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HESSIAN OF THE METRIC FORM ON TWISTOR SPACES

GUILLAUME DESCHAMPS, NOËL LE DU, AND CHRISTOPHE MOUROUGANE

ABSTRACT. We compute the hessianid′d′′W of the natural metric formW on the
twistor spaceT(M, g) of a 4-dimensional Riemannian manifold(M, g). We then
adapt the computations to the case of the twistor spaceT(M, g,D) of a hyperkähler
manifold(M, g,D = (I, J,K)). We show a strong positivity property of the hessian
id′d′′W on the twistor spaceT(M, g,D) and prove, as an application, a convexity
property of the component of the twistor lines in the cycle space ofT(M, g,D).

1. INTRODUCTION

The Penrose twistor construction is a way of translating a problem on a4-dimensional
Riemannian manifold(M, g) into a problem on a hermitian (almost-)complex3-dimen-
sional manifold, its twistor spaceT(M, g). An analogous construction can be done,
starting with a hyperkähler manifold(M, g,D = (I, J,K)). The main drawback is
that the twistor spacesT(M, g) or T(M, g,D) are almost never of Kähler type, even
under vanishing assumptions for the curvature ofg. This defect can be quantified, at
least for the natural metric on the twistor spaceT(M, g,D), by the Kodaira-Spencer
class (see proposition 3.2).

Our first aim is to compute the hessianid′d′′W of the natural metric formW on the
twistor spaceT(M, g) of a4-dimensional Riemannian manifold(M, g) and extend the
computations to the case of the twistor spaceT(M, g,D) of a hyperkähler manifold
(M, g,D = (I, J,K)). This is done by a study of commutation relations of various
vector fields on the twistor spaces.

We then show, as a substitute to the Kähler property, a strong positivity property of
the hessianid′d′′W of the natural metric formW on the twistor spaceT(M, g,D) of a
hyperkähler manifold(M, g,D).

Kobayashi conjectured that the canonical bundle of a projective manifold without
non-constant entire curves would be ample. It would follow that every hyperkähler
manifold contains non-constant entire curves, that is, in other words, is not Kobayashi
hyperbolic. An approach to this problem has been initiated by Campana [5, 6]. It con-
sists in deforming the rational twistor lines inT(M, g,D) in order to produce an entire
curve in(M, I). We prove, as an application of the previous computations, aconvexity
property of the component of the twistor lines in the cycle space ofT(M, g,D), that
may be useful to control the deformations of twistor lines.
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2. TWISTOR SPACES OF4-DIMENSIONAL RIEMANNIAN MANIFOLDS

2.1. Constructions on R4. An endomorphismA of the oriented euclidean real vector
spaceR4 is said to respect the orientation if for all vectorsU, V ∈ R4 the 4-tuple
(U,AU, V, AV ) is either linearly dependent or positively oriented. This will be denoted
by A ≫ 0. Examples are given by the following three orthogonal anti-involutive
(hence anti-symmetric) endomorphisms

I =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


 , J =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 , K =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 .

The setF of complex structures onR4 that respect the orientation and the euclidean
product (called compatible complex structures) identifieswith the sphere{u = aI +
bJ + cK/(a, b, c) ∈ S2} ≃ S2. The standard metricg0 on the sphere reads onF

g0(V,W ) =
1

2
tr(V tW ) = −1

2
tr(VW ), ∀V,W ∈ TS2.

As the sphereS2, the setF inherits the complex structure ofCP 1. More precisely, at
a pointu ∈ F , the tangent spaceTuF is {V ∈ so(4)/V u = −uV } and the complex
structure ofF readsj · V = uV as a matrix product.

This identification can be made intrinsic as follows. The euclidean product onR4

gives an euclidean product on the exterior product
∧2

R4. The Hodge star operator
decomposes

∧2
R4 into

∧2 TM =
∧+ ⊕∧−. An anti-symmetric endomorphismA

of so(4) identifies with an elementφ(A) of
∧2

R4 requiring

g(φ(A), V ∧W ) = g(AV,W ) ∀V,W ∈ R4.

In particular, a compatible complex structureu identifies with an elementφ(u) pre-
cisely of the sphere of vectors of

∧+ of norm
√
2. We will always identifyφ(u) andu,

and
∧2

R4 with so(4).

2.2. Constructions on a Riemannian 4-manifold. Consider now a4-dimensional
oriented Riemannian manifold(M, g). The twistor space of(M, g) is the fibre bundle
π : T(M, g) = T → M of vectors of

∧+ TM =:
∧+ of norm

√
2, that fibre-wise

identifies with the set of compatible complex structures on the tangent space ofM .
A natural Riemannian metricG and a natural almost-complex structureJ are defined
on the twistor spaceT as follows. The bundleV of vertical directions inTT is the
kernel of dπ. Note that its structure group isSO(3) ⊂ PGL(2,C) so that fibres
inherit complex structures and Riemannian metrics. The Levi-Civita connection∇g

of (M, g) provides us with a bundleH of horizontal directions inTT isomorphic via
dπ with TM , hence endowed with a complex structure and a Riemannian metric. The
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decompositionTT = H ⊕ V is madeG-orthogonal and invariant byJ. The mapπ
becomes a Riemannian submersion. We will use the notationH(X) = Hp(X) to
denote the horizontal lift atp ∈ π−1(m) of a vectorX tangent toM atm, and likewise
the notationH(v) to denote the (orthogonal) projection of a vectorv tangent toT onto
its horizontal part along the vertical direction.

Let ∇g be the Levi-Civita connection of(M, g), η its connection1-form in a given
frame with values inso(TM) andR its curvature tensor defined byR(X, Y )Z :=
[∇g

Y ,∇g
X ]Z + ∇g

[X,Y ]Z. Recall that, with these conventionsR(X, Y ) = −(dη + η ∧
η)(X, Y ). As endomorphism of

∧2 TM =
∧+⊕

∧− its decomposition is

R =

[
W+ + s

12
Id B

tB W− + s
12
Id

]
with B :

{ ∧+ → ∧−

∧− →
∧+

The operatorW = W+ +W− is called the Weyl operator ands is the scalar curvature
of g.

