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Abstract

We consider a random walk on Z that branches at the origin only.

In the supercritical regime we establish a law of large number for the

maximal position Mn. Then we prove convergence in distribution for the

sequence Mn −αn where α is a deterministic constant.
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1 Introduction

A CBRW (Catalytic Branching Random Walk) on Z branching at the origin only

is the following particle system.

When a particle location x is not the origin, the particle evolves as a random

walk (Sn)n∈N whose law is denoted by Px when it starts from x (we let P= P0).

When a particle reaches the origin, say at time t, then a time t + 1 it dies and

gives birth to new particles positioned according to a point process D0.

The system starts with an initial ancestor particle located at the origin. The sys-

tem goes on indefinitely, as long as there are particle that are alive. We assume

that each particle (at the origin at time t) produces new particles independently

form every particle living in the system up to time t.

Let (Xu, |u| = n) denote the positions of the particles at time n (here |u| = n

means that the generation of the particle u in the Ulam-Harris tree is n). We

assume that

D0 = (Xu, |u|= 1)
d
=(S

(i)

1 , 1≤ i ≤ N)

where N is an integer random variable describing the offspring of a branching

particle, with mean m = E [N], and (S(i)n , n ≥ 0)i≥1 are IID random walks,

distributed as (Sn, n≥ 0) and independent from N .

We assume that we are in the supercritical regime, that is

m(1− qesc)> 1 (1.1)

where qesc is the escape probability :

qesc := P
�
∀n≥ 1, Sn 6= 0

�
.

An explanation of assumption (1.1) is given in section 7, Lemma 7.3.

Eventually, we also assume, for sake of simplicity, some aperiodicity, that is

gcd {n≥ 1 : P(τ= n)> 0}= 1 where τ is the first return time to the origin

τ := inf
�

n≥ 1 : Sn = 0
	

.

Let Mn := sup|u|=n Xu we the maximal position at time n of a living particle.

Our first result is

Theorem 1.1 (Law of large numbers). There exists a constant α, depending

only on characteristics of the random walk (Sn)n ≥ 0 and on the mean offspring

m, such that on the set of non extinction S ,

lim
n→+∞

Mn

n
= α a.s.
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The exact value of the constant alpha is given at the beginning of section 5.

In order to refine this convergence by centering Mn, we shall assume for this

proof that (Sn)n∈N is a nearest neighbor random walk.

Theorem 1.2. There exists a constant c∗ > 0, a random variable Λ∞ and t0 > 0

such that

�
Λ∞ > 0

	
= S a.s. (1.2)

lim
n→+∞
P
�

Mn−αn> y
�
= E

h
1− e−c∗e

−t0 yΛ∞
i

(∀y ∈ R). (1.3)

The random variable Λ∞ is the limit of the positive fundamental martingale of

section 4. Constant t0 is defined at the beginning of section 5. The value of

constant c∗ is given at the beginning of section 6.

Theorems 1 and 2 are new, even though a lot of attention has been given to

CBRW in continuous time. In papers [1–4,13–16] very precise asymptotics are

established for the moments of ηt(x) the number of particles located at x at

time t, in every regime (sub/super/critical).

Elaborate limit theorems were obtained for the critical case by Vatutin, Topchii

and Yarovaya in [13–16]. We especially acknowledge paper [6] that introduced

us to the magic technique of multiple spines. To confront our results to the

litterature on (non catalytic) Branching Random Walk, we refer to [12].

We first give in section 2 the heuristics explaining the differences between

CBRW and ordinary BRW (branching random walk). Then we proceed (in sec-

tion 3) to establish many to few lemmas, we exhibit a fundamental martingale

(in section 4) and prove Theorems 1 and 2 with the help of sharp asymptotics

derived from renewal theory.

Finally, section 7 is devoted to an extension to the case of multiple catalysts.

There the supercritical assumption (1.1) appears in a very natural way.

2 Heuristics

Assume for sake of simplicity that we are on Z, with a single catalyst at the

origin and a Simple Random Walk. The sheer existence of the fundamental

martingale Λn = e−rn
∑
|u|=nφ(Xu), see section 4, such that

�
Λ∞ > 0

	
= S

shows that on the set of non extinction S , we have roughly ern particles at

time n.
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If we apply the usual heuristic for Branching Random Walk, then we say that

we have approximately ern independent random walks positioned at time n,

and therefore the expected population above level an> 0 is roughly:

E




ern∑

i=1

1
(S
(i)
n ≥an)


 = ernP

�
Sn ≥ an

�
= e−n(I(a)−r)(1+o(1))

where I(a) = ψ∗(a) = supt≥0(ta −ψ(t)) is the large deviation rate function

(for Simple Random Walk, eψ(t) = E
�

etS1

�
= ch(t)).

This expected population is of order 1 when I(a) = r and therefore we would

expect to have
Mn

n
→ γ on S , where I(γ) = r.

However, for CBRW, this is not the right speed, since the positions of the in-

dependent particles cannot be assumed to be distributed as random walks. In-

stead, the ern independent particles may be assumed to be distributed as a fixed

probability distribution, namely ν(x) = cφ(x).

Since here φ(x) = Ex

�
e−rT0

�
= e−t0|x |, ν is a symmetric geometric distribu-

tion. Therefore the expected population with distance to the origin at least an

is roughly

ernν(|x | ≥ an) = c′erne−nat0 .

This expectation is of order 1 when a = r

t0
=
ψ(t0)

t0
= α, and this yields the right

asymptotics
Mn

n
→ α a.s. on S .

Furthermore, we can even obtain the refined asymptotics if we use a slightly

refined heuristic. We assume that conditionally on Λn, we have ernΛn inde-

pendent random variables (ξi)i distributed as ν describing the positions of the

particles. Then with Yn =maxi≤ernΛn

��ξi

�� we have

P
�
Yn−αn≥ y | Λn

�
= 1− (1− P

�
ξi > y +αn

�
)e

rnΛn .

Therefore

P
�
Yn−αn≥ y

�
= E

�
1− (1− c′

1

ern
e−t0 y)e

rnΛn

�
→ E

h
1− e−c′Λ∞e−t0 y

i
.

This is what states Theorem 1.2, up to constants.
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3 Many to few formulas

We have found it easier to write many to one and many to two formulas in

a fairly general setting, and then specialize them to our needs, than trying to

write them directly for CBRW.

For the spine construction we refer to[10,11] and the references therein. How-

ever, we feel necessary to give some details here, since we are in a discrete time

setup.

3.1 Trees

We use the Ulam-Harris labeling system. The set of labels is

U := {;} ∪ ∪n∈N∗(N
∗)n with N∗ = {1, 2, 3, . . .} .

The elements of U are called particles/labels/nodes/words. We think of ;
as the initial ancestor. For u ∈ U , if u = (u1, u2, . . . , un) then |u| = n is the

generation of u (by convention |;| = 0). We write uv for the concatenation of

the words u, v and we set u;= ;u= u.

We say that v is an ancestor of u and we write v ≤ u if there exists w ∈ U such

that u= vw.

We define a tree to be a subset τ⊂U such that

• ; ∈ τ.

• uv ∈ τ ⇒ u ∈ τ (if a particle is in the tree, the its ancestor are in the

tree).

• For each u ∈ τ there exists Nu ∈ N such that u j ∈ τ ⇐⇒ 1 ≤ j ≤ Nu

(each particle u has a finite number Nu of children).

The set of particles of generation n is

Nn = {u ∈ τ : |u|= n} .

