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About Adaptive Coding on Countable Alphabets§

Dominique Bontemps‡ Stéphane Boucheron∗ Elisabeth Gassiat†

Abstract—This paper sheds light on adaptive coding with re-
spect to classes of memoryless sources over a countable alphabet
defined by an envelope function with finite and non-decreasing
hazard rate (log-concave envelope distributions). We prove that
the auto-censuring (AC) code introduced by Bontemps (2011)
is adaptive with respect to the collection of such classes. The
analysis builds on the tight characterization of universal redun-
dancy rate in terms of metric entropy by Haussler and Opper
(1997) and on a careful analysis of the performance of the AC-
coding algorithm. The latter relies on non-asymptotic bounds
for maxima of samples from discrete distributions with finite
and non-decreasing hazard rate.

Index Terms—countable alphabets, redundancy, adaptive
compression, minimax.

I. INTRODUCTION

A. From universal coding to adaptive coding

This paper is concerned with problems of adaptive that
is twice universal or hierarchical universal coding over a
countable alphabet X (say the set of positive integers N+ or
the set of integers N). Sources over alphabet X are probability
distributions on the set XN of infinite sequences of symbols
from X . In this paper, the symbol Λ will be used to denote
various collections of sources on alphabet X . The symbols
emitted by a source are denoted by a sequence X of X -
valued random variable X = (Xn)n∈N

. If P is the distribution
of X, P

n denotes the distribution of the first n symbols
X1:n = (X1, ..., Xn), and we let Λn = {Pn : P ∈ Λ}.

Throughout the paper, we will rely on the correspon-
dence between non-ambiguous codes and probability distri-
butions and refer to codes through coding probabilities (see
Cover and Thomas, 1991, for a gentle introduction to the
notion of coding probability). The expected redundancy of
any (coding) distribution Qn ∈ M1(Xn) with respect to P is
equal to the Kullback-Leibler divergence (or relative entropy)
between P

n and Qn,

D(Pn, Qn) =
∑

x∈Xn

P
n{x} log P

n(x)

Qn(x)

= EPn

[
log

P
n(X1:n)

Qn(X1:n)

]
.

Up to a constant, the expected redundancy of Qn with respect
to P is the expected difference between the length of code-
words defined by encoding messages as if they were produced
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by Qn and the ideal codeword length when encoding messages
produced by P

n. In the language of mathematical statistics, it
is also the cumulative entropy risk suffered by estimating P

n

using Qn.

Notice that the definition of redundancy uses base 2 loga-
rithms. Throughout this text, log x denotes the base 2 loga-
rithm of x while lnx denotes its natural logarithm.

Universal coding attempts to develop sequences of coding
probabilities (Qn)n so as to minimize expected redundancy
over a whole known class of sources. The maximal redundancy

of coding probability Qn with respect to source class Λ is
defined by

R+(Qn,Λn) = sup
P∈Λ

D(Pn, Qn) .

The infimum of R+(Qn,Λn) is called the minimax redun-

dancy with respect to Λ,

R+(Λn) = inf
Qn∈M1(Xn)

R+(Qn,Λn).

As the design of almost minimax coding probabilities is
usually not a trivial task, looking for an apparently more
ambitious goal, adaptivity, may seem preposterous. Indeed,
whereas universality issues are ubiquitous in lossless coding
theory (Csiszár and Körner, 1981; Cover and Thomas, 1991),
and adaptivity has been a central concept in Statistics during
the last two decades (See Bickel et al., 1998; Barron et al.,
1999; Donoho and Johnstone, 1994; Donoho et al., 1996;
Abramovich et al., 2006; Tsybakov, 2004, and references
therein), the very word adaptivity barely made its way in
the lexicon of Information Theory. Nevertheless, adaptivity
issues have been addressed in coding theory, sometimes using
different expressions to name things. Adaptive coding is
sometimes called twice universal coding (Ryabko, 1984, 1990;
Ryabko and Topsøe, 2002; Ryabko et al., 2008) or hierarchi-
cal universal coding (Merhav and Feder, 1998). We pursue
this endeavour.

A sequence (Qn)n of coding probabilities is said to be
asymptotically adaptive with respect to a collection (Λm)m∈M

of source classes if for all m ∈ M,

R+(Qn,Λn
m) = sup

P∈Λm

D(Pn, Qn) ≤ (1 + om(1))R+(Λn
m)

as n tends to infinity. In words, a sequence of coding prob-
abilities is adaptive with respect to a collection of source
classes if it asymptotically achieves minimax redundancy over
all classes. Note that this is a kind of first order requirement,
the om(1) term may tend to 0 at a rate that depends on the
source class Λm.