By a fundamental theorem of [1] the complex structureJ is integrable if and only
if the metricg on M is anti-self-dual, that isW+ = 0. We will always assume this.
By the works of Trudinger, Aubin, and Schoen on Yamabe problem, we will always
choose a conformal representative ofg with constant scalar curvature. This does not
change the isomorphism class of(T, J).

2.3. Properties of type decompositions. For a complex tangent vectorV on T, we
will denote byV h, V a ∈ TTC its (1, 0) and(0, 1) parts :JV h = iV h, JV a = −iV a.
Moreover, for a complex tangent vectorX onM , Xh will denote

Xh := π⋆(H(X)h) = 1/2π⋆(HX − iJHX) = 1/2(X − iu(X))

andXa = π⋆(H(X)a), omitting the dependence inp = (m, u) ∈ π−1(m). Note that
by construction ofJ, one hasH(X)h = H(Xh) =: HXh andH(X)a = H(Xa) =:
HXa.

Lemma 2.1. Given a direct orthonormal frame(θ1, . . . , θ4) on a small open setU of
M , and(u, v) in

∧+
C ×

∧−
C ,

(1) the matrix bracket[u, v] (in fact [φ−1(u), φ−1(v)]) vanishes.
(2) θhi ∧ θhj ∈

∧+
C andθai ∧ θaj ∈

∧+
C

(3) θhi ∧ θaj ∈
∧−

C ⊕V ect(u)C (in fact
∧−

C ⊕V ect(φ(u))C).

Proof. (1) Anyu ∈ φ−1(
∧+) coming from a bivector of norm

√
2 can be described

with a quaternionp as the quaternion productu(x) = p · x, and likewise any
v ∈ φ−1(

∧−) coming from a bivector of norm
√
2 can be described with a

quaternionq as the quaternion productu(x) = x · q. The result now follows
from the associativity of the quaternion algebra. More explicitly note that the

family





θ1 ∧ θ2 + θ3 ∧ θ4
θ1 ∧ θ3 − θ2 ∧ θ4
θ1 ∧ θ4 + θ2 ∧ θ3

is a basis of
∧+ and that





θ1 ∧ θ2 − θ3 ∧ θ4
θ1 ∧ θ3 + θ2 ∧ θ4
θ1 ∧ θ4 − θ2 ∧ θ3

is a basis of
∧−.



4 GUILLAUME DESCHAMPS, NÖEL LE DU, AND CHRISTOPHE MOUROUGANE

(2) At a pointp = (m, u), expending we get

θhi ∧ θhj =
1

4
(θi − iuθi) ∧ (θj − iuθj)

=
1

4

(
θi ∧ θj − uθi ∧ uθj − i(θi ∧ uθj + uθi ∧ θj)

)

=
1

4
(Id− iu)(θi ∧ θj − uθi ∧ uθj) ∈ ∧+

C .

The relationθai ∧ θaj ∈
∧+

C follows by conjugation.
(3) Expanding again, we get

θhi ∧ θaj =
1

4

(
θi ∧ θj + uθi ∧ uθj + i(θi ∧ uθj − uθi ∧ θj)

)
.

We then check

{
θi ∧ θj + uθi ∧ uθj ∈

∧−
C ⊕V ect(u)

θi ∧ uθj − uθi ∧ θj ∈
∧−

C ⊕V ect(u)
�

2.4. Bracket computations. The data of a direct orthonormal frame(θ1, . . . , θ4) on
a small open setU of M defines a trivialisationZ ⊃ π−1(U) ≃ U × S2. The local
coordinates of a pointp in Z will be denoted by(m, u). Because the fibre ofπ over a
pointm ∈ M is {u ∈ SO(TmM)/u2 = −Id andu ≫ 0}, the vertical spaceVp at a
pointp = (m, u) is given by

Vp = {V ∈ so(TmM)/V u = −uV }.
Let A : U → so(TM) be a section of the bundle of anti-symmetric endomorphisms.
We defineÂ : π−1(U) → TZ to be the associated vertical vector field computed with
matrix brackets

Â(p) = [u,A(m)] ∈ Vp.

Note that these special vectors generate the vertical directions.

Remark 2.2. The first easy property of lemma 2.1 will hugely simplify the forthcoming
computations. For example, ifA : U → so(TM) is a section andA+ : U → ∧+ its
projection onto

∧+ then the associated vertical vector fields are equalÂ = Â+. In

particular, ̂R(θhi ∧ θhj ) = ̂(W+ + s
12
Id)(θhi ∧ θhj ). Similarly, forB maps

∧+ to
∧−,

the vertical vector field̂B(u) vanishes. Hence, for the vertical vector field̂B(θhi ∧ θaj ),
only the component in

∧−
C of the vectorθhi ∧ θaj ∈

∧−
C ⊕V ect(J)C is relevant.

LetX : U → TM be a vector field onU . Its horizontal liftingH(X) is a basic vector
field (i.e. π⋆H(X) = X everywhere onπ−1(U)). In terms of the local trivialisation
π−1(U) ≃ U × S2 the vector fieldH(X) reads

TT ⊃ Hp ∋ H(X) = X + η̂(X) ∈ TU ⊕ TS2.

The following bracket computations of basic vector fields will be used again and
again.
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Lemma 2.3. Given a direct orthonormal frame(θ1, . . . , θ4) on a small open setU of
M and two sectionsA andB of U → so(TM), the Lie brackets are computed by

[Â, B̂] = [̂A,B]

[H(θi), Â] = (̂∇g
θi
A) + ̂[η(θi), A]

[H(θi),H(θj)] = H[θi, θj] − ̂R(θi ∧ θj).

Proof. In a pointp = (m, u) of T,

• [Â, B̂] = [[u,A] , [u,B]] = [[u,A] , B] − [[u,B] , A] = [u, [A,B]] . The map
A 7→ Â is hence a morphism of Lie algebras.