We let T be the set of such trees.

3.2 Marked trees

A marked tree is a set T of pairs (u, Xu) such that u ∈ U , the set

tree(T ) =
�
u ∈ U : ∃Xu, (u, Xu) ∈ U
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is a tree. We think of Xu ∈ J as describing the position of the particle u. The

state space J is usually J = Zd . The set of particles of generation n is

Nn = {u ∈ tree(T ) : |u|= n} .

Let T be the set of marked trees.

3.3 Marked trees with spine

A spine of a tree τ = tree(T ) is a single maximal distinguished line of descent.

It is a subset ξ of τ such that

• ; ∈ ξ.

• ξ∩Nn contains at most one point.

• i f v ∈ ξ and u< v then u ∈ ξ.

• i f v ∈ ξ and Av > 0, then there exists one and only one child on the

spine,i.e. ∃! j ∈
�
1, . . . , Av

	
, v j ∈ ξ.

When ξ∩Nn is a singleton, we let ξn be the node on the spine of generation n

:
�
ξn

	
= ξ∩Nn.

Let T̃ be the set of marked trees with a spine (T,ξ).

3.4 Filtrations

We shall work on T̃ .

The filtration

Fn = σ{{(T,ξ) : u ∈ tree(T )}, |u| ≤ n}

is the natural filtration of the branching process. It does not carry information

about the spine.

The filtration

F̃n := σ(Fn ∪ {{(T,ξ) : u ∈ ξ}, |u| ≤ n})

carries information about the branching process and the first n particles of the

spine.

The filtration

Gn = σ(Xu : u ∈ ξ∩Np, p ≤ n)

carries information about the location of the spine up to generation n.
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3.5 The CBRW probability measure

We are given a family of point processes (Dy , y ∈ J) such that Dy describes the

progeny (number and positions) of a particle located at y .

For every y there exists a probability measure Py on (T̃ , F̃∞) such that under

Py the process start at time 0 with one particle located at y .

Any particle located at z in generation n gives rise, independently of the other

particles of generation n, to a family of particles whose location is described

by an independent copy of Dz . In particular, Dy has the same distribution as�
Xu, u ∈ N1

	
under Py . The restriction of Py on F∞ is called the Catalytic

Branching Random Walk (CBRW) driven by (Dz , z ∈ J) and starting from y .

Example 1. For example, the CBRW on Z branching at the origin only, driven

by the reproduction random variable N , is obtained with

D0 =

N∑

i=1

δ
S
(i)
1

Dx = δS
(1,x)
1

(x ∈ Z, x 6= 0) ,

with (S(i))i≥1 an independent family of simple random walks starting from 0,

and (S(i,x))i≥1,x∈Z an independent family of simple random walks starting from

x .

Example 2. If the set of catalysts is a subset C ⊂ Z and we have random vari-

ables (Nx , x ∈ C ) describing the offsprings at the different sites, then we set

Dx =

Nx∑

i=1

δ
S
(i,x)
1

(x ∈ C ),

Dx = δS
(1,x)
1

(x /∈ C ) .

The classical BRW is obtained with C = Z and the Nc IID.

Example 3. We obtain a Branching Markov Process, see e.g.[9], by assuming

in the previous example (S(i,x))i≥1,x∈Z to be an independent family of Markov

chains (starting from x for S(i,x)), with a fixed Markov kernel say p(x , y), and

thus setting

Dx =

Nx∑

i=1

δ
S
(i,x)
1

.

An associated martingale.
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For some β ∈ R, and y ∈ J , we assume that

eψy (β) := Ey



∑

u∈N1

eβ(Xu−y)


 = E



∑

z∈Dy

eβ(z−y)


 < +∞

Then,

Wn(β) :=
∑

u∈Nn

eβ(Xu−y)−
∑
;≤v<uψXv

(β)

is a (Py ,Fn) martingale.

Indeed, if we have a family (θu,y , u ∈ U , y ∈ J) of independent point measures

such that θu,y is distributed as Dy , then we can construct recursively the point

measures by ∑

v∈Nn+1

δX v
=
∑

u∈Nn

∑

z∈θu,Xu

δz .

Therefore,

EPy

�
Wn+1(β) | Fn

�
=

∑

u∈Nn,x∈J

1(Xu=x)e
−
∑

v<uψXv
(β)EPy



∑

z∈θu,x

eβ(z−y)−ψx (β) | Fn


 =Wn(β)

3.6 The size biased CBRW

The size biased CBRW is constructed via a probability measure Q
β
y on F̃∞.

This is done by setting consistently the values of E
Q
β
y
[Y ] for Y a F̃n measurable

positive random variable. Indeed, we can write

Y = Z
∑

v∈Nn

Γ(v)1(ξn=v)

where Z and each Γ(v) is Fn measurable. We set,

E
Q
β
y
[Y ] = EPy


Z

∑

u∈Nn

Γ(u)eβ(Xu−y)−Aβ (u)


 (3.1)

with

Aβ(u) :=
∑

;≤v<u

ψX v
(β) . (3.2)

It is really easy to check that the preceding formula defines a consistent family

of measures on the filtration F̃n, and Kolmogorov extension Lemma yields the
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existence of Q
β
y . For simplicity of notations, we intentionally omit the depen-

dence on parameter β .

Furthermore, we can describe the evolution of the particle system in Q
β
y in the

following way :

• There is initially one particle located at y .

• The offspring of this particle is generated under the size biased law D̂y

defined by

E
�

F(D̂y)
�
= E


F(Dy)(

∑

z∈Dy

eβ(z−y)−ψy (β))




• Pick one of the offspring ξ1 at random : the probability that u is picked

is proportional to eβXu .

• The particles other than ξ1 give rise to an ordinary CBRW. The spine par-

ticle ξ1 has an offspring according to D̂Xξ1
, and we go on by choosing ξ2

among the children of ξ1 with probability proportional to eβXu of picking

child u, and we go on ...

Remark 4. When we restrict the measureQ
β
y to the filtration (Fn)n∈N we obtain

the change of measure by the martingale Wn(β). In other words

dQ
β
y

dPy

|Fn
=Wn(β) .

Indeed, if Z is Fn measurable, then

E
Q
β
y
[Z] = E

Q
β
y


Z

∑

v∈Nn

1(ξn=v)




= EPy


Z

∑

u∈Nn

eβ(Xu−y)−Aβ (u)




= EPy

�
ZWn(β)

�
.

3.7 The many to one formula

The many to one formula is obtained by specializing equation (3.1) to β = 0,

Z = 1 and Γ(u) = f (Xu)e
A0(u). We set Sn = Xξn

the position of the spine at time
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n.

EPy



∑

u∈Nn

f (Xu)


 = E

Q
β
y

�
f (Sn)e

A0(ξn)
�

(3.3)

For CBRW on Z branching only at the origin, we haveψy(β) =ψ(β)+ln(m)1(y=0).

We shall use the now standard notation

∑

u∈Nn

f (u) =
∑

|u|=n

f (u) .

Therefore, when the CBRW is started from zero,

Lemma 3.1 (Many to one formula). For CBRW branching only at the origin of

Z

E



∑

|u|=n

f (Xu)


 = E

�
f (Sn)m

Ln−1

�
(3.4)

where Ln−1 =
∑n−1

k=0 1(Sk=0) is the local time at level 0.

3.8 The many to two formula

We consider now marked trees with two spines (T,ξ1,ξ2) : T is a marked

tree, and ξi , i = 1, 2 are two maximal distinguished lines of descent. When

ξi ∩Nn 6= ;, then
¦
ξi

n

©
= ξi ∩Nn.