This is not the only way of defining adaptive compression,
more stringent definitions are possible (See Catoni, 2004,
Section 1.5). This last reference describes oracle inequalities
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for the context-tree weighting method (Willems, 1998), a
successful attempt to achieve adaptivity with respect to an
infinite collection of source classes on a finite alphabet indexed
by their memory structure (Catoni, 2004).

The present paper describes another successful attempt to
achieve adaptivity with respect to an infinite collection of
source classes on a countable alphabet.

B. Adaptive coding with respect to a collection of envelope

classes

Pioneering results by Kieffer (1978),
Gyorfi, Pali, and van der Meulen (1993; 1994) show that, as
soon as the alphabet is infinite, finite minimax redundancy,
that is the possibility of achieving universality, is not a trivial
property even for classes of memoryless sources.

Proposition 1. If a class Λ of stationary sources over a

countable alphabet X has finite minimax redundancy then

there exists a probability distribution Q over X such that for

every P ∈ Λ with limnH(Pn)/n < ∞ where H(Pn) =∑
x∈X −P

n(x) log Pn(x) (finite Shannon entropy rate), Q
satisfies D(P1, Q) <∞.

This observation contrasts with what we know about the
finite alphabet setting where coding probabilities asymptot-
ically achieving minimax redundancies have been described
(Xie and Barron, 2000; Barron et al., 1998; Yang and Barron,
1998; Xie and Barron, 1997; Clarke and Barron, 1994).
This even contrasts with recent delicate asymptotic re-
sults for coding over large finite alphabets with unknown
size (Szpankowski and Weinberger, 2012; Yang and Barron,
2013).

This prompted Boucheron, Garivier, and Gassiat (2009) to
investigate the redundancy of specific memoryless source
classes, namely classes defined by an envelope function.

Definition 1. Let f be a mapping from N+ to [0, 1], with

1 ≤
∑

j>0 f(j) < ∞. The envelope class Λf defined by the

function f is the collection of stationary memoryless sources

with first marginal distribution dominated by f ,

Λf =
{
P : ∀x ∈ N+, P

1{x} ≤ f(x) ,

and P is stationary and memoryless.
}
.

An envelope function defines an envelope distribution. The
minimax redundancy of the source classes we are interested
in is, up to the first order, asymptotically determined by the
tail behavior of the envelope distribution.

Definition 2. Let f be an envelope function. The as-

sociated envelope distribution has lower endpoint lf =
max{k :

∑
j≥k f(j) ≥ 1}. The envelope distribution F is

defined by F (k) = 0 for k < lf , and F (k) = 1−∑j>k f(j)

for k ≥ lf . The tail function F is defined by F = 1 − F .

The associated probability mass function coincides with f for

u > lf and is equal to F (lf ) ≤ f(lf ) at u = lf .

This envelope probability distribution plays a special
role in the analysis of the minimax redundancy R+(Λn

f ).

Boucheron, Garivier, and Gassiat (2009) related the summa-
bility of the envelope function and the minimax redundancy
of the envelope class. They proved almost matching upper and
lower bounds on minimax redundancy for envelope classes.
The next theorem provides an upper-bound on the minimax
redundancy of envelope classes and suggests general design
principles for universal coding over envelope classes and for
adaptive coding over a collection of envelope classes.

Theorem 1. (Boucheron, Garivier, and Gassiat, 2009) If Λ is

an envelope class of memoryless sources, with the tail envelope

function F then:

R+(Λn) ≤ inf
u:u≤n

[
nF (u) log e+

u− 1

2
logn

]
+ 2 .

If the envelope F is known, if the message length n is
known, the following strategy is natural: determine u such
that F (u) ≈ 1

n ; choose a good universal coding probability
for memoryless sources over alphabet {0, . . . , u}; escape
symbols larger than u using 0 which does not belong to
the source alphabet; encode the escaped sequence using the
good universal coding probability; encode all symbols larger
than u using a coding probability tailored to the envelope
distribution. If the upper bound is tight, this strategy should
achieve the minimax redundancy rate. If the message length
is not known in advance, using a doubling technique should
allow to derive an online extension. As naive as this approach
may look, it has already proved fruitful. Bontemps (2011)
showed that the minimax redundancy of classes defined by
exponentially vanishing envelopes is half the upper bound
obtained by choosing u so as F (u) ≈ 1/n.

If we face a collection of possible envelope classes and the
envelope is not known in advance, we face two difficulties:
there is no obvious way to guess a reasonable threshold; once
a threshold is chosen, there is no obvious way to choose a
coding probability for escaped symbols.