• First note that,[θi, Â] = [θi, [u,A]] = [u,∇g
θi
A] = ∇̂g

θi
A. Hence,

[H(θi), Â] = [θi + η̂(θi), Â] = ∇̂g
θi
A+ [ ̂η(θi), A].

• The result derives from previous remarks

[H(θi),H(θj)] = [θi + η̂(θi), θj + η̂(θj)]

= [θi, θj ] + ∇̂g
θi
η(θj)− ∇̂g

θj
η(θi) + [η̂(θi), η̂(θj)]

= [θi, θj ] + ̂dη(θi, θj) + ̂η([θi.θj ]) + ̂[η(θi), η(θj)]

= [θi, θj ] + ̂η([θi.θj ]) +
̂(

dη + η ∧ η
)
(θi, θj)

= H[θi, θj ]− ̂R(θi ∧ θj).

This relation shows that the curvatureR accounts for the lack of integrability
of the horizontal distributionH.

�

Lemma 2.4. For every vertical vector fieldU onT,

[Hθi, JU ] = J[Hθi, U ] and V[JHθi, JU ] = JV[JHθi, U ]

[Hθi, U
h

a ] = [Hθi, U ]
h

a and V[JHθi, U
h

a ] = (V[JHθi, U ])
h

a .

Proof. The first formula follows from the fact that the parallel transport along hori-
zontal directions respect the canonical metric and the orientation of the fibres, hence
the vertical complex structures. The second follows from the fact thatV[Hθi, JU ] =
JV[Hθi, U ] is a tensor inθi. The last two follow by linearity. �

Lemma 2.5. For every vertical vector fieldU onT,

H[Hθi, U ] = 0 and H[JHθi, U ] = −U(Hθi)

H[Hθhi , U
h

a ] =
i

2
U

h

a (Hθ
h

a

i ) and H[Hθai , U
h

a ] = − i

2
U

h

a (Hθ
h

a

i ).

Proof. We use the notations of the lemma 2.3. In order to get the first equality, simply
note that for any smooth functionf , using the previous lemma and the properties of
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the Lie brackets[Hθi, fÂ] is vertical. The second computation hence reduces to

H[JHθi, U ] = H[H(
∑

ujiθj), U ]

= −
∑

(U · uji)Hθj = −
∑

UjiHθj := −U(Hθi).

Use the bracket linearity to getH[Hθhi , U ] = i
2
U(Hθi) = −H[Hθai , U ]. Note that this

is a tensor inU so that in particular,

H[Hθhi , U
a] =

i

2
Ua(Hθi) =

i

2

Id+ iJ

2
Ua(Hθi) =

i

2
Ua(Hθai ).

�

Remark 2.6. The formulaH[JHθi, U ] = −U(Hθi) can be made more intrinsic by
considering the map

ϕ : π−1(m) → End(TmM)

that encodes the variation of complex structure onTmM . We find

π⋆[JHθi, U ] = −ϕ⋆(U)(θi).

2.5. Computations of dW and d′W. The results of this part are well know and can
be found for example in [7]. LetW = G(J·, ·) be the metric form on the twistor space
T. Its exterior derivative is given by the following

Proposition 2.7. The exterior derivativedW of the metric formW on the twistor space
T of an anti-self dual Riemannian4-manifold(M, g) vanishes on pure directional (i.e.
horizontal or vertical) vectors except when evaluated on two horizontal vectors and
one vertical vector. More precisely then,

∀X, Y ∈ TM, ∀U ∈ V dW(U,HX,HY ) = G
( ̂
(
1

2
Id− R)(X ∧ Y ), JU

)
.

Proof. The usual formula for the exterior derivatives of a2-form reduces here by or-
thogonality using the bracket computations of lemma 2.3 to

dW(U,Hθi,Hθj) = U ·W(Hθi,Hθj)−W
(
[Hθi,Hθj ], U

)

= U · g(u(θi), θj) +G
(
[Hθi,Hθj ], JU

)

= −Uij −G
(

̂R(θi ∧ θj), JU
)
.

choosing vertical coordinates(uij) such thatu(θj) =
∑

uijθi. Now setE = θi ∧ θj .
From the definition ofG, and the propertyuU = −Uu of the vertical vectorUone has

G(θ̂i ∧ θj , JU) = −1/2tr
(
(uE − Eu)uU

)
= −1/2tr(uEuU)− 1/2tr(EU)

= −tr(EU) = −2Uij .

It remains to check the vanishing of all the other pure directional components. As
the fibres are of real dimension two, the3-form dW restricts to zero on fibres. Let
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A,B : M → so(TM) be two sections. In normal coordinates at the centre of which
the connection1-form η vanishes

dW(Hθi, Â, B̂) = Hθi ·W(Â, B̂)−W
(
[Hθi, Â], B̂

)
+W

(
[Hθi, B̂], Â

)

= θi ·W(Â, B̂)−W
(
∇̂g

θi
A, B̂

)
+W

(
∇̂g

θi
B, Â

)

= W
(
∇̂g

θi
A, B̂

)
+W

(
Â, ∇̂g

θi
B
)
−W

(
∇̂g

θi
A, B̂

)
+W

(
∇̂g

θi
B, Â

)

= 0.

Finally for a triple of horizontal lifts, still with normal coordinates,

dW(Hθi,Hθj ,Hθk) = Hθi ·W(Hθj,Hθk)−Hθj ·W(Hθi,Hθk)
+Hθk ·W(Hθi,Hθj)−W([Hθi,Hθj ],Hθk)
+W([Hθi,Hθk],Hθj)−W([Hθj ,Hθk],Hθi)

= θi · g(uθj, θk)− θj · g(uθi, θk) + θk · g(uθi, θj)
−g(u[θi, θj ], θk) + g(u[θi, θk], θj)− g(u[θj, θk], θi)

= 0

for θi·u = 0 and for all the remaining quantities can be expressed in terms of∇g
θa
θb = 0

only. �

This result gives an expression for the(2, 1)-partd′W of dW.
Proposition 2.8. For all vertical vectorsU , one has

i) d′W(Ua,Hθhi ,Hθhj ) = (
s

6
− 1)Ua

ij .

ii) d′W(Uh,Hθhi ,Hθaj ) = −iG
(

̂B(θhi ∧ θaj ), U
h
)

.