The filtration

Fn = σ
¦¦
(T,ξ1,ξ2) : u ∈ tree(T )

©
, |u| ≤ n

©

is the natural filtration of the branching process. It does not carry information

about the spine.

The filtration

F̃ 2
n := σ(Fn ∪

¦¦
(T,ξ1,ξ2) : u ∈ ξi

©
, |u| ≤ n, i = 1, 2

©
)

carries information about the branching process and the first n particles of the

two spines.

For a given β ∈ R and y ∈ J we assume that

e
ψ(2)y (β) := lnE



∑

z,z′∈Dy

eβ((z−y)+(z′−y))


 < +∞
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We construct a new probability measure on F̃ 2
∞ by prescribing consistently its

value on the sigma fields F̃ 2
n . Indeed a general F̃ 2

∞ bounded (or positive)

measurable random variable Y can be written

Y = ZΓ(ξ1
n,ξ2

n) = Z
∑

u,v∈Nn

Γ(u, v)1(ξ1
n=u,ξ2

n=v)

with Z , (Γ(u, v))|u|=|v|=n Fn measurable random variables.

We set,

EQ2
y
[Y ] := EPy


Z

∑

u,v∈Nn

Γ(u, v)eβ((Xu−y)+(X v−y))−Aβ (u,v)


 , (3.5)

with u∧ v the greatest common ancestor of u and v and

Aβ(u, v) :=
∑

w≤u∧v,w<u,w<v

ψ
(2)
XW
(β) +

∑

u∧v<w<u

ψXw
(β) +

∑

u∧v<w<v

ψXw
(β).

It is clear that by construction, the restriction on the filtration Fn of Q2
y admits

a Radon-Nikodym density which is the martingale:

W 2
n (β) =

dQ2
y

dPy

=
∑

u,v∈Nn

eβ((Xu−y)+(X v−y))−Aβ (u,v) (on Fn) .

We can describe the evolution of the particle system with two spines under Q2
y

as follows:

• Initially there is one particle located at y and it bears the two spines

ξ1
0 = ξ

2
0 = y .

• The offspring of this particle is generated according to the size biased

law:

E
h

F(D2
y)
i
= E


F(Dy)

∑

z,z′∈Dy

e
β(z+z′−2y)−ψ(2)y (β)




• Pick two offspring (ξ1
1,ξ2

1) at random among the couples of children (they

may be the same) : the probability that (u, v) is picked is proportional to

eβ(Xu+X v).. The particles other than the spines evolve as a standard BRW.

If the spine particles are identical ξ1
1 = ξ

2
1, then they evolve again as if

started form the same origin located at y ′ = Xξ1
1
. If the spine particles

are different, they each evolve independently as a CBRW with one spine.
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Observe also that we obtain the law of (ξ1
n,ξ2

n) conditionally on Fn :

Q2
y

�
ξ1

n = u,ξ2
n = v | Fn

�
=

eβ((Xu−y)+(X v−y))−Aβ (u,v)

W 2
n (β)

The Harris-Robert’s many to two formula (see[11]) can be obtained by spe-

cializing the equality (3.5) to Z = 1, β = 0 and Γ(u, v) = f (Xu, X v)e
A0(u,v), by

letting S i
n = Xξi

n
be the location of the ith spine at time n,:

EPy



∑

u,v∈Nn

f (Xu, X v)


 = EQ2

y

h
f (S1

n, S2
n)e

A0(ξ
1
n,ξ2

n)
i

. (3.6)

We have,

A0(ξ
1
n,ξ2

n) =

n−1∑

k=0

ψ
(2)

S1
k

(β)1(ξ1
k
=ξ2

k
)+ (ψS1

k
(β) +ψS2

k
(β))1(ξ1

k
6=ξ2

k
)

If we specialize a bit more to the CBRW on Z branching only at the origin we

get

ψy(β) = (ln m+ψ(β))1(y=0)+ψ(β)1( 6=0) ψy(0) = ln(m)1(y=0)

ψ(2)y (β) = ln
�

meψ(2β)+ (m2−m)e2ψ(β)
�

ψ(2)y (0) = ln(m2)1(y=0)

with m2 = E
�

N2
�

the second moment of the reproduction law at 0. Therefore,

letting T = inf
¦

n≥ 1 : ξ1
n 6= ξ2

n

©
we obtain

A0(ξ
1
n,ξ2

n) =

n−1∑

k=0

ln(m2)1(k≤T,S1
k
=S2

k
=0)+ ln(m)1(k>T )(1(S1

k
=0)+ 1(S2

k
=0)) (3.7)

Lemma 3.2 (Many to two formula). For Catalytic Branching Random Walk

branching at the origin only, we have

E



∑

|u|=|v|=n

f (Xu, X v)


 = Q2

�
f (S1

n, S2
n)e

A0(ξ
1
n,ξ2

n)
�

.

where A0(ξ
1
n,ξ2

n) is given by (3.7) and the law of the coupled random walks

(S1
n, S2

n)n≥0 is described below.
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The process (S1
n, S2

n, 1(ξ1
n=ξ

2
n)
)n≥0 is distributed as the process (Un, Vn,σn)n≥0

constructed as follows. We are given two independent simple random walks

U and U ′ on Z, starting from 0 and an independent family of Bernoulli ran-

dom variables ηn with Bernoulli law P
�
ηn = 1

�
= 1− P

�
ηn = 0

�
= m

m2
. Given

(Un)n≥0 we set recursively Vn and σn in the following way.

• V0 = 0,σ0 = 1.

• if σn = 1 and Un 6= 0 then Vn+1 = Un+1 and σn+1 = 1 (there is only one

child so the spine stay together).

• if σn = 1 and Un = 0 and ηn = 1, then Vn+1 = Un+1 and σn+1 = 1 (the

spines stay together with probability m

m2
)

• if σn = 1 and Un = 0 and ηn = 0, then for all p ≥ 1, Vn+p = U ′p and

σn+p = 0 (the spines separate).

• if σn = 0 and T = inf
�

n≥ 1 : σn = 0
	
, then Vn+1 = U ′n−T+1 (the spines

stay distinct once they split).

4 A fundamental Martingale

Let us consider the function, defined on (0,∞), r → ρ(r) = mE
�

e−rτ
�

. It is

of class C∞, strictly decreasing, limr→0ρ
(r) = mP(τ < +∞) = m(1− qesc) > 1

and limr→+∞ρ
(r) = 0. Therefore there exists a unique r > 0, a Malthusian

parameter such that

mE
�

e−rτ
�
= 1 . (4.1)

Let T = inf
�

n≥ 0 : Sn = 0
	

be the first hitting time of 0, recall that τ =

inf
�

n≥ 1 : Sn = 0
	

and let

φ(x) := Ex

�
e−rT

�
(x ∈ Zd) .

Finally let p(x , y) = Px

�
S1 = y

�
and P f (x) =

∑
y p(x , y) f (y) be the kernel

and semi group of the random walk.

Proposition 4.1. 1. The function φ satisfies

Pφ(x) = erφ(x)

�
1

m
1(x=0)+ 1(x 6=0)

�
.

2. The process

∆n := e−rnφ(Sn)m
Ln−1

is a martingale, where Ln−1 =
∑

0≤k≤n−1 1(Sk=0) is the local time at level 0.

13



3. The process

Λn := e−rn
∑

|u|=n

φ(Xu)

is a martingale called the fundamental martingale.

