
HAL Id: hal-00665140
https://hal.science/hal-00665140

Submitted on 6 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Target detection in active polarization images perturbed
with additive noise and illumination nonuniformity.

Arnaud Bénière, François Goudail, Daniel Dolfi, Mehdi Alouini

To cite this version:
Arnaud Bénière, François Goudail, Daniel Dolfi, Mehdi Alouini. Target detection in active po-
larization images perturbed with additive noise and illumination nonuniformity.. Journal of the
Optical Society of America. A Optics, Image Science, and Vision, 2009, 26 (7), pp.1678-86.
�10.1364/JOSAA.26.001678�. �hal-00665140�

https://hal.science/hal-00665140
https://hal.archives-ouvertes.fr


1
I
(
g
[
T
r
t
f
w
t
l
c
t
c
t
t
t
w
[
a
[

t
i
n
r
m
t
c
t
i

1678 J. Opt. Soc. Am. A/Vol. 26, No. 7 /July 2009 Bénière et al.
Target detection in active polarization images
perturbed with additive noise and

illumination nonuniformity

Arnaud Bénière,1,2 François Goudail,1,* Daniel Dolfi,2 and Mehdi Alouini2,3

1Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ Paris-Sud, Campus Polytechnique, RD 128,
91127 Palaiseau, France

2Thales Research and Technology–France, RD128, 91767 Palaiseau Cedex, France
3Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes, France

*Corresponding author: francois.goudail@institutoptique.fr

Received January 14, 2009; accepted April 25, 2009;
posted May 27, 2009 (Doc. ID 106386); published June 24, 2009

Active imaging systems that illuminate a scene with polarized light and acquire two images in two orthogonal
polarizations yield information about the intensity contrast and the orthogonal state contrast (OSC) in the
scene. Both contrasts are relevant for target detection. However, in real systems, the illumination is often spa-
tially or temporally nonuniform. This creates artificial intensity contrasts that can lead to false alarms. We
derive generalized likelihood ratio test (GLRT) detectors, for which intensity information is taken into account
or not and determine the relevant expressions of the contrast in these two situations. These results are used to
determine in which cases considering intensity information in addition to polarimetric information is relevant
or not. © 2009 Optical Society of America

OCIS codes: 260.543, 030.4280.
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. INTRODUCTION
maging systems that measure the degree of polarization
DOP) of light backscattered by a scene have aroused
reat interest in several domains such as machine vision
1], biomedical imaging [2,3], and remote sensing [4,5].
hese systems can, for example, reveal contrasts between
egions of a scene which have the same intensity reflec-
ivity but different polarimetric properties [6]. One can,
or instance, distinguish a metallic object from one made
ith plastic even if they have the same reflectance spec-

rum, and improve the visibility through diffusive (fog,
iquids,…) [7] or turbulent media (atmosphere). A simple
onfiguration consists of illuminating the scene with a to-
ally polarized beam (whose state of polarization is lo-
ated anywhere on the Poincaré sphere) and acquiring
wo images: the first one, X, is formed with the fraction of
he backscattered light having the same state of polariza-
ion as the illumination and the second one, Y, is formed
ith the fraction of the light in the orthogonal state

8–10]. From these two images, the standard intensity im-
ge X+Y and the orthogonal state contrast (OSC) image
11] �X−Y� / �X+Y� can be computed.

The OSC image represents the DOP of the backscat-
ered light if the observed materials are purely depolariz-
ng [6]. Moreover, it is insensitive to variations of illumi-
ation intensity. This is an important advantage since in
eal active imaging systems, the illumination pattern
ay be nonuniform owing to spatial or temporal fluctua-

ions of the light source. This creates artificial intensity
ontrasts that can lead to false alarms. One way to avoid
his problem is to base the detection on the OSC only, that
s, not to take into account intensity information. One is
1084-7529/09/071678-9/$15.00 © 2
o longer affected by intensity fluctuations of the source,
ut if these fluctuations are weak and reflectance contrast
s actually present in the scene, discarding intensity in-
ormation may lead to a decrease of detection perfor-
ance.
The first objective of this paper is to derive generalized

ikelihood ratio test (GLRT) detectors in two situations:
ntensity information is assumed irrelevant or not. We
hall deduce from their expressions the adequate defini-
ion of the contrast in these two situations. These results
ill be used to determine in which cases taking intensity

nformation into account is relevant or not.
The paper is organized as follows. In Section 2, we de-

ne the data model and describe the formalism of our de-
ection problem. Section 3 is devoted to the derivation of
he GLRT when the illumination is nonuniform but
nown. The case of uniform illumination is treated as a
pecial case. In Section 4, the GLRT is calculated when
he illumination is unknown. We finally compare in Sec-
ion 5 the performances of these detectors based on their
eceiver operating characteristic (ROC) and on simulated
mages.