Proof. i) Becauseθhi ∧ θhj =
1

4
(Id− iu)(θi ∧ θj − uθi ∧ uθj) belongs to

∧+
C we

infer by lemma 2.1

d′W(Ua, θ̂hi , θ̂
h
j ) = 1

4
G
(

̂(1
2
Id−R)(Id− iu)(θi ∧ θj − uθi ∧ uθj), JU

a
)

= 1
4
G
(

̂(1
2
− s

12
)(Id− iu)(θi ∧ θj − uθi ∧ uθj), JU

a
)

for W+ = 0

= 1
2
(1
2
− s

12
)G

(
Id−iJ

2
̂(θi ∧ θj − uθi ∧ uθj), JU

a
)

= 1
2
(1
2
− s

12
)G

(
̂(θi ∧ θj − uθi ∧ uθj),

Id+iJ
2

JUa
)

= 1
4
(1− s

6
)G

(
̂(θi ∧ θj − uθi ∧ uθj), JU

a
)
.

But we already found thatG(θ̂i ∧ θj , JU) = −2Uij . Writing uθi =
∑

ukiθk,

we findG( ̂uθi ∧ uθj, JU) = −2ukiuljUkl = 2(uUu)ij = 2Uij that leads to
d′W(Ua, θ̂hi , θ̂

h
j ) = ( s

6
− 1)Ua

ij .
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ii) Becauseθhi ∧ θaj belongs to
∧−

C ⊕V ect(u), we infer by lemma 2.1 on the one

hand ̂R(θhi ∧ θaj ) =
̂B(θhi ∧ θaj ) and on the other hand̂θhi ∧ θaj = 0. This gives

d′W(Uh, θ̂hi , θ̂
a
j ) = G

( ̂
(
1

2
Id− R)(θhi ∧ θaj ), JU

h
)

= −iG
(

̂B(θhi ∧ θaj ), U
h
)
.

�

Corollary 2.9. The formW is Kähler if and only ifR|∧+ =
1

2
Id∧+ .

Proof. The vanishingdW = 0 givesB = 0 (cf ii) and s/12 = 1/2 (cf. i). The
converse is straightforward. �

Remark 2.10. This is the case for the round sphereS4 and the projective spaceCP 2

with a Fubini-Study metric. More generally, Hitchin[8] actually proved that these are
the only K̈ahler twistor spaces.

2.6. Computation of id′d′′W. In this section, we will compute the real4-form id′′d′W =
idd′W of type(2, 2). We will express its values on pure directional vectors.

Theorem 1. The hessianid′d′′W of the metric formW on the twistor spaceT(M, g) of
an anti-self dual Riemannian4-manifold(M, g) is given on pure directions and pure
types by the following formulae whereHθi are basic horizontal lifts andUi vertical
vectors,

id′d′′W(Uh
1 , U

h
2 , U

a
3 , U

a
4 ) = 0(2.1)

id′d′′W(Uh
1 , U

h
2 , U

a
3 ,Hθai ) = id′d′′W(Hθhi , U

h
3 , U

a
1 , U

a
2 ) = 0(2.2)

id′d′′W(Hθhi ,Hθhj , U
a
1 , U

a
2 ) = id′d′′W(Uh

1 , U
h
2 ,Hθai ,Hθaj ) = 0(2.3)

id′d′′W
(
Hθhi , U

h
1 ,Hθaj , U

a
2

)
= −Ua

2 ·G
(

̂B(θhi ∧ θaj ), U
h
1

)

− i

2
Ua
2 mjG

(
̂B(θam ∧ θhi ), U

h
1

)
(2.4)

+
1

2
(
s

6
− 1)(Ua

2 .U
h
1 )ij

id′d′′W(Hθhi ,Hθhj , U
a,Hθak) = id′d′′W(Uh,Hθhk ,Hθai ,Hθaj ) = 0(2.5)

id′d′′W(Hθhi ,Hθhj ,Hθak ,Hθal ) = G
(

̂B(θhj ∧ θal ),
̂B(θhi ∧ θak)

)

−G
(

̂B(θhi ∧ θal ),
̂B(θhj ∧ θak)

)
(2.6)

−i(
s

6
− 1)

s

12
(θ̂ak ∧ θal )

a
ij.

Proof. (1) reflects the facts that the vertical distribution is integrable and that the
metric on the fibres is Kähler.
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(2) The non vanishing ofd′W requires two horizontal vectors. The integrability of
the vertical distribution hence shows the results.

(3) By the usual formula for the exterior derivative, omitting zero terms, we get

d′′d′W(Hθhi ,Hθhj , U
a
1 , U

a
2 )

= Ua
1 · d′W(Hθhi ,Hθhj , U

a
2 )− Ua

2 · d′W(Hθhi ,Hθhj , U
a
1 )− d′W([Ua

1 , U
a
2 ],Hθhi ,Hθhj )

+d′W([Hθhi , U
a
1 ],Hθhj , U

a
2 )− d′W([Hθhi , U

a
2 ],Hθhj , U

a
1 )

+d′W([Hθhj , U
a
1 ],Hθhi , U

a
2 )− d′W([Hθhj , U

a
2 ],Hθhi , U

a
1 ).