There are reasons to be optimistic. Almost adap-
tive coding techniques for the collection of source
classes defined by power law envelopes were intro-
duced in (Boucheron, Garivier, and Gassiat, 2009). More-
over, Bontemps designed and analyzed the AC-code (Auto-
Censuring code) (described in Section II) and proved that this
simple computationally efficient online code is adaptive over
the union of classes of sources with exponentially decreasing
envelopes (see Definition 3). As the AC-code does not benefit
from any side information concerning the envelope, it is
natural to ask whether it is adaptive to a larger class of
sources. That kind of question has been addressed in data
compression by Garivier (2006) who proved that Context-
Tree-Weighting (Willems, 1998; Catoni, 2004) is adaptive
over renewal sources (Csiszár and Shields, 1996) while it had
been designed to compress sources with bounded memory. In
a broader context, investigating the situations where an ap-
pealing procedure is minimax motivates the maxiset approach
pioneered in (Cohen et al., 2001; Kerkyacharian and Picard,
2002).
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C. Roadmap

This paper shows that the AC-code is adaptive over the
collection of envelope classes that lie between the exponen-
tial envelope classes investigated in (Boucheron et al., 2009;
Bontemps, 2011) and the classes of sources with finite alpha-
bets (Theorem 2). The relevant envelopes are characterized by
the fact that they have non-decreasing hazard rate (see Section
III). This distributional property implies that the corresponding
envelope distributions fit nicely in the framework of extreme
value theory (See Section V-B), smoothed version of the
envelope distribution belong to the so-called Gumbel domain
of attraction, and this implies strong concentration properties
for maxima of i.i.d. samples distributed according to envelope
distributions. As the AC-code uses mixture coding over the
observed alphabet in a sequential way, the intuition provided
by Theorem 1 suggests that the AC-code should perform well
when the largest symbol in a message of length n is close to
the quantile of order 1 − 1/n of the envelope distribution.
This concentration property is a consequence of the non-
decreasing hazard rate assumption (Boucheron and Thomas,
2012). Moreover we check in the Appendix (see Section D)
that if the sampling distribution has the non-decreasing hazard
rate property, on average, the size of the largest symbol and the
number of distinct symbols in the sample differ by a constant.

The non-decreasing hazard rate assumption has far reaching
implications concerning the slow variation property of the
quantile function of the envelope distribution (Section V-B)
that prove instrumental in the derivation of matching lower
bounds for the minimax redundancy of the corresponding
envelope classes. In Section V, we revisit the powerful
results concerning extensions of minimax redundancy by
Haussler and Opper (1997). Advanced results from regular
variation theory shed new light on the small classes where the
lower bounds from (Haussler and Opper, 1997) are known to
be tight

In words, borrowing ideas from extreme value theory
(Falk et al., 2011; de Haan and Ferreira, 2006; Beirlant et al.,
2004; Resnick, 1987), we prove that if the envelope distribu-
tion function has finite and non decreasing hazard rate (defined
in Section III): i) an explicit formula connects the minimax
redundancy and the envelope distribution; ii) the AC-code
asymptotically achieves the minimax redundancy, that is the
AC-code is adaptive with respect to the collection of envelope
classes with finite and non decreasing hazard rate.

The paper is organized as follows. Section II describes
the AC-code. Section III provides notation and definitions
concerning hazard rates. The main result concerning the adap-
tivity of the AC-code over classes with envelopes with finite
and non-decreasing hazard rate is stated in Section IV. The
minimax redundancy of source classes defined by envelopes
with finite and non-decreasing hazard rate is characterized in
Section V. Section VI is dedicated to the characterization of
the redundancy of the AC-code over source classes defined by
envelopes with finite and non-decreasing hazard rate.

II. THE AC-CODE

The AC-code encodes a sequence x1:n = x1, . . . , xn of
symbols from N+ = N \ {0} in the following way. For

i : 1 ≤ i ≤ n, let mi = max1≤j≤i xj . The ith symbol is a
record if mi 6= mi−1. Let n0

i be the number of records up to
index i. The j th record is denoted by m̃j . From the definitions,
m̃n0

i
= mi for all i. Let m̃0 = 0 and let m̃ be derived from

the sequence of differences between records and terminated
by a 1, m̃ = (m̃i − m̃i−1 + 1)1≤i≤n0

n
1. The last 1 in the

sequence serves as a terminating symbol. The symbols in m̃

are encoded using Elias penultimate code (Elias, 1975). This
sequence of codewords forms CE . The sequence of censored
symbols x̃1:n is defined by x̃i = xiIxi≤mi−1 . The binary string
CM is obtained by arithmetic encoding of x̃1:n0.

Remark 1. Let x1:n ∈ N
n
+ be

5 15 8 1 30 7 1 2 1 8 4 7 15 1 5 17 13 4 12 12 ,

(records are italicized) then m1:n is

5 15 15 15 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

and x̃1:n0 is parsed into 4 substrings terminated by 0

0︸︷︷︸
i

0︸︷︷︸
ii

8 1 0︸ ︷︷ ︸
iii

7 1 2 1 8 4 7 15 1 5 17 13 4 12 12 0︸ ︷︷ ︸
iv

while m̃ is 6 11 16 1.