. DESCRIPTION OF THE PROBLEM
e consider subsamples Xi and Yi, i� �1,N�, of the im-

ges, that may be spatial if we consider a small set of
eighboring pixels, or temporal if we consider a single
ixel in several successive acquisitions. To permit a rigor-
us treatment of estimation and detection properties,
ach sample is assumed homogeneous, that is, the aver-
ge number of photoelectrons under unitary and uniform
009 Optical Society of America
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llumination, denoted mX and mY, is identical for all pix-
ls. The intensity for the two polarization directions at
ach pixel i� �1,N� can be written as

Xi = FimX + ni
x,

Yi = FimY + ni
y, �1�

here F denotes the spatial fluctuations of the illumina-
ion intensity. In other words, Fi represents the intensity
f the incoming light and mX �mY� represent the reflectiv-
ty of the observed material with respect to each polariza-
ion. Each measure is perturbed by additive white Gauss-
an noise ni

x and ni
y with zero mean and variance �2,

hich are assumed statistically independent.
The problem of OSC estimation has been widely ad-

ressed with different types of noise, such as for example
peckle noise, coupled photon and speckle noise, and de-
ector noise [12–14]. More recently, we addressed the case
f additive and signal-dependent photon noise [15], which
resents great similarities with the case of additive
aussian noise [16]. Concerning detection and segmenta-

ion, the case of speckle noise has been studied, for ex-
mple, in [17,18]. In this paper, we will assume that the
ctive illumination is weakly coherent so that speckle
oise is neglected and additive detector noise is dominant.
his is a realistic case from a system point of view.
The two parameters of interest in the sample are the

ntensity reflectivity of the material I=mX+mY and the
SC parameter defined as

P =
mX − mY

mX + mY
. �2�

he OSC represents the DOP of the backscattered light
nly if the observed materials are purely depolarizing.
his is a reasonable assumption for natural materials
nd turbid media observed in monostatic (backscattering)
onfiguration with linearly polarized illumination [6]. In
he general case, P can still provide a source of contrast
seful for detection.
The data form a sample �= �X ,Y� where X= �Xi , i
�1,N�� and Y= �Yi , i� �1,N��. Its statistical properties

re defined by the noise variance �2, which is assumed
nown, and by the parameters of interest �mX ,mY� or,
hat is equivalent, �I ,P�. Actually one has

mX = I
1 + P

2
, mY = I

1 − P

2
. �3�

To address detection, we will use the formalism ex-
lained in detail in [19]. We will consider that the sample
s divided into two parts of size Na and Nb so that Na
Nb=N. In order to simplify the notation we define �a
�1,Na� and �b= �Na+1,N�. The first part of the sub-
ample �a= �Xi ,Yi , i��a� is defined by parameters
mX

a ,mY
a� or �Ia ,Pa�. The second part of the subsample �b

�Xi ,Yi , i��b� is defined by the parameters �mX
b ,mY

b � or
Ib ,Pb�. We denote Fa= �Fi�i��a

and Fb= �Fi�i��b
. We will

onsider the following hypothesis testing problem:

• Hypothesis H1: the samples �a and �b have different
arameters: �I ,P �� �I ,P �,
a a b b
• Hypothesis H0: the samples �a and �b have the same
arameters: �Ia ,Pa�= �Ib ,Pb�.

his model can account for the detection of an edge or of a
arget with homogeneous texture on a background. We
ill first consider that the illumination is known and de-

ermine the expression of GLRT in order to set a bench-
ark for detection performance. Then, we will consider

he more realistic case of unknown illumination pattern.

. GLRT AND CONTRAST IN THE CASE
HERE ILLUMINATION PATTERN
IS KNOWN

n this section, we will consider that the illumination pat-
ern F is known, but that mX and mY, which are the tar-
et and background characteristics, are unknown.