4. The process Λn is bounded in L2, and therefore is a Uniformly Integrable

martingale.

Proof. (1) If x 6= 0, then T ≥ 1, therefore, by conditioning on the first step:

φ(x) =
∑

y

p(x , y)e−rEy

�
e−rT

�
= e−r Pφ(x) .

On the other hand, τ≥ 1 so conditioning by the first step again,

φ(0) = 1= mE
�

e−rτ
�
= m

∑

y

p(0, y)e−rEy

�
e−rT

�
= me−r Pφ(0) .

(2) We have,

E
�
∆n+1 | Fn

�
= e−r(n+1)mLnE

�
φ(Sn+1) | Fn

�
= e−r(n+1)mLn Pφ(Sn)

= e−r(n+1)mLn erφ(Sn)(
1

m
1(Sn=0)+ 1(Sn 6=0)) = ∆n .

(3) By the many to one formula, if Z is Fn−1 measurable positive, using the

martingale property of ∆n,

E
�
ΛnZ

�
= e−rnE



∑

|u|=n

φ(Xu)Z




= e−rnE
�

Zφ(Sn)m
Ln−1

�
= E

�
Z∆n

�

= E
�

Z∆n−1

�
= E

�
Λn−1Z

�
.

(4) The proof is given in Section 7 in the case of multiple catalysts and uses

heavily the many to two formula. It is tedious but straightforward to rewrite it

for only one catalyst and obtain the desired result.

Let us introduce ηn(x) the number of particles located at x at time n:

ηn(x) :=
∑

|u|=n

1(Xu=n) .

Corollary 4.2. 1. We have supx ,n e−rnφ(x)ηn(x)< +∞ a.s.

14



2. There exists a constant 0< C <∞ such that

E
�
ηn(x)ηm(y)

�
≤

C

φ(x)φ(y)
er(n+m) (n, m ∈ N, x , y ∈ Zd).

Proof. (1) Let us write Λn = e−rn
∑

x φ(x)ηn(x). Since it is a positive martin-

gale it converges almost surely to a finite integrable positive random variable

Λ∞. Therefore Λ∗∞ := supΛn < +∞ a.s.and

sup
x ,n

e−rnφ(x)ηn(x)≤ Λ∗∞ .

(2) Assume for example that n ≤ m and let C = supnE
�
Λ2

n

�
< +∞. We have,

since Λn is a martingale,

φ(x)φ(y)E
�
ηn(x)ηn(y)

�
≤ E

�
ΛnΛm

�

= E
�
ΛnE

�
Λm | Fn

��
= E

�
Λ2

n

�
≤ C .

For the proof of the following result instead of using large deviations for Ln, we

use renewal theory, in the spirit of [5,7].

Proposition 4.3. For every x ∈ Zd there exists a constant cx ∈ (0,∞) such that

lim
n→+∞

e−rnE
�
ηn(x)

�
= cx .

Proof. By the many to one formula

vn(x) := E
�
ηn(x)

�
= E



∑

|u|=n

1(Xu=x)




= Q
�

1(Sn=x)e
A0(ξn)

�

= E
�

1(Sn=x)m
Ln−1

�
.

We decompose this expectation with respect to the value of τ= inf
�

n≥ 1 : Sn = 0
	
:

vn(x) = mE
�

1(Sn=x) 1(τ≥n)

�
+

∑

1≤k≤n−1

E
�

1(Sn=x)m
Ln−1 1(τ=k)

�
.

By the Markov property, if uk := P(τ= k), then

vn(x) = mP
�
τ≥ n, Sn = x

�
+

∑

1≤k≤n−1

mukvn−k(x) = mP
�
τ≥ n, Sn = x

�
+mv.(x) ∗ u(n) ,

15



Recall that the Malthusian parameter r is defined by

1= mE
�

e−rτ
�
= m

∑

k≥1

e−rkuk .

Hence if we let ṽn(x) = e−rnvn(x) and ũk = me−rkuk then,

ṽn(x) = me−rnP
�
τ≥ n, Sn = x

�
+ ṽ ∗ ũ(n) .

For x = 0, this yields

ṽn = ũn+ ṽ ∗ ũ(n) .

By assumption, we have aperiodicity : gcd
�

k ≥ 1 : uk > 0
	
= 1 and therefore,

e−rnE
�
ηn(0)

�
= ṽn→

∑
k ũk∑

k kũk

=
1∑

k kũk

=: c0 .

And similarly,

e−rnE
�
ηn(x)

�
= ṽn(x)→ cx := c0m

∑

k

e−rkP
�
τ≥ k, Sk = x

�
.

Remark 5. A simple use of the Markov property shows that if x 6= 0, then

cx = e−r
∑

y

cy p(y, x) = e−r P∗c(x)

an equation dual to the one satisfied by the function φ.

Remark 6 (The periodic case). Let us look at a periodic case, for example simple

random walk on Z. We have gcd
�

k ≥ 1 : uk > 0
	
= 2, and η2n+1(0) = 0.

Therefore, by looking only even numbers, we obtain

lim
n→+∞

e−r2nη2n(0) = c0, ,

and similar results for ηn(x) by looking only at odd n if x is odd,and even n

when x is even. The law of large numbers of Theorem 1.1 can then be proved

mutatis mutandis as in section 5.

We end this section by proving the first part of Theorem 1.2.

Lemma 4.4. We have
�
Λ∞ > 0

	
= S a.s.
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On the extinction set S C , there exists n0 = n0(ω) such that for all n≥ n0, and

all x , ηn(x) = 0. Therefore, if n ≥ n0 on S C , then Λn = e−rn
∑

x φ(x)ηn(x) =

0 and Λ∞ = 0 a.s. We have just proved that S C ⊂
�
Λ∞ = 0

	
a.s.

Let s = P
�
Λ∞ = 0

�
. Let τ(i) be the time of return to 0 for the ith particle born

to the ancestor, and let Λ(i)n the process built from this particle, after the time

τ(i), when it is finite. We shall condition on the number of children of the initial

ancestor N , a random variable independent of the rv’s τ(i) and of Λ(i).

s = P
�
Λ∞ = 0

�
=
∑

k

P(N = k)P
�
∀i ≤ k,τ(i) < +∞,Λ(i)∞ = 0

�

=
∑

k

P(N = k)P(τ <∞)ksk = f (s(1− qesc)).

with f (x) = E
�

xN
�

the generating function of the reproduction law.

In the recurrent case, qesc = 0, we have s = f (s) and since we are in the

supercritical regime, m = f ′(1) > 1 so s = 1 or s = P
�
S C
�

. The case s = 1 is

impossible since Λn is uniformly integrable and therefore E
�
Λ∞
�
= 1.

In the case qesc > 0, by the same arguments, we prove that t = P
�
S C
�

satisfies

the same equation t = f (t(1−qesc)). It remains to show that this equation has a

unique solution on [0, 1). It is easy to see that the function g(x) = f (x)− x

1−qesc

has a unique zero on [0, 1−qesc) since g is convex, g(0) = f (0)> 0 (otherwise

the extinction probability is 0 as is s), g(1) = 1− 1

1−qesc
< 0, g ′(1) = m− 1

1−qesc
>

0.

5 The law of large numbers : proof of Theorem 1.1.

We assume that for all real t : eψ(t) = E
�

etS1

�
< +∞. We assume that

P
�
S1 > 0

�
> 0 since otherwise the random walk never goes to the right and

we have trivially Mn = 0 for all n.