From proposition 2.8 and lemma 2.5, we infer that the terms
d′W([Hθhi , U

a
1 ],Hθhj , U

a
2 ) = d′W(H[Hθhi , U

a
1 ]

h,Hθhj , U
a
2 ) in the last two lines

vanishes for type reason. As the scalar curvature is constant, the proposition 2.8
leads to

Ua
1 .d

′W(Hθhi ,Hθhj , U
a
2 )− Ua

2 .d
′W(Hθhi ,Hθhj , U

a
1 )− d′W([Ua

1 , U
a
2 ],Hθhi ,Hθhj )

= (
s

6
− 1)

(
Ua
1 .(U

a
2 )ij − Ua

2 .(U
a
1 )ij − [Ua

1 , U
a
2 ]ij

)
= 0

The second equality follows by conjugation.
(4) By the usual formula for the exterior derivative, omitting zero terms, we get

d′′d′W
(
Hθhi , U

h
1 ,Hθaj , U

a
2

)

= Ua
2 · d′W

(
Uh
1 ,Hθhi ,Hθaj

)
− d′W

(
[Hθhi , U

a
2 ], U

h
1 ,Hθaj

)

−d′W
(
[Hθaj , U

a
2 ],Hθhi , U

h
1

)
+ d′W

(
[Hθaj , U

h
1 ],Hθhi , U

a
2

)

= −iUa
2 ·G

(
̂B(θhi ∧ θaj ), U

h
1

)
− d′W

(
H[Hθhi , U

a
2 ]

h, Uh
1 ,Hθaj

)

−d′W
(
H[Hθaj , U

a
2 ]

a,Hθhi , U
h
1

)
+ d′W

(
H[Hθaj , U

h
1 ]

h,Hθhi , U
a
2

)
.

From lemma 2.5, we infer that the second term vanishes for type reasons, and

that for the third termH[Hθaj , U
a
2 ] = − i

2
Ua
2 mjHθam. Hence

−d′W
(
[Hθaj , U

a
2 ],Hθhi , U

h
1

)
=

1

2
Ua
2 mjG

(
̂B(θam ∧ θhi ), U

h
1

)
.

From lemma 2.5, we infer that for the forth termH[Hθaj , U
h
1 ] = − i

2
Uh
1 mjHθhm.

Hence,

d′W
(
[Hθaj , U

h
1 ],Hθhi , U

a
2

)

= − i

2
d′W

(
Uh
1 mjHθhm,Hθhi , U

a
2

)

= − i

2
(
s

6
− 1)Uh

1 mjU
a
2 mi =

i

2
(
s

6
− 1)(Ua

2U
h
1 )ij .
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(5) Still from the formula of the exterior derivative

d′′d′W
(
Hθhi ,Hθhj , U

a,Hθak

)

= −Hθak .d
′W

(
Hθhi ,Hθhj , U

a
)
+ d′W

(
V[Hθak , U

a],Hθhi ,Hθhj

)

+d′W
(
V[Hθhi , U

a],Hθhj ,Hθak

)
− d′W

(
V[Hθhj , U

a],Hθhi ,Hθak

)

+d′W
(
H[Hθhj ,Hθak ],Hθhi , U

a
)
− d′W

(
H[Hθhi ,Hθak],Hθhj , U

a
)
.

From proposition 2.8 we can write

Hθak .d
′W

(
Hθhi ,Hθhj , U

a
)
= Hθak .

(
(
s

6
− 1)Ua

ij

)
= Hθak .

(
(
s

6
− 1)Ua

ij

)
= 0

computed in normal coordinates centred at a pointm. In such coordinates,
we can chooseU = Â with furthermore∇g

θi
A = 0 at m. By lemma 2.4,

V[Hθhk , U
a] = (V[Hθhk , U ])a = ( ̂(∇g

θk
A) + ̂[η(θk), A])

a = 0. Now, the vanish-
ing of the third and forth terms, follows from lemma 2.4, after whichV[Hθhi , U

a]

is of type(0, 1). Still at the centrem of normal coordinates , we haveH[θ̂hi , θ̂
a
k ] =

0 because[θi, θj ] = ∇g
θi
θj − ∇g

θj
θi = 0. As Hθi · u = 0, we conclude

H[θ̂hj , θ̂
a
k ] = 0.

(6) Again from the formula of the exterior derivative and from 2.8

d′′d′W
(
Hθhi ,Hθhj ,Hθak,Hθal

)

= d′W
(
[Hθhi ,Hθak],Hθhj ,Hθal

)
+ d′W

(
[Hθhj ,Hθal ],Hθhi ,Hθak

)

−d′W
(
[Hθhj ,Hθak ],Hθhi ,Hθal

)
− d′W

(
[Hθhi ,Hθal ],Hθhj ,Hθak

)

−d′W
(
[Hθak ,Hθal ],Hθhi ,Hθhj

)
.

As θhi ∧ θak belongs to
∧−

C ⊕V ect(u) andV[Hθhi ,Hθak] is a tensor, we find

[Hθhi ,Hθak ]V = − ̂R(θhi ∧ θak) = − ̂B(θhi ∧ θak) using lemma 2.1. This leads to

d′W
(
[Hθhi ,Hθak ],Hθhj ,Hθal

)
+ d′W

(
[Hθhj ,Hθal ],Hθhi ,Hθak

)

= −d′W
(

̂B(θhi ∧ θak)
h,Hθhj ,Hθal

)
− d′W

(
̂B(θhj ∧ θal )

h,Hθhi ,Hθak

)

= iG
(

̂B(θhj ∧ θal ),
̂B(θhi ∧ θak)

h
)
+ iG

(
̂B(θhi ∧ θak),

̂B(θhj ∧ θal )
h
)

= iG
(

̂B(θhj ∧ θal )
a, ̂B(θhi ∧ θak)

h
)
+ iG

(
̂B(θhi ∧ θak)

a, ̂B(θhj ∧ θal )
h
)

= iG
(

̂B(θhj ∧ θal ),
̂B(θhi ∧ θak)

)
.
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where we used the orthogonality of two(1, 0) vectors. For the last term, as

θak ∧ θal belongs to
∧+

C we findV[Hθak ,Hθal ] = − ̂R(θak ∧ θal ) = − s

12
θ̂ak ∧ θal .

Finally,

−d′W
(
[Hθak ,Hθal ],Hθhi ,Hθhj

)

= −d′W
(
V[Hθak ,Hθal ]

a,Hθhi ,Hθhj

)
= (

s

6
− 1)

s

12
(θ̂ak ∧ θal )

a
ij .

�

3. TWISTOR SPACES OFHYPERKÄHLER MANIFOLDS

The previous sections have focused on the4-dimensional case. We now briefly give
a generalisation in higher dimension. Fix an integern ≥ 1.