Determining the GLRT [20] requires the determination
f the profile log-likelihood of a homogeneous region,
hich is denoted ��� �F�. From this expression, we derive

he GLRT RFknown=�1�� �F�−�0�� �F�, where �1�� �F� is the
rofile log-likelihood in hypothesis H1 and �0�� �F� the
rofile log-likelihood in hypothesis H0. After some compu-
ations detailed in Appendix A, we obtain

RFknown =
1

2�2

�a�b

�a + �b
��m̂X

a − m̂X
b �2 + �m̂Y

a − m̂Y
b �2�, �4�

here

�v = �
i��v

Fi
2, m̂U

v =
1

�v
�

i��v

FiUi,

ith U= �X ,Y� and v= �a ,b�.
The special case of uniform illumination corresponds to

i=F0 , ∀ i� �1,N�. The expression of the GLRT in this
ase is easily derived from Eq. (4) and one gets

Runi =
1

2�2

NaNb

Na + Nb
	
 �

i��a

Xi

Na
− �

i��b

Xi

Nb
�2

+ 
 �
i��a

Yi

Na
− �

i��b

Yi

Nb
�2� . �5�

n this case the GLRT depends only on the measurement
ata X and Y.
Let us denote RFknown

0 �RFknown
1 � the expression of the

LRT RFknown in hypothesis H0�H1�. The detection perfor-
ance of the GLRT depends on the probability density

unctions (PDF) of these two random variables. We show
n Appendix B that 2RFknown

0 is a chi-square random vari-
ble with two degrees of freedom [21]. It is thus indepen-
ent of the signal parameters I and P, which makes
Fknown a constant false alarm rate (CFAR) detector. We

lso show in Appendix B that 2RFknown
1 is a noncentral

hi-square variable with two degrees of freedom and non-
entrality parameter equal to

CFknown =
�a�b

��a + �b�
��SNRa − SNRb�2

+ �SNRaPa − SNRbPb�2�, �6�

ith SNR =I / �
2�� and SNR =I / �
2��. It is seen that
a a b b
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Fknown
1 , and thus the detection performance, depends

nly on the parameter CFknown, which can thus be consid-
red as the adequate contrast parameter for the detection
roblem at hand. In other words, if we consider two sce-
arios with identical contrast parameters CFknown, the
erformances of the detector RFknown will be identical.
A particularly interesting case occurs when there is no

ntensity contrast between the regions a and b, that is,
a=Ib=I, or, in other words, SNRa=SNRb=SNR. In this
ase, one has

CFknown =
�a�b

��a + �b�
SNR2�Pa − Pb�2.

n this situation, the contrast CFknown depends on the dif-
erence of the DOP in the two regions weighted by the
ommon value of the intensity SNR.

. GLRT IN THE CASE WHERE THE
LLUMINATION PATTERN F IS UNKNOWN
he algorithm described above, which assumes that the

llumination pattern F is known, can be used if this pat-
ern is static and has been estimated beforehand. How-
ver, in many practical situations this is not the case, and

must be considered unknown. In this case, F consti-
utes a vectorial nuisance parameter. As in Section 3 we
etermine the profile log-likelihood of a homogeneous re-
ion, which is a simple but cumbersome computation de-
ailed in Appendix C. This result is then used in Appendix

to obtain the following expression of the GLRT:

RFunknown =
1

4�2 �
Da
2 + Wa

2 + 
Db
2 + Wb

2

− 
�Da + Db�2 + �Wa + Wb�2�, �7�

here

Dv = �
i��v

�Xi
2 − Yi

2�, Wv = 2 �
i��v

XiYi,

ith v=a ,b. The value of RFunknown thus depends only on
he statistics Da, Db, Wa, and Wb, which are also the pa-
ameters that completely define the profile estimators of
he DOP in regions a and b (see [15]).

We can give an interesting interpretation of this result.
ndeed, let us define the 2-D vectors a= �Da ,Wa�T and b
�Db ,Wb�T, where T denotes transposition. Equation (7)
an be written RFunknown= ��a�+ �b�− �a+b�� /4�2, where �.�
s the classic norm in a Euclidean space. The triangle in-
quality gives �a�+ �b�� �a+b� and implies that
Funknown�0, which is a fundamental property of a
LRT.
The expression of the GLRT is more involved than in

he case where F is known, and it is difficult to determine
he PDF of R in hypotheses H0 and H1. However, in order
o determine approximately on which parameters the per-
ormance of the GLRT depends, we consider the limit of
he expression of the the GLRT as the noise variance �2

ends to zero. This amounts to making the the following
ssumptions:

Xi
�=0 = FimX,
Yi
�=0 = FimY. �8�

f we substitute this model in the expression of the GLRT
see Eq. (7)], we obtain

RFunknown
�=0 =

SNRFa
SNRFb

4
� Q	1 −
1 − 
2�P

Q �2� ,

�9�

here

SNRFu
= �
�uIu�/�
2��,

�P = Pa − Pb,

Q =
SNRFa

SNRFb

�1 + Pa
2� +

SNRFb

SNRFa

�1 + Pb
2�.