We have then eψ(t) ≥ etP
�
S1 > 0

�
→ +∞ and therefore consider the unique

t0 > 0 such that

ψ(t0) = r ,

with r the Malthusian parameter given by (4.1).

We are going to prove that on the survival set S , almost surely,

lim
n→+∞

Mn

n
= α :=

r

t0

.
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5.1 Proof of the upper bound

Let θ > 0, x > 0. By the many to one formula,

P
�

Mn > xn
�
= P






∑

|u|=n

1(Xu>xn)


 > 0




≤ E



∑

|u|=n

1(Xu>xn)




= E
�

1(Sn>nx)m
Ln−1

�

≤ E
�

eθ (Sn−xn)mLn−1

�
= e−θnx vn , with vn = E

�
eθSn mLn−1

�
.

As in Proposition 4.3, we are going to use renewal theory to study the asymp-

totics of vn. Let us condition on τ= inf
�

n≥ 1 : Sn = 0
	
:

vn = E
�

eθSn mLn−1 1(τ≥n)

�
+

∑

1≤k≤n−1

E
�

eθSn mLn−1 1(τ=k)

�

= E
�

eθSn 1(τ≥n)

�
+

∑

1≤k≤n−1

mP(τ= k)vn−k

= yn+mv ∗ u(n) ,

with yn := E
�

eθSn 1(τ≥n)

�
and un := P(τ= n).

Assume now that θ > t0 so that ψ(θ )>ψ(t0) = r. We let

ṽn := e−nψ(θ )vn , ỹn := e−nψ(θ ) yn , ũn := me−nψ(θ )un .

On the one hand, by definition of the Malthusian parameter we have 1 =

mE
�

e−rτ
�
=
∑

mne−rnun so that
∑

k ũk < 1.

On the other hand,

ỹn = E
�

eθSn−nψ(θ ) 1(τ≥n)

�
= Pθ (τ≥ n)

with Pθ defined by the martingale change of probability

dPθ

dP
= eθSn−nψ(θ ) (on Fn) .

Since under Pθ , (Sn)n≥0 is a random walk with mean Eθ
�

S1

�
=ψ′(θ )> 0, we

have

ỹn→ ỹ∞ := Pθ (τ= +∞) .
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Recall the aperiodicity assumption gcd
�
uk : k ≥ 1

	
= 1. By the renewal theo-

rem, we have

ṽn→
ỹ∞

1−
∑

k ũk

.

Therefore, if x >
ψ(θ )

θ

P
�

Mn > xn
�
≤ e−n(θ x−ψ(θ )) ṽn

satisfies
∑

n P
�

Mn > xn
�
< +∞ and by Borel Cantelli

limsup
n→+∞

Mn

n
≤ x a.s.

Hence, letting first x ↓ ψ(θ )
θ

and then θ ↓ t0 we obtain that

limsup
n→+∞

Mn

n
≤
ψ(t0)

t0

= α a.s.

5.2 Proof of the lower bound

Recall from Proposition 4.3 and Corollary 4.3 that

lim
n→+∞

e−rnηn(0) = c0 , sup
n

e−2rnE
�
ηn(0)

2
�
+∞ .

Therefore Paley-Zygmund’s inequality entails that

P
�
ηn(0)≥ c′λn

�
≥ c′,

for some constant c′ > 0. The following lemma aims at the a.s. behavior of

ηn(0):

Lemma 5.1. Almost surely on S ,

ηn(0)≥
c′

2
ern,

for all large n.

Proof. Let mL := mP(τ≤ L). We have

lim
L→+∞

mL = mP(τ < +∞) = m(1− qesc)> 1
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so we can pick up an integer L large enough so that mL > 1.

Now, we shall construct a supercritical Galton-Watson process GWL: By the

construction of the branching walks system, at time 0 there is a single particle

which branches according to the law (pi). Amongst the set of children, we only

choose those particles which return to 0 before time L. This forms the first

generation of GWL . We repeat the above selection independently and we get

a Galton-Watson process GWL . Denote by (p
(L)

i
) the reproduction law GWL .

Plainly

p
(L)

i
=

∞∑

j=i

p j C i
j (P(τ≤ L))i(P(τ > L)) j−i , i ≥ 0.

Note that
∑

ip
(L)

i
= mL > 1. Denote by SL the survival set of GWL . Then SL is

increasing on L and

S = ∪L≥2SL .

Let 0< ǫ < mL−1. Let GWL(n) be the number of individuals of nth generation

of GWL . On SL , a.s., GWL(n) ≥ (mL − ǫ/2)n for all large n. Observe that for

any n≥ 1,

GWL(n)≤
∑

k≤Ln

ηk(0).

It follows that on SL , a.s, for all large n,

max
k≤Ln

ηk(0)≥ (mL − ǫ)n.

Pick up a constant 1 < γ := γ(ǫ, L) < (mL − ǫ)1/L . Considering the stopping

time (for the branching system endowed with natural filtration)

Tγ := inf{n : ηn(0)> γ
n}.

We have shown that on SL , Tγ <∞ a.s. It follows from the branching property

that

P
�
ηn+Tγ

(0)≤ c′ ern, SL

�
≤ P

�
ηn(0)≤ c′ ern

�γn

≤ (1− c′)γ
n

,

whose sum on n converges. By Borel-Cantelli’s lemma, on SL , a.s. for all large

n,

ηn(0)≥ c′er(n−Tγ) ≥
c′

2
ern.

Since S = ∪LSL , we get the lemma.
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Proof of the lower bound of Mn. Let 0 < s < 1 and 0 < a < 1. On the survival

set S , at time sn, there are c′

2
ersn particles at 0, which moves independently.

Letting these particles move as a simple random walk staying positive up to

time (1− r)n, then Mn is bigger than c′

2
ersn i.i.d. copies of S(1−r)n with S1 >

0, ..., S(1−r)n > 0, where S is a simple symmetric walk on Z. By Large Deviations

Property,

P
�

S(1−r)n > a(1− r)n, S1 > 0, ..., S(1−r)n > 0
�
= e−(1−r)nI(a)+o(n),

with

I(a) := sup
θ>0

(aθ −ψ(θ )) .

It follows that

P
�

Mn ≤ (1− r)an,ηrn(0)≥
c′

2
ersn
�

≤
�

1− P(S(1−r)n > a(1− r)n, S1 > 0, ..., S(1−r)n > 0
�� c′

2
ersn

= exp(−ersne−I(a)(1−r)n+o(n)).

Choose (a, s) ∈ (0, 1)2 such that

rs > I(a)(1− r),

we apply Borel-Cantelli’s lemma and get that a.s. for all large n, either Mn >

(1− s)an or ηsn(0)<
c′

2
ersn. Hence on the survival set S ,

lim inf
n→∞

Mn

n
≥ sup{(1− s)a : (a, s) ∈ (0, 1)2, rs > I(a)(1− r)}, a.s.

But r =ψ(t0), therefore

sup{(1− s)a}= sup
0<a<1

aψ(t0)

I(a) +ψ(t0)
.

Considering the derivative of a → aψ(t0)

I(a)+ψ(t0)
: I(a) = aθ (a) − ψ(θ (a)) with

a = ψ′(θ (a)), then I ′(a) = θ (a) and that the derivative of a → aψ(t0)

I(a)+ψ(t0)
has

the same sign as I(a)+ψ(t0)− aI ′(a) =ψ(t0)−ψ(θ (a)), which is negative if

a >ψ′(t0) (i.e. θ (a)> t0), positive if a <ψ′(t0) and vanishes at ψ′(t0), then

sup{(1− s)a}=
ψ(t0)

t0

,

as desired.