A quaternionic K̈ahler manifoldis an oriented4n-dimensional Riemannian mani-
fold (M, g) whose holonomy group is contained in the product of quaternionic uni-
tary groupsSp(1)Sp(n). In other words, with the holonomy principle [4], such a
manifold admits a rank3 sub-bundleD ⊂ End(TM), locally spanned by a triple
(I, J,K = IJ = −JI) of g-orthogonal almost complex structures compatible with
the orientation, that is stable by the Levi-Civita connection onTM . We will use the
notation∇ := ∇(g,D) for the restriction toD of the Levi-Civita connection, and subse-
quentlyR for the curvature of this restriction.

Let (M, g,D) be a quaternionic Kähler4n-manifold. One can define a scalar prod-
uct onD by saying that a local admissible basis ofD is orthonormal. A pointu =
(a, b, c) of the sphereS2 gives a complex structureJu = aI + bJ + cK onM . The cor-
responding complex manifold will be denoted byXu. One can then define thetwistor
spaceT = T(M, g,D) → M as the unit sphere bundle ofD. This is a locally trivial
bundle overM with fibreS2 and structure groupSO(3). As before, the twistor space
of a quaternionic Kähler4n-manifold can be endowed with a metricG and an almost
complex structureJ that is integrable ([12],[9]).

In particular, ahyperk̈ahler manifold is an oriented4n-dimensional Riemannian
manifold(M, g) whose holonomy group is contained in the quaternionic unitary group
Sp(n). In other words, with the holonomy principle, a hyperkähler manifold is an
oriented4n-dimensional Riemannian manifold(M, g) endowed with three globalg-
orthogonal parallel (hence integrable Kähler) complex structuresI, J andK compat-
ible with the orientation such thatIJ = −JI = K. The corresponding pencil of
complex structures is called the Calabi family of(M, g,D = (I, J,K)). Note that for
Sp(n) ⊂ SU(2n), each of these complex structure is Ricci-flat.

For example, starting with aholomorphic symplectic manifold(i.e. a compact com-
plex Kähler manifoldX with a holomorphic symplectic2-form Ω, hence of vanish-
ing first Chern class) and a Kähler classκ, the theorem of Yau [13] gives a unique
Kähler metricg in the Kähler classκ with vanishing Ricci curvature. The formΩ is
g-parallel by the Bochner principle, showing that the holonomy of g is contained in the
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quaternionic unitary groupSp(n), and thatg is a hyperkähler metric. The correspond-
ing twistor space is called the Calabi family of(X,Ω, κ). The manifoldX will be
called irreducible holomorphic symplecticif furthermoreX is simply connected and
H0(X,Ω2

X) is generated by the holomorphic symplectic2-form Ω.
In view of the applications, we will work in the rest of this section on a hyperkähler

manifold(M, g,D = (I, J,K)) and assume that the holonomy group is exactlySp(n).
Note in this case, that the horizontal distribution onT = T(M, g,D) is integrable and
given by a holomorphic mapf

T

π

��

f
// P1 ∋ u

m ∈ M

and that eachXu := f−1(u) is an irreducible holomorphic symplectic manifold [3].

3.1. Bracket computations. As before, a section of the bundle of anti-symmetric
endomorphisms.A : U → so(D) gives rise to a special vertical vector field̂A. Be-

cause the complex structuresI, J andK areg-parallel, the vector field ̂R(θi ∧ θj) =

[u,∇(g,D)
θi

∇(g,D)
θj

− ∇(g,D)
θj

∇(g,D)
θi

− ∇(g,D)
[θi,θj ]

] = 0. The previous bracket computations
reduce to

Lemma 3.1. Given a direct orthonormal frame(θ1, . . . , θ4n) on a small open setU of
M and two sectionsA andB of U → so(D), the Lie brackets are computed by

[Â, B̂] = [̂A,B]

[H(θi), Â] =
̂

(∇(g,D)
θi

A) + ̂[η(θi), A]
[H(θi),H(θj)] = H[θi, θj ].

For every vertical vector fieldU onT,

[Hθi, U
h

a ] = [Hθi, U ]
h

a and V[JHθi, U
h

a ] = (V[JHθi, U ])
h

a .

H[Hθhi , U
h

a ] =
i

2
U

h

a (Hθ
h

a

i ) and H[Hθai , U
h

a ] = − i

2
U

h

a (Hθ
h

a

i ).

3.2. Computations of dW and d′W. Let (θ1, . . . , θ4n) be a local orthonormal frame
of TM .

Proposition 3.2. The exterior derivativedW of the metric formW on the twistor space
of a hyperk̈ahler manifold(M, g,D) vanishes on pure directional vectors except when
evaluated on two horizontal vectors and one vertical vector. More precisely then, for
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a vertical vectorU ∈ V(m,u),

dW(U,Hθi,Hθj) =
1

2
G
(
θ̂i ∧ θj , JU

)
= −Uij .

d′W(Uh,Hθhi ,Hθaj ) = 0

d′W(Ua,Hθhi ,Hθhj ) = −Ua
ij

equivalentlyd′′W(m,u)(U
h,Hθai ,Hθaj ) = −2Ωu(κU(θ

a
i ), κU(θ

a
j ))

whereΩu is the holomorphic symplectic(2, 0)-form onXu := f−1(u) and κU is a
closed(0, 1)-form onXu with values inTXu that represents the Kodaira-Spencer
class of the familyf at u ∈ P1 in the directionU .

Proof. The first item is proved along the same lines as in the previoussection.
For the second,

d′W(Uh,Hθhi ,Hθaj ) =
1

4
d′W(Uh,Hθi − iumiHθm,Hθj + iukjHθk)

=
1

4

(
Uh − uUhu+ iuUh + iUhu

)
ij
= 0.