This result is very interesting since it shows that if
P=0, then RFunknown

�=0 =0, which was not obvious when
onsidering the expression of the detector in Eq. (4). In
ther words, detection is not possible if the OSC contrast
s zero whatever the value of the intensity contrast. This
s understandable since, as shown in Eq. (C3), the fact
hat the Fi are unknown makes the parameters Ia and Ib
nidentifiable. In summary, RFunknown is sensitive only to
SC contrast and is unable to detect intensity contrast,

ince the latter cannot be distinguished from the nonuni-
ormities of the illumination.

. POTENTIAL GAIN WHEN USING THE
LRT ADAPTED TO NONUNIFORM

LLUMINATION
n cases where F is unknown, two detection strategies are
ossible. The first is to use the detector RFunknown to sup-
ress the influence of illumination nonuniformities. How-
ver, this may not be the better strategy. Indeed, this de-
ector does not take into account intensity contrast
etween the target and the background, and this informa-
ion may be relevant if the illumination nonuniformities
re mild. In this case, it may be preferable to apply the
ptimal detector for uniform illumination Runi [see Eq.
5)]. We study this issue in Sebsection 5.B, but before, we
ill determine in Subsection 5.A the statistical properties
f Runi in the presence of illumination nonuniformities.

. Performance of Runi in the Presence of Nonuniform
llumination
et us substitute the model of nonuniform illumination

see Eq. (1)] in the expression of the GLRT adapted to uni-
orm illumination Runi [see Eq. (5)]. Our objective is to de-
ermine the PDF of Runi in hypotheses H1 and H0. Let us
enote Runi

0 �Runi
1 � the expression of Runi in hypothesis

0�H1�. After some simple computations, it can be shown
hat 2Runi

1 is a noncentral chi-square random variable
ith two degrees of freedom and noncentrality parameter
qual to

C� = �SNRa� − SNRb��2 + �SNRa�Pa − SNRb�Pb�2,

here
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SNRv� =
NaNb

N

F̄vIv


2�
, F̄v =

1

Nv
�

i��v

Fi,

ith v=a ,b. The value of F̄v represents the mean value of
he illumination in the subsample �v. In hypothesis H0,
Runi

0 is also a noncentral chi-square random variable
ith two degrees of freedom and noncentrality parameter
qual to

C� =
I2�1 + P2�

2�2

NaNb

N
�F̄a − F̄b�2.

his results demonstrates that the detector Runi is not a
FAR detector, and that C� or C� cannot be considered con-

rast parameters. If the sample is homogeneous (hypoth-
sis H0) but F̄a� F̄b because of the illumination nonuni-
ormity, the detector Runi interprets the illumination
onuniformity as an intensity contrast and leads to a
alse alarm. This is not the case of the detector RFunknown,
hich is insensitive to intensity contrast.

. Receiver Operating Characteristics
e have plotted on Fig. 1 and Fig. 2 the ROC of detectors
Fknown, RFunknown, and Runi with three different types of
onuniform illuminations (that is, different values of F̄a

nd F̄b). The three illumination vectors F are chosen so

ig. 1. (Color online) ROC curves of the detectors: (a) RFknown
solid), RFunknown (dashed). (b) RFknown (solid) Runi (dashed) with
hree different types of nonuniform illumination in scenario 1.
he contrast CFknown is set to 9, and F̄a / F̄b=1 (�), F̄a / F̄b=1.4 (�),
nd F̄a / F̄b=4.7 (�). Other parameters are �Na ,Ia ,Pa�
�10,100,0.8�, �N ,I ,P �= �10,100,0.4�, and �=15.
b b b
hat successively F̄a / F̄b=1, 1.4, and 4.7. In all cases, the
ontrast CFknown [see Eq. (6)] remains constant by adjust-
ng the parameters F̄a and F̄b. The ROC of the detector

Fknown (and as a consequence its performance) is thus
dentical in each different situation since it depends only
n CFknown. These results thus set the benchmark for
valuating the performances of the other detectors.