21



6 Refining the Convergence : proof of Theorem 1.2.

Proposition 6.1. There exists some positive constant c∗ > 0 such that

limsup
z→∞

limsup
n→∞

���et0zP
�

Mn > αn+ z
�
− c∗

���= 0,

where α :=
ψ(t0)

t0
.

The value of c∗ is given by c∗ :=
c+ c1

eE(H1)
, where c+ := 1

P(S1>0)
, c1 is such that

E(ηn(1))∼ c1enψ(t0) and eE(H1) is given in equation (6.6).

6.1 Upper bound in Proposition 6.1

We are going to prove that for any z ∈ R,

limsup
n→∞
P(Mn > αn+ z)≤

c+c1

eE(H1)
e−t0z .

Denote as before by ηn(x) the number of particles at x at time n. Let α :=
ψ(t0)

t0

be the velocity of Mn. We prove the following upper bound : for all z ∈ R,

limsup
n→∞
P
�

Mn > αn+ z
�
≤ c∗ e−t0z .

Start from P
�

Mn > αn+ z
�
= P
�
∃|u| = n : Xu > αn+ z

�
. For |u| = n, denote

by u0 = o < u1 < ...< un = u the shortest path relating o to u such that |uk|= k

for any k ≤ n. For |u|= n with Xu > αn+ z > 0 (as n is large), there exits some

k < n such that Xuk−1
= 0 and Xu j

> 0 for all k ≤ j ≤ n; Moreover, Xuk
= 1 as

we consider nearest neighbor walks. Denote by

Bk :=
⋃

|v|=k

n
∃|u|= n : v = uk, X v = 1, Xu j

> 0,∀k < j ≤ n, Xu > αn+ z
o

:=
⋃

|v|=k

Av(k, n).

Then conditioning on Fk, Bk is an union of ηk(1) i.i.d. events, and each event

holds with probability

p(k, n) := P1

�
S1 > 0, ..., Sn−k−1 > 0, Sn−k−1 > αn+ z

�

= c+ P
�

S1 > 0, ..., Sn−k > 0, Sn−k > αn+ z
�

,

22



with c+ := 1

P(S1>0)
, by the Markov property of S at time 1. It follows that

P
�

Bk

�
≤ E
�
ηk(1)p(k, n)

�
= (c1+ ok(1))e

ψ(t0)k p(k, n),

where ok(1)→ 0 as k→∞. Hence for any j > 1 and n> j,

P
�

Mn > αn+ z
�
≤ (c1+ o j(1))

n∑

k= j

eψ(t0)k p(k, n) + C

j−1∑

k=1

eψ(t0)k p(k, n), (6.1)

where o j(1) → 0 as j → ∞. It will be clear that the above sum
∑ j−1

k=1
is

negligible as n → ∞ [in fact, this sum goes to 0 exponentially fast for any j

fixed]. To estimate the sum
∑n

k= j , we introduce

a :=ψ′(t0), r :=
ψ∗(a)

at0

< 1, (6.2)

since ψ∗(a) = at0−ψ(t0). Note that α= a(1− r). Define a new probability

deP
dP
|σ{S0,...,Sn} = et0Sn−nψ(t0).

Under eP, S1 has the mean a. Let eS j := S j−a j for j ≥ 0. Therefore for 1≤ k ≤ n,

p(k, n) = c+ eE
�

e−t0Sn−k+(n−k)ψ(t0)1(S j>0,∀ j≤n−k,Sn−k>αn+z)

�

= c+ e−ψ
∗(a)(n−k) eE

�
e−t0

eSn−k 1(eS j>−a j,∀ j≤n−k,eSn−k>−arn+ak+z)

�
.

Write k = rn+ ℓ [ℓ could be a negative real number]. Then

eψ(t0)kp(k, n) = c+ eE
�

e−t0(eSn−k−aℓ)1(eS j>−a j,∀ j≤n−k,eSn−k−aℓ>z)

�

= c+ e−t0z t0

∫ ∞

0

dse−t0s eP
�
eS j > −a j,∀ j ≤ n− k, z ≤ eSn−k − aℓ < z + s

�
.

(6.3)

Re-writing aℓ = a(1− r)n− a(n− k), we have eSn−k − aℓ = eSn−k + a(n− k)−
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a(1− r)n. Hence

n∑

k=1

eψ(t0)k p(k, n)

= c+ e−t0z t0

n∑

k=1

∫ ∞

0

dse−t0s eP
�
eS j > −a j,∀ j ≤ n− k,

z ≤ eSn−k + a(n− k)− a(1− r)n< z + s
�

(6.4)

≤ c+ e−t0z t0

∫ ∞

0

U(a(1− r)n+ z, a(1− r)n+ z + s]e−t0sds, (6.5)

where for any x < y ,

U(y) :=

∞∑

j≥0

eP
�

ai+eSi > 0,∀1≤ i ≤ j, a j+eS j ≤ y
�

, U(x , y] := U(y)−U(x).

Under eP, S j ≡ a j + eS j is a random walk with positive mean a. If we denote by

T0 = 0 < T1 < ... < Tn < ... and H0 = 0 < H1 < · · · < Hn < · · · the strict ladder

epochs and ladder heights of the random walk S (under eP), then the duality

lemma says that for any y > 0,

U(y) =

∞∑

l=0

eP
�

Hl ≤ y
�

.

Since eE
�

S2
1

�
< +∞, eE(H1) <∞ and we have the Wald identity (see[8] Feller

Volume II, Chapter XVIII, Theorem 1)

eE(H1) = eE(S1)eE(T1) . (6.6)

Hence , the renewal theorem (see[8] Feller, pp381, non-lattice case) implies

that for any finite interval I , U(I + t) → |I |
eE(H1)

as t → ∞ (in particular

supt≥0 U(t, t + 1]<∞). Moreover U(y)≤ C(1+ y) for all y > 0.

The dominated convergence theorem implies that

lim
n→∞

∫ ∞

0

U(a(1− r)n+ z, a(1− r)n+ z + s]e−t0sds =
1

eE(H1)

∫ ∞

0

se−t0sds

=
1

t0
eE(H1)

. (6.7)
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Going back to (6.4) and (6.5), we mention that the upper bound (6.5) is opti-

mal as n→∞, which is equivalent to say that

xn :=

∞∑

l=n+1

∫ ∞

0

dse−t0s eP
�
eS j > −a j,∀ j ≤ l, z ≤ eSl+al−a(1−r)n< z+s

�
→ 0.

Indeed, for l > n, the probability term in xn is less than eP(eSl < −arl + z+ s)≤
e−abrl+b(z+s)eEebeSl for any b > 0. Since eE(eS1) = 0, we may choose a sufficiently

small but fixed 0 < b < t0/2 such that eP(eSl < −arl + z + s) ≤ e−
ar bl

2
+b(z+s),

from which we get immediately that xn tends exponentially fast to 0 as n→∞.

In the same way, we get that

max
1≤k≤pn

eψ(t0)kp(k, n)→ 0, exponentially fast when n→∞. (6.8)

Assembling the above estimates to (6.1), we obtain that for any z ∈ R,

lim sup
n→∞
P(Mn > αn+ z)≤

c+c1

eE(H1)
e−t0z .