For the third,

d′W(Ua,Hθhi ,Hθhj ) =
1

4
d′W

(
Ua,Hθi − iumiHθm,Hθj − iukjHθk

)

= −1

4
(Ua

ij − umiukjU
a
mk − iumiU

a
mj − iukjU

a
ik)

= −1

4
(Ua + uUau+ iuUa − iUau)ij = −Ua

ij .

The previous formulae have a geometric content. We follow [10] (prop 25.7). Consider
a pathγ(t) in the baseP1 starting atu = I say, with derivativeU ∈ TP1. Over every
pointm ∈ M , there is a vertical lift that we may write asum(t) = Im + tUm + t2 · · · .
Note thatUm is the derivative in the directionU , ϕ⋆(U) ∈ End(TmM), of the map
ϕ : π−1(m) → End(TmM) that encodes the variation of complex structure onTmM .
For smallt, we writeT 0,1

m Xum(t) as the graph of a mapK(t) = tκU + t2 · · · from
T 0,1
m Xu to T 1,0

m Xu. Note thatκU seen as a(0, 1)-form onXu with values onT 1,0Xu

is closed by the integrability ofT and has, as cohomology class, the Kodaira-Spencer
class{κU} ∈ H1(TXu). For a vectorv ∈ T 0,1

m Xu, we have the relationum(t)(v +
K(t)(v)) = −i(v + K(t)(v)) whose first order term givesIm(κU(v)) + Um(v) =
iκU(v) + Um(v) = −iκU (v). This shows thatϕ⋆(U)(v) = Um(v) = −2iκU (v). The
formulad′′W(Uh,Hθai ,Hθaj ) = −Uh

ij = Uh
ji, now reads

d′′W(Uh,Hθai ,Hθaj ) = g(ϕ⋆(U)(θai ), θ
a
j ) = −2ig(κU(θ

a
i ), θ

a
j )

= −2ωu(κU(θ
a
i ), θ

a
j ) = −2Ωu(κU(θ

a
i ), κU(θ

a
j )).

The last equality is proved in [10]. �
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3.3. Computation of id′d′′W.

Theorem 2. The hessianid′d′′W of the metric formW on the twistor spaceT(M, g,D)
of a hyperk̈ahler manifold(M, g,D) vanishes on pure directions and pure types except
in the following case whereHθi are basic horizontal lifts andUi vertical vectors,

id′d′′W
(
Hθhi , U

h
1 ,Hθaj , U

a
2

)
= −1

2
(Ua

2U
h
1 )ij.(3.1)

Proof. We discuss each case as in the proof of theorem 1.

(1) The vanishingid′d′′W(Uh
1 , U

h
2 , U

a
3 , U

a
4 ) = 0 reflects the facts that the vertical

distribution is integrable and that the metric on the fibres is Kähler.
(2) The non vanishing ofd′W requires two horizontal vectors. The integrability of

the vertical distribution hence shows thatid′d′′W(Uh
1 , U

h
2 , U

a
3 ,Hθai ) =

id′d′′W(Hθhi , U
h
3 , U

a
1 , U

a
2 ) = 0.

(3) Simply note that for types and directions reasonsid′d′′W(Uh
1 , U

h
2 ,Hθai ,Hθaj ) = 0.

By conjugation, we get the relationid′d′′W(Hθhi ,Hθhj , U
a
1 , U

a
2 ) = 0.

(4) Starting with the only non-zero term

d′′d′W
(
Hθhi , U

h
1 ,Hθaj , U

a
2

)

= d′W
(
H[Hθaj , U

h
1 ],Hθhi , U

a
2

)
= d′W

(
− i

2
Uh
1 (Hθhj ),Hθhi , U

a
2

)

= − i

2
Uh
1 mjd

′W
(
Hθhm,Hθhi , U

a
2

)
=

i

2
Uh
1 mjU

a
2 mi = − i

2
(Ua

2U
h
1 )ij .

(5) The termid′d′′W(Uh,Hθhk ,Hθai ,Hθaj ) vanishes for types and directions rea-
sons. The vanishing ofid′d′′W(Hθhi ,Hθhj , U

a,Hθak) then follows by conjuga-
tion,.

(6) Finally, id′d′′W(Hθhi ,Hθhj ,Hθak,Hθal ) = 0 follows from the integrability of
the horizontal directions.

�

4. IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS AND HYPERBOLICITY

4.1. Campana’s result. In [5, 6], Campana showed that every Calabi family of a
hyperkähler manifold(M, g,D), and in particular of a irreducible holomorphic sym-
plectic manifold(X,Ω, κ), contains a non-hyperbolic member. His proof relies on the
study of the componentC1(T) of the cycle space of the twistor spaceT = T(M, g,D)
that contains the twistor lines. IfC1(T)were compact, then the evaluation mapC1(T)x →
P (TxT) at a twistor linex would be closed and open (by the very ampleness of the
normal bundle tox) hence surjective : there would be a one cycle with an horizontal
tangent. IfC1(T) is not compact hence non equicontinuous, then there is a sequence
of 1-cyclesCn of T and pointsan ∈ Cn such that the tangent direction toCn at an
tends to an horizontal direction at a pointt ∈ T. In both cases, he constructed a Brody
curve inf−1(U) ⊂ T and consequently in a deformationXu = f−1(u) of (M, I).
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4.2. Pseudo convexity of the cycle space. We intend to go further in the range of
ideas of Campana. Let(M, g,D = (I, J,K)) be a hyperkähler manifold andT =

T((M, g,D)
f→ P1 its Calabi family. LetC1(T) be the component of the cycle space

of T containing the twistor lines.
For everys = [Cs] ∈ C1(T), we will identify a tangent vector~n ∈ TsC1(T) with a

sectionn of the normal bundleNCs/T of the1-cycleCs in the twistor spaceT. If Cs

happens to be a section off , there is an horizontal lifting̃n of the normal sectionn,
whose norm is simply denote by‖n‖.

Theorem 3. The mapVol : C1(T) → R is pluri-sub-harmonic. More precisely,

id′d′′C1(T) Vol(Cs)(~n, J~n) ≥
∫

C′

s

4π‖n′‖2dvol ≥ 0(4.1)

whereC ′
s is the irreducible component of the cycleCs that maps ontoP1 by the pencil

mapf . In particular, the cycle spaceC1(T) is pseudo-convex.