We have considered two scenarios. Scenario 1 corre-
ponds to CFknown=9, �Na ,Ia ,Pa�= �10,100,0.8� and
Nb ,Ib ,Pb�= �10,100,0.4�; that is, there is no intensity
ontrast but only OSC contrast. It is seen on Fig. 1(a) that
he ROC corresponding to RFunknown are very close to the
enchmark �RFknown�, which means that with an OSC
ontrast only, RFunknown is close to optimality: only a little
erformance is lost by estimating F. The ROC of the de-
ector Runi are represented on Fig. 1(b). We note that its
erformance significantly depends on the illumination
attern. Indeed, this detector approaches the benchmark
f F̄a / F̄b=1 (curve �), but it is worse than flipping a coin if
¯

a / F̄b=4.7; its ROC curve (�) is actually beneath the di-
gonal.
Scenario 2 corresponds to �Na ,Ia ,Pa�= �10,110,0.7� and

Nb ,Ib ,Pb�= �10,90,0.5�, which means that both OSC and
ntensity contrast are present. Since the value of CFknown
s the same as in scenario 1, the OSC contrast is thus
ower. As a consequence, it is seen on Fig. 2(a) that the
erformance of RFunknown is worse than for scenario 1,
ince this detector takes only the OSC contrast into ac-
ount. However, one notes that the ROC obtained with
he different types of illuminations are still close to each
ther, since the performance of R is little affected

ig. 2. (Color online) Same as in Fig. 1 in scenario 2 which cor-
esponds to �Na ,Ia ,Pa�= �10,110,0.7�, �Nb ,Ib ,Pb�= �10,90,0.5�.
Funknown



by the illumination pattern. The detector Runi still
strongly depends on the illumination pattern, but pro-
vides better results than RFunknown for F̄a / F̄b=1 (see curve
� on Fig. 2), since it takes into account both the intensity
and the OSC contrast.

C. Application to Target Detection
In order to illustrate the conclusion of Subsection 5.B, we
have applied the detectors RFunknown and Runi on simu-
lated images composed of two identical targets on a uni-
form background. To perform detection, we scan the scene
with a mask M composed of two parts: �a, which repre-
sents the shape of the target, and �b which is the comple-
mentary of �a in M (see Fig. 3). The parameters Na and
Nb defined previously are, in this case, the number of pix-
els in parts �a and �b, and we will use the values Na=85
and Nb=491 (see Fig. 3). The most computation-intensive
part of RFunknown and Runi algorithms consists of comput-
ing moving averages in subsamples �a and �b. This is
equivalent to matched filtering and can be performed ef-
ficiently with fast Fourier transforms.

Let us first define the illumination model. We proceed
as in [17] to obtain spatial variations with controllable
correlation length. For that purpose, we model the illumi-
nation as the realization of a spatially correlated random
field. We consider a Gaussian random field g�u ,v� with
zero mean, standard deviation �F, and whose autocorre-
lation function is an isotropic exponential of width lc,

Cgg�m,n� = �F
2 exp
−


m2 + n2

lc
� .

We then define the illumination as F�u ,v�= �1+g�u ,v��2.
The two parameters of this model are lc, which controls
the correlation length of the spatial variations, and �F,
which controls the variance of the illumination pattern.
In the following, we consider three values of lc, lc=1, 10,
and 100 (expressed in pixels). As illustrated on Fig. 4,
when lc=1 the correlation length of the spatial variations
of the illumination F are much smaller than the target.
When computing F̄a and F̄b with mask M we perform an
average on the illumination and thus obtain F̄a� F̄b.
When lc=10 the correlation length of the illumination is
close to the size of the target. We thus potentially observe
a different average illumination in �a and �b, and thus
F̄a� F̄b. When lc=100 the correlation lengths of the spa-
tial variation of the illumination are much larger than the
target. We thus have almost identical illumination on the
whole mask M, and F̄a� F̄b.

We consider the same scenarios as in Fig. 1 and Fig. 2:
scenario 1 corresponds to an OSC contrast only (see Fig.
5) and scenario 2 to both intensity and OSC contrasts (see
Fig. 6), the overall contrast CFknown being identical in the
two scenarios. The parameter values are identical to
those in Fig. 1 and Fig. 2 for the targets �Pa ,Ia� and the
background �Pb ,Ib�. On both figures, we represent succes-
sively the illumination pattern F, the intensity image, the
OSC image, and the results of Runi and RFunknown detec-
tion. Each row corresponds to a different value of lc (lc
=1, 10, and 100).

