Computer Vision, 85(3):291–306, 2009.

[HM06] Eldad Haber and Jan Modersitzki. Image registration with guaranteed displacement
regularity. Int. J. on Comp. Vision, 2006.

[JDJG04] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased diffeomorphic atlas construc-
tion for computational anatomy. Neuroimage, 23:151–160, 2004.

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[Pen06] X. Pennec. Intrinsic statistics on Riemannian manifolds: basic tools for geometric
measurements. J. Math. Imaging Vision, 25(1):127–154, 2006.

[RFS03] D. Rueckert, A. F. Frangi, and J. A. Schnabel. Automatic construction of 3d statisti-
cal deformation models using non-rigid registration. IEEE Transactions on Medical
Imaging, 22:77–84, 2003.

[RS05] J. O. Ramsay and B. W. Silverman. Functional data analysis. Springer Series in
Statistics. Springer, New York, second edition, 2005.

[Sdi08] M. Sdika. A fast nonrigid image registration with constraints on the jacobian us-
ing large scale constrained optimization. Medical Imaging, IEEE Transactions on,
27(2):271 –281, feb. 2008.

[Sil96] B. W. Silverman. Smoothed functional principal components analysis by choice of
norm. Ann. Statist., 24(1):1–24, 1996.
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