Proof. Choose a cycleC0, a tangent vector~n ∈ T0C1(T), and a family

C
Π

��

Γ
// T

0 ∈ S

of cycles with this tangent vector~n at the origin. Then,

id′d′′C1(T) Vol(Cs)(~n, J~n) = id′d′′Π⋆Γ
⋆W(~n, J~n) = Π⋆Γ

⋆id′d′′W(~n, J~n).

The intersection number with a fiber off being constant, we infer that every member
Cs of the relevant component of the cycle space contains, outside an irreducible section
C ′

s of the pencilf , a finite number
∑

Hj of horizontal rational curves.
For the irreducible imageC ′

0 of a sectionσ : P1 → T of the pencilf ,
∫

C′

0

Γ⋆id′d′′W(~n, J~n) =

∫

P1

σ⋆id′d′′W(ñ, Jñ) =

∫

C

id′d′′W(σ⋆
∂

∂ζ
, Jσ⋆

∂

∂ζ
, ñ, Jñ)dλC(ζ)

whereñ is any lifting of n underTT|Cs
→ NCs/T. ForC ′

0 is a section of the mapf ,
the composed mapH|C′

s
→֒ TT|C′

s
→ NC′

s/T is an isomorphism and we can assume
that the liftingñ lies inH|C′

s
. Hence, by theorem 2 only the vertical part∂

∂ζ
of σ⋆

∂
∂ζ

=∑4n
i=1

∂
∂ζ
σi(ζ)

∂
∂xi

⊕ ∂
∂ζ

contributes :

∫

C′

0

Γ⋆id′d′′W(~n, J~n) =

∫

C

id′d′′Wσ(ζ)(
∂

∂ζ
, J

∂

∂ζ
, ñ, Jñ)dλC(ζ).

Locally onC ′
s, we may assume thatC ′

s is almost vertical so that there exists a coordi-
nate chartU onM containingπ(C ′

s) and with an orthonormal frame(θ1, . . . , θ4n). The
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stereographic projection tell us that the complex structureJ onTT ≃ π⋆TM ⊕ f ⋆TP1

is given by

J(m,ζ) =

(
1− |ζ |2
1 + |ζ |2 Im +

i(ζ − ζ)

1 + |ζ |2 Jm +
ζ + ζ

1 + |ζ |2Km, i

)
.

Note that at the pointσ(ζ), the vector∂
∂ζ

is of J-type(1, 0) and reads

∂

∂ζ σ(ζ)

=
1

(1 + |ζ |2)2 (−2ζIσ(ζ) + i(1 + ζ
2
)Jσ(ζ) + (1− ζ

2
)Kσ(ζ))

and then
∂

∂ζ σ(ζ)

∂

∂ζ σ(ζ)

= −2
Id+ iJ

(1 + |ζ |2)2 .

Theorem 2 gives

id′d′′Wσ(ζ)(
∂

∂ζ
, J

∂

∂ζ
, ñ, Jñ)dλC(ζ) = 2

‖n‖2H
(1 + |ζ |2)2dλC(ζ) = 4π‖n‖2HdλP1(ζ).

As for the horizontal partHj, using a parametrisation byP1, we get
∫

Hj

Γ⋆id′d′′ Vol(~n, J~n) =

∫

P1

id′d′′W(h, Jh, ñ, Jñ)

whereh is horizontal and wherẽn is any lifting of n underTT|Cs
→ NCs/T. By the

Kähler property of the fibres off or by theorem 2, only the vertical part of the lifting
is relevant, and this contributes non-negatively to the hessian.

The mapVol being a continuous exhaustion [11], we infer from its pluri-sub-harmonicity,
that the cycle spaceC1(T) is pseudo-convex. �

Remark 4.1. We could have used[2] (proposition 1) as a general argument to get the
pluri-sub-harmonicity. The inequality (4.1) is however more precise and displays the
fact that, because a non zero tangent vector~n ∈ T0C1(T) can have zero componentn′

on the slanted componentC ′
0, there can be compact families of horizontal1-cycles, as

for example, in the Hilbert schemeHilbn(S) ⊃ Hilbn(C) = Pn of aK3 surface that
contains a smooth rational curveC.

4.3. The case of R4. The twistor spaceT(R4) of the flat euclideanR4 is described as
a complex manifold as the total space of the rank two vector bundleO(1) ⊕ O(1) on
P1. From the product structure, the identification is done by the map

O(1)⊕O(1)
φ−→ CP 1 × C2

(aµ+ b, cµ+ d) 7−→ (µ, z1, z2)
with





z1 =
cµ+ d+ a|µ|2 + bµ

1 + |µ|2

z2 =
−aµ− b+ c|µ|2 + dµ

1 + |µ|2

Twistor fibres are given byz1 = constant andz2 = constant, that isc = −b and
d = a. The cycle spaceC1(T(R

4)) is simply the vector spaceH0(P1,O(1)⊕O(1)) of
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holomorphic sections. Irreducible cycles are parametrised in the form(aµ+ b, cµ+d).
The volume function that can be computed as

VolFS(CP
1)
(
1 + 2π|a− d|2 + 2π|b+ c|2

)

achieves its minimum for twistor lines. To compute the Hessian of the metric form,
we consider a points ∈ C1(T(R

4)), whereCs is parametrised by(aµ + b, cµ + d).
We consider a tangent vectorn = (αµ + β, γµ + δ) ∈ H0(P1,O(1) ⊕ O(1)) ≃
TsC1(T(R

4)), whose norm is the flat Hermitian norm onC2 of φ⋆(n). Then theorem 3
gives :

id′d′′ Vols(~n, ~n) = 2iπV olFS(P
1)
(
|α|2 + |β|2 + |γ|2 + |δ|2

)

which is coherent with the former expression.
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E-mail address: noellouis.ledu@orange.fr

CHRISTOPHEMOUROUGANE, UNIVERSITÉ RENNES1
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