We observe on Fig. 5 that in scenario 1, the detector
RFunknown shows good performance and is able to detect
the targets under the three different illuminations. This
is in agreement with the fact that all the ROC are close to
the benchmark in Fig. 1(a). On the other hand, the detec-
tor Runi is less efficient than RFunknown for all lc and is sig-
nificantly affected by the type of illumination. Let us lin-
ger on the case lc=10, which corresponds to an
illumination pattern whose correlation length approxi-
mately matches the size of the target. In this case, situa-
tions corresponding to F̄a� F̄b are probable, which leads
to high probability of false alarm [as is seen on curves (�)
in Fig. 1(b)]. Indeed, in this case, Runi interprets the
variations of the illumination pattern as an intensity con-
trast. When lc=1 or lc=100 the correlation length of illu-
mination is either much smaller or much larger than the
size of the targets, which implies that F̄a� F̄b [corre-
sponding to the curve (�) in Fig. 1(b)]. This explains why,
in these cases, Runi has better performance than when
lc=10.

We note on Fig. 6 that in scenario 2, the performance of
RFunknown still does not depend on the type of illumination
but globally decreases compared to scenario 1. This is in
agreement with the phenomenon observed on ROC: the
larger the contribution of intensity contrast in the global
contrast CFknown, the smaller the contrast CFunknown. In
other words, RFknown does not exploit the intensity con-
trast in the scene. Concerning the detector Runi, we ob-
serve that in the cases lc=1 and lc=100, its performance
is close to and even better than that of RFunknown. This is
related to the fact that for these two values of lc, Runi ex-
ploits the intensity contrast without being disturbed by
the nonuniformity of the illumination. When lc=10, the
detector Runi is significantly disturbed by the illumina-
tion pattern, which is not the case of RFunknown.

To summarize, we have demonstrated that Runi is able
to detect intensity contrast as well as OSC contrast, but is

Fig. 3. Location of the targets on the 256�256 image, and
mask M.

Fig. 4. (Color online) Illumination pattern F for lc=1, 10, and
100. The values F̄a and F̄b are computed for each case in the
mask superimposed on the images.
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ramatically sensitive to illumination patterns that have
orrelation lengths of the same order of magnitude as the
arget size. The detector RFunknown is not sensitive to illu-
ination, but does not exploit intensity contrast in the

cene. The choice between the two algorithms will then
epend on the nature of the contrast (OSC only or inten-
ity and OSC), on the amplitude and correlation length of
he illumination pattern, and on the target size.

. CONCLUSION
e have addressed target detection in OSC images cor-

upted by additive detector noise and by nonuniform illu-
ination. The expression of the GLRT was derived in dif-

erent situations: uniform illumination, known
onuniform illumination, and nonuniform and unknown

llumination. We have compared the detectors which as-
ume the illumination uniform, and the one which takes
nto account the fact that the illumination is unknown
nd nonuniform. We demonstrated that the spatial distri-
ution of the illumination and the existing contrast in the
cene must be taken into account to decide between both

ig. 6. Detection in scenario 2 corresponding to contrast in OS
SCI, the results of Runi and RFunknown detection. Vertically: thos

ig. 5. Detection in scenario 1 corresponding to OSC contrast
esults of Runi and RFunknown detection. Vertically: those images a
etectors. An interesting perspective will consist of inte-
rating in the model the photon noise and the nonlinear-
ty of the detector, which become limits in high-flux imag-
ng systems.

PPENDIX A: DERIVATION OF THE GLRT
HEN THE ILLUMINATION IS
NOWN
e consider that F is known, and that mX and mY are un-

nown and thus constitute nuisance parameters. To deal
ith these nuisance parameters, we will use the profile

ikelihood method. It consists of considering them as de-
erministic unknowns and maximizing the log-likelihood
ith respect to them,

����F� = arg max
mX,mY

�L���F,mX,mY��.

he obtained function ��� �F� is called profile log-
ikelihood (PL) since it does not correspond to a real log-
ikelihood (its integral with respect to � may not be equal

intensity. Horizontally: illumination pattern F, intensity image,
ges are computed for lc=1, 10, and 100.

orizontally: illumination pattern F, intensity image, OSCI, the
puted for lc=1, 10, and 100.
C and
only. H
re com
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o 1). Let us start with the expression of the log-
ikelihood,