Furthermore, we see that for some constant C > 0,

P(Mn > αn+ z)≤ Ce−t0z , ∀z ∈ R, n≥ 1, (6.9)

and for any fixed z ∈ R,

lim
n→∞

n∑

k=1

eψ(t0)k p(k, n) =
c+

eE(H1)
e−t0z . (6.10)

6.2 Lower bound in Proposition 6.1

Recall (6.2). Let ǫ > 0 be small. Consider

En :=

n⋃

k=1

B′k,

with B′
k

:= Bk ∩ {ηk(1)≤ 1

ǫ
ekψ(t0)} := Bk ∩ Fk. By using Corollary 4.2

sup
k

e−kψ(t0)ηk(1)<∞, a.s.

Hence

P
�

Mn > αn+ z
�
≥ P
�

En

�
+ oǫ(1),
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with oǫ(1)→ 0 as ǫ→ 0. By Cauchy-Schwarz’ inequality,

P
�

En

�
≥

�∑
1≤k≤n P(B

′
k
)
�2

∑
1≤k1,k2≤n P(B

′
k1
∩ B′

k2
)
. (6.11)

Conditioning on Fk, Bk is an union of ηk(1) i.i.d. events,

P
�

Bk

��Fk

�
= 1− (1− p(k, n))ηk(1).

On B′
k
, ηk(1) ≤ ekψ(t0)/ǫ. By (6.3), p(k, n)ηk(1) ≤ e−t0z/ǫ → 0 as z → ∞.

Then for all z ≥ z0(ǫ), uniformly for all k ≤ n,

1− (1− p(k, n))ηk(1) ≥ (1− ǫ)p(k, n)ηk(1)

hence

P
�

B′k
��Fk

�
≥ (1− ǫ)p(k, n)ηk(1)1Fk

.

In particular,
n∑

k=1

P(B′k)≥ (1− ǫ)
n∑

k=1

p(k, n)E
�
ηk(1)1Fk

�
.

Recall (6.8). Since E
�
ηk(1)1Fk

�
= (1+ oǫ(1))E

�
ηk(1)

�
= (c1 + oǫ(1))e

kψ(t0)

as k large, we get that

n∑

k=1

P(B′k) = (c1+ oǫ(1))

n∑

k=1

p(k, n)ekψ(t0) = (c∗+ oǫ(1))e
−t0z ,

where c∗ =
c1c+
eE(H1)

and oǫ(1) does not depend on z.

Let k1 < k2. On Bk1
∩Bk2

, there are at least two different v 6= v′ at generation k1

such that Av(k1, n) holds and for v′, there exists some descend u at generation

k2 such that Au(k2, n) holds. Then,

Bk1
∩ Bk2

⊂
⋃

v 6=v′,|v|=|v′|=k1

n
Av(k1, n)∩ {∃u : |u|= k2, u> v′ : Au(k2, n)}

o
.

Since different particles branch independently, we get that

P
�

Bk1
∩ Bk2

��Fk1

�
≤

∑

v 6=v′,|v|=|v′|=k1

p(k1, n)E
� ∑

|u|=k2,u>v′
p(k2, n)

��Fk1

�
.
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Taking the expectations, we get that for k1 < k2,

P
�

Bk1
∩Bk2

�
≤ p(k1, n)p(k2, n)E(ηk1

(1)ηk2
(1))≤ C p(k1, n)p(k2, n)ek1ψ(t0)+k2ψ(t0),

by Corollary 4.2.

Therefore, we get that

∑

1≤k1,k2≤n

P
�

Bk1
∩ Bk2

�
≤

n∑

k=1

P(B′k) + Ce−2t0z

≤ (c∗+ oǫ(1))e
−t0z + Ce−2t0z ,

for some constant C > 0. It follows that for all large z ≥ z0(ǫ),

lim inf
n→∞

et0zP
�

Mn > αn+ z
�
≥

(c2
∗ + oǫ(1))e

−t0z

(c∗+ oǫ(1))e
−t0z + Ce−2t0z

.

Letting z→∞ and ǫ→ 0 in order, we get that

lim inf
z→∞

lim inf
n→∞

et0zP
�

Mn > αn+ z
�
≥ c∗oǫ(1).

giving the lower bound by letting ǫ→ 0. �

Proposition 6.2. For any x,

limsup
z→∞

limsup
n→∞

���et0zPx

�
Mn > αn+ z

�
− c∗φ(x)

���= 0 .

Proof. Let S∗ =max0≤i≤τ0
Si . Then

Px

�
Mn > αn+ z

�

= O
�
Px(S

∗ > αn+ z)
�
+

n∑

k=1

Px(τ= k)P
�

Mn−k > αn+ z
�

Applying Proposition 6.1, we have

et0(z+αk)Px

�
Mn > α(n− k) + z +αk

�
∼ c∗.

Therefore,

et0zPx

�
Mn > αn+ z

�
∼ c∗ lim

n→+∞

∑

1≤k≤n

e−t0αkPx(τ= k)→ c∗
∑

k

e−rkPx(τ= k) = c∗φ(x) .

27



6.3 Proof of Theorem 1.2

Let k be a large constant (k ≫ |y|) and n > k. Conditioning on Fk, the ηk

particles move independently, hence

P
�

Mn > αn+ y
�
= E
�

1−
∏

x∈Z
Px

�
Mn−k ≤ αn+ y

�ηk(x)
�

. (6.12)

Applying Proposition 6.2, we see that

Px

�
Mn−k ≤ αn+ y

�
= 1− (c∗+ ok(1))φ(x)e

−ψ(t0)k−t0 y ,

with ok(1)→ 0 as k →∞. The product in (6.12) is in fact taken over a finite

set of x (the walk has bounded jumps), hence both lim supn→∞ P(Mn > αn+ y)

and lim infn→∞ P(Mn > αn+ y) are equal to

E


1− exp

�
− (c∗+ ok(1))

∑

x∈Z
φ(x)e−t0 y−ψ(t0)ηk(x)

�
 = E

h
1− e−(c∗+o(1))e−t0 yΛk

i
,

where ok(1) may be different according to limsupn→∞ or lim infn→∞. But since

Λk is a positive martingale, we have Λk → Λ∞ a.s. and this implies that the

above expectation converges to

E
h

1− e−c∗e
−t0 yΛ∞

i
.

7 Extension to multiple catalysts

The set of catalysts is a finite subset C of Zd . Outside of C a particle performs

a standard (fixed) random walk. When a particle reaches a catalyst x ∈ C it

dies and gives birth to new particles according to the point process

Dx
d
=(S

(i)

1 , 1≤ i ≤ Nx)

where (S(i)n , n ∈ N)i≥1 are IID random walk starting form x , independent from

the random variable Nx , assumed to be square integrable. Each particle pro-

duces new particles independently from the other particles living in the system.

The underlying Galton-Watson process is obtained by forgetting/erasing the

time spent between the catalysts. Let us assume first that the random walk is

recurrent. Then the Galton-Watson process is multitype with the moment matrix

Mx y :=mean number of particles born at x that reach site y

= mxPx

�
τ= τy

�
(x , y ∈ C ) ,
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where mx = E
�

Nx

�
is the mean offspring at site x , τy := inf

�
n≥ 1 : Sn = y

	

is the first return time at y , and τ = τC = infy∈C τy is the first return time to

C .

We assume to be in the supercritical regime, that is ρ > 1, where ρ is the

maximal eigenvalue of matrix M , which by assumption is irreducible. We let

ρ(r) be the maximum eigenvalue of the matrix

M (r)x y := mxEx

h
e−rτ 1(τ=τy )

i
(x , y ∈ C ).