����F,mX,mY� = − 2N ln�
2�� −
1

2�2�
i=1

N

�Xi − FimX�2

−
1

2�2�
i=1

N

�Yi − FimY�2. �A1�

It has been shown in [15] that the values of mX and mY
hat maximize this function are m̂U=�i=1

N FiUi /�i=1
N Fi

2 with
= �X ,Y�. Let us substitute these values in the log-

ikelihood. One obtains

����F� = − 2N ln�
2�� −
1

2�2��
i=1

N

Xi
2 −

��i=1
N FiXi�2

�i=1
N Fi

2 �
−

1

2�2��
i=1

N

Yi
2 −

��i=1
N FiYi�2

�i=1
N Fi

2 � .

e now proceed to the determination of the GLRT. Its
ogarithm is defined as RFknown=�1�� �F�−�0�� �F� where
1�� �F� is the PL in hypothesis H1 and �0�� �F� the PL in
ypothesis H0.
In hypothesis H0, the sample is homogeneous. The PL

s thus equal to that of a homogeneous region, �0�� �F�
��� �F�. On the other hand, in hypothesis H1, the sample
onsists of two independent subsamples with different pa-
ameters. The PL is thus the sum �1�� �F�=���a �F�
���b �F�. Substituting these expressions of �0�� �F� and
1�� �F� in the definition of the GLRT, we obtain Eq. (4).

PPENDIX B: DERIVATION OF RFknown
0

ND RFknown
1

he detection performance depends on the statistical pa-
ameters of the GLRT in hypotheses H1 and H0. Let us
enote RFknown

0 �RFknown
1 � the expression of the GLRT

Fknown in hypothesis H0�H1�. Let us study these two ran-
om variables.
In hypothesis H0, one has mU

a =mU
b =mU

0 where U
X ,Y. Consequently,

m̂U
a = mU

0 + nU
a /�a,

m̂U
b = mU

0 + nU
b //�b,

here nU
v =�i��v

Fi�nU�i with U= �X ,Y�, and v= �a ,b� rep-
esent independent Gaussian noise with zero average and
ariance equal, respectively, to �2�a and �2�b. Conse-
uently, the random value RFknown

0 has the form

RFknown
0 =

��bna
X − �anb

X�2 + ��bna
Y − �anb

Y�2

2�2�a�b��a + �b�
=

bX
2

2
+

bY
2

2
,

here

bU =
�bna

U − �anb
U

�
�a�b��a + �b�

or U=X ,Y represent independent Gaussian noise with
ero mean and unit variance. Thus 2R0 is a chi-
Fknown
quare random variable with two degrees of freedom [22].
In hypothesis H1, one has mU

a �mU
b , and thus

m̂U
a = ma + nU

a /�a,

m̂U
b = mb + nU

b /�b,

here nX
a and nX

b are defined above. After some computa-
ions one obtains the GLRT in the form

RFknown
1 =

1

2
�CX + bX�2 +

1

2
�CY + bY�2,

ith

CU =
 �a�b

��a + �b�

�mU
a − mU

b �

�

nd U=X ,Y. Thus 2RFknown
1 is a noncentral chi-square

andom variable with two degrees of freedom and noncen-
rality parameter equal to

CFknown = CX
2 + CY

2 �B1�

=
1

�2

�a�b

��a + �b�
� ��mX

a − mX
b �2 + �mY

a − mY
b �2�. �B2�

This parameter can also be expressed as a function of
he parameters P and SNR. Indeed, by substituting Eq.
3) in Eqs. (B1) and (B2), one obtains Eq. (6).

PPENDIX C: DERIVATION OF THE
ROFILE LIKELIHOOD WITH UNKNOWN
LLUMINATION
e compute the PL with unknown illumination, which

onsists of determining

���� = arg max
mX,mY,F

�����F,mX,mY��.

e detail in the following how, successively, F, mX, and
Y are estimated in the ML sense, and substituted in the

ikelihood.

. Elimination of F
et us start with the expression of the log-likelihood in
q. (A1). Annulling the derivative of ��� �F ,mX ,mY� with
espect to Fi leads to

Fi
ˆ =

mXXi + mYYi

mX
2 + mY

2 . �C1�

ubstituting this value into the expression of the log-
ikelihood yields

����mX,mY� = −
1

2�2�
i=1

N �myXi − mXYi�2

mX
2 + mY

2 , �C2�

hich can be expressed as a function of 	=m /m as
X Y
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����	� = −
1

2�2

TX − W	 + TY	2

1 + 	2 , �C3�

ith TU=�i=1
N Ui

2, U= �X ,Y�, and W=2�i=1
N XiYi. It is seen

hat the PL depends only on 	, that is, on P since P
�	−1� / �	+1�. It does not depend on I=mX+mY. This
eans than I cannot be estimated from the data.

. Elimination of �
n order to estimate 	 in the ML sense, one determines
he derivative of ��� �	� with respect to 	,

��

�	
= −

1

�2

W	2 − 2D	 − W

2�1 + 	2�2 , �C4�

here D=TX−TY. Annulling this derivative corresponds
o solving the following second-order polynomial equa-
ion:

W	2 − 2D	 − W = 0. �C5�

here are two possible solutions:

	 =
D ± 
�

W
, �C6�

ith

� = D2 + W2. �C7�

he correct solution must correspond to a maximum of
he PL. For that purpose, let us compute the second de-
ivative of ��� �	� with respect to 	:

�2�

�	2 = −
1

2�2

− 2W	3 + 6D	2 + 6W	 − 2D

�1 + 	2�4 . �C8�

e are interested in the value of this second derivative at
he points 	* where the derivative is zero. As seen above,
hese points verify the relation (C5). Substituting this re-
ation into Eq. (C8), one obtains

�2�

�	2 = −
2

�2

	/W�D2 + W2�

�1 + 	2�4 . �C9�

o show a maximum, the second derivative must be nega-
ive, which implies 	 /W�0. Using the expression of 	 in
q. (C6), the condition becomes

D ± 
D2 + W2

W2 � 0.

he only solution which corresponds to a maximum of the
L is thus

	̂ =
D + 
D2 + W2

W
.

ne can note that this solution can also be written as

	̂ = r + sgn�W�
1 + r2,

ith r=D /W and sgn�x�=1 if x
0 and −1 otherwise.
. Profile Log-Likelihood
his estimate of 	 is substituted in the expression of
�� �	� [see Eq. (C3)] to find the final PL,

����	̂� = −
1

4�2�2TY −

�

1 +
D2

W2 +
D
�

W2
� ,

here we have taken into account that D=TX−TY. Let us
onsider the term


�

1 +
D2

W2 +
D
�

W2

=
W2
�

W2 + D2 + D
�
. �C10�

aking into account that by definition �=D2+W2, one has

W2
�

W2 + D2 + D
�
= 
� − D. �C11�

onsequently,

����	̂� = −
1

4�2 �TX + TY − 
�TX − TY�2 + W2�.

eplacing TX, TY, and � with their expressions as a func-
ion of the data Xi and Yi, one obtains

����	̂� = −
1

4�2��
i=1

N

�Xi
2 + Yi

2�

−

�
i=1

N

�Xi
2 − Yi

2��2

+ 4
�
i=1

N

XiYi�2� .

�C12�

his is the expression of the PL of a homogeneous region.

PPENDIX D: DERIVATION OF THE GLRT
HEN THE ILLUMINATION IS
NKNOWN
e determine the expression of the GLRT when the illu-
ination is unknown. We use the PL of a homogeneous

egion obtained in Eq. (C12) and compute its expression
n hypotheses H0 and H1. In hypothesis H0, the sample is
onsidered homogeneous. Consequently, its PL is

�0��� = −
1

4�2 ��TX + TY� − 
�TX − TY�2 + W2�,

ith TU=�i=1
N Ui

2, U= �X ,Y�, and W=2�i=1
N XiYi. Those pa-

ameters are computed on the whole sample �.
In hypothesis H1, the sample is divided into two parts,

ssumed to have different parameters. Consequently, its
eneralized log-likelihood is

�1��� = ���a� + ���b� = −
1

4�2 ��TX + TY� − 
�TX
a − TY

a�2 + Wa
2

− 
�TX
b − TY

b �2 + Wb
2�,

here Tv =� U2 and Wv=2� X Y , with U= �X ,Y�
U i��v i i��v i i
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nd v= �a ,b�. Indeed, one notes that TX=TX
a +TX

b , TY=TY
a

TY
b , and W=Wa+Wb. The expression of the generalized

og-likelihood ratio, defined as RFunknown=�1���−�0���, is
iven in Eq. (7).
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