The function r → ρ(r) is continuous, strictly decreasing, C∞ on (0,+∞), ρ(0) =
ρ > 1 and limr→+∞ρ

(r) = 0 since M (r)x y ≤ mx e−r . Therefore there exists a

unique r > 0, a Malthusian parameter, such that ρ(r) = 1. We shall fix this

value of r in the sequel.

Let v = v(r) be a right eigenvector of M (r) associated to ρ(r) = 1:

v = M (r)v i.e. v(x) =
∑

a∈C
mxEx

�
e−rτ 1(τ=τa)

�
v(a) (x ∈ C ) .

Let us denote by p(x , y) = Ex

�
S1 = y

�
and P f (x) =

∑
y p(x , y) f (y) the ran-

dom walk kernel and semigroup. Let us consider the hitting times

Tx := inf
�

n≥ 0 : Sn = x
	

, T = TC = inf
x∈C

Tx = inf
�

n≥ 0 : Sn ∈ C
	

.

Lemma 7.1. The function

φ(x) :=
∑

a∈C
v(a)Ex

�
e−rT 1(T=Ta)

�

is a solution of

Pφ(x) = erφ(x)

�
1

mx

1(x∈C )+ 1(x /∈C )

�
.

Proof. Indeed, by conditioning on the first step of the random walk, if x /∈ C
then T ≥ 1 and

φ(x) =
∑

a∈C
v(a)

∑

y

p(x , y)e−rEy

�
e−rT 1(T=Ta)

�
= e−r Pφ(x) .

On the other hand, if x ∈ C then T = Tx = 0 and by definition of v

φ(x) = v(x) =
∑

a∈C
v(a)mxEx

�
e−rτ 1(τ=τa)

�
.
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We condition again on the first step, since τ≥ 1, and get

φ(x) = mx

∑

a∈C
v(a)

∑

y

p(x , y)e−rEy

�
e−rT 1(T=Ta)

�
= mx e−r Pφ(x) .

We are now ready to introduce the fundamental martingale.

Lemma 7.2. (1) For the CBRW process with multiple catalysts, the process

Λn := e−rn
∑

|u|=n

φ(Xu)

is a martingale.

(2) For the random walk, the process

∆n := e−rnφ(Sn)
∏

x∈C
m

Lx
n−1

x

is a martingale where Lx
n−1 =

∑
0≤k≤n−1 1(Sk=x) is the local time at level x at

time n− 1.

(3) The process Λn is bounded in L2 and therefore a Uniformly Integrable martin-

gale.

Proof. Let us prove (2) first.

E
�
∆n+1 | Fn

�
= e−r(n+1)

∏

x∈C
m

Lx
n

x E
�
φ(Sn+1) | Fn

�

= e−r(n+1)
∏

x∈C
m

Lx
n

x Pφ(Sn)

= e−r(n+1)
∏

x∈C
m

Lx
n

x erφ(Sn)

�
1

mSn

1(Sn∈C )+ 1(Sn /∈C )

�

=∆n .

To establish (1), we shall need the many to one lemma. Since

eψx (0) = Ex



∑

|u|=1

1


 = mx 1(x∈C )+ 1(x 6inC ) =

∏

a∈C
m

1(x=a)

a

we have for |u|= n

eA0(u) =
∏

v<u

eψXv
(0) =

∏

v<u

∏

a∈C
m

1(Xv=a)

a =
∏

a∈C
m

∑
v<u 1(Xv=a)

a .
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Therefore, if Z is Fn−1 measurable positive or bounded,

E
�
ΛnZ

�
= e−rnE



∑

|u|=n

φ(Xu)Z




= e−rnQ
�

Zφ(Sn)e
A0(ξn)

�
many to one lemma

= e−rnE


Zφ(Sn)

∏

x∈C
m

Lx
n−1

x




= E
�

Z∆n

�

= E
�

Z∆n−1

�
since ∆n is a martingale

= E
�

ZΛn−1

�
.

(3) To compute second moments, we use the many to two formula of section 3

E
�
Λ2

n

�
= e−2rnE



∑

|u|=|v|=n

φ(Xu)φ(X v)




= e−2rnQ2
�
φ(S1

n)φ(S
2
n)e

A0(ξ
1
n,ξ2

n)
�

.

We let T = inf
¦

n≥ 1 : S1
n 6= S2

n

©
be the splitting time of the coupled random

walks, and mx ,p := E
�

N
p
x

�
1(x∈C )+ 1(x /∈C ). Since

eA0(ξ
1
n,ξ2

n) =
∏

0≤l≤(T−1)∧n−1

mS1
l
,2

∏

T−1<l≤n−1

mS1
l
,1mS2

l
,1

and

Q2
�

T ≥ n+ 1 | Fn

�
=

∏

0≤l≤n−1

mS1
l
,1

mS2
l
,2

,

we have

E
�
Λ2

n

�
= e−2rnQ2

�
φ(S1

n)φ(S
2
n)e

A0(ξ
1
n,ξ2

n) 1(T≥n)

�
+

+ e−2rn
∑

1≤k≤n−1

Q2
�
φ(S1

n)φ(S
2
n)e

A0(ξ
1
n,ξ2

n) 1(T=k)

�

= e−2rnQ2

 
φ(S1

n)
2
∏

x∈C
m

Lx
n−1

x

!

+ e−2rn
∑

1≤k≤n−1

Q2

 ∏

0≤l≤k−2

mS1
l
,1

mS2
l
,2

(1−
mS1

k−1
,1

mS2
k−1

,2

)ES1
k−1

�
∆n−(k−1)

�2
e2r(n−(k−1))

!
.
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Observe that since 0 ≤ φ ≤ 1 we have φ(x)2 ≤ φ(x), and combine it with

Ex

�
∆p

�
= φ(x)mx ,1 ≤ c1 to obtain the upper bound

E
�
Λ2

n

�
≤ 1+ c2

∑

1≤k≤n−1

e−r(k−1)Q2

 
φ2(S1

k−1)
∏

x∈C
m

Lx
k−2

x

!

≤ c3(1+
∑

k≥1

e−r(k−1)) = c4 < +∞.

When the random walk is transient, we have a continuity defect at zero. Hence

we modify the definition of M

Mx ,y := lim
r↓0

M (r)x y = mxPx

�
τ= τy ,τ < +∞

�
.

The rest of the proof then goes unchanged.

We are now able to give an explanation of the supercritical regime assumption

of the introduction.

Lemma 7.3. When there is only one catalyst at the origin, the supercritical regime

is m(1− qesc)> 1.

Proof. Indeed, M is then a one dimensional matrix and

ρ = M00 = mP(τ <=∞) = m(1− qesc) .

We end this section by stating the law of large numbers. Intuitively, if c is the

rightmost catalyst, the maximal position at time n comes from particles born to

c.

Proposition 7.4 (Law of large numbers). On the set of non extinction S we

have

lim
n→+∞

Mn

n
= α a.s.

with α= r

t0
, r the Malthusian parameter and t0 > 0 defined by ψ(t0) = r.

Proof. First observe that the heuristics does not changes at all since by applying

the optional stopping theorem to the martingale et0Sn−nr to the time Tc , we

obtain that

et0 x = et0cEx

�
e−rT

�
.
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Therefore, for x > c,

φ(x) = v(c)Ex

�
e−rTc

�
= v(c)et0(x−c) ,

and we compute the expected number of particles above level an in the same

way, and hence obtain the same guess for the asymptotics.

Furthermore, the proofs are mutatis mutandis the same as the one given in

section 5.
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