The coding probability used to (arithmetically) encode x̃1:n0
is

Qn+1(x̃1:n0) = Qn+1(0 | x1:n)
n−1∏

i=0

Qi+1(x̃i+1 | x1:i) .

with

Qi+1

(
X̃i+1 = j | X1:i = x1:i

)
=

nj
i +

1
2

i+ mi+1
2

where nj
i is the number of occurrences of symbol j amongst

the first i symbols (in x1:i). We agree on nj
0 = 0 for all j > 0.

If i < n, the event {X̃i+1 = 0} = {Xi+1 = Mi+1 > Mi}
has conditional probability Qi+1

(
X̃i+1 = 0 | X1:i = x1:i

)
=

1/2
i+(mi+1)/2 . Note that 0 is always encoded as a new symbol:

if xi+1 = j > mi, the AC-code encodes a 0, but nj
i rather

than n0
i is incremented.

In words, the mixture code consists of progressively en-
larging the alphabet and feeding an arithmetic coder with
Krichevsky-Trofimov mixtures over the smallest alphabet seen
so far (See Cesa-Bianchi and Lugosi, 2006, for a gentle intro-
duction to Krichevsky-Trofimov mixtures).

Bontemps (2011) describes a nice simple way of interleav-
ing the Elias codewords and the mixture code in order to
perform online encoding and decoding. Substrings of x̃1:n0
terminated by 0 are fed online to an arithmetic coder over the
relevant alphabet using properly adapted Krichevsky-Trofimov
mixtures, after each 0, the corresponding symbol from m̃ is
encoded using the self-delimited Elias code and transmitted.
The alphabet used to encode the next substring of x̃1:n0 is
enlarged and the procedure is iterated. The last symbol of m̃
is a 1, it signals the end of the message.
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III. HAZARD RATE AND ENVELOPE DISTRIBUTION

The envelope distributions we consider in this paper are
characterized by the behavior of their hazard function n 7→
− lnF (n). The probabilistic analysis of the performance of
the AC-code borrows tools and ideas from extreme value
theory. As the theory of extremes for light-tailed discrete
random variables is plagued by interesting but distracting
paradoxes, following Anderson (1970), it proves convenient
to define a continuous distribution function starting from the
envelope distribution function F . This continuous distribution
function will be called the smoothed envelope distribution,
it coincides with the envelope distribution on N. Its hazard
function is defined by linear interpolation: the hazard rate,
that is the derivative of the hazard function is well-defined on
R+\N and it is piecewise constant. The envelope distributions
we consider here are such that this hazard rate is non-
decreasing and finite. The essential infimum of the hazard rate
is b = − lnF (lf ) > 0. Notice that the hazard rate is finite on
[lf − 1,∞) if and only if f has infinite support.

We will also repeatedly deal with the quantile function of
the envelope distribution and even more often with the quantile
function of the smoothed envelope distribution. As the latter is
continuous and strictly increasing over its support, the quantile
function of the smooth envelope distribution is just the inverse
function of the smooth envelope distribution. The quantile
function of the piecewise constant envelope distribution is the
left continuous generalized inverse:

F−1(p) = inf{k : k ∈ N, F (k) ≥ p} .
If the hazard rate is finite, then limp→1 F

−1(p) = ∞. Note
that the smoothed envelope distribution has support [lf−1,∞).
Recall that if X is distributed according to the smoothed en-
velope distribution ⌊X⌋+1 and ⌈X⌉ are distributed according
to the envelope distribution.

Remark 2. Assume that F is a shifted geometric distribution:

for some l ∈ N+, some q ∈ (0, 1), for all k ≥ l, F (k) =
(1− q)k−l, so that the hazard function is (k − l) ln 1/(1− q)
for k ≥ l. The corresponding smooth distribution is the shifted

exponential distribution with tail function t 7→ (1 − q)t−l for

t > l.

The envelopes introduced in the next definition provide
examples where the associated continuous distribution func-
tion has non-decreasing hazard rate. Poisson distributions offer
other examples.

Definition 3. The sub-exponential envelope class with pa-

rameters α ≥ 1 (shape), β > 0 (scale) and γ > 1 is the

set Λ(α, β, γ) of probability mass functions (p(k))k≥1 on the

positive integers such that

∀k ≥ 1, p(k) ≤ f(k), where f(k) = γe
−

(
k
β

)α
.

Exponentially vanishing envelopes (Boucheron et al., 2009;
Bontemps, 2011) are obtained by fixing α = 1.

IV. MAIN RESULT

In the text, we will repeatedly use the next shorthand for
the quantile of order 1− 1/t, t > 1 of the smoothed envelope

distribution. The function U : [1,∞) → R is defined by

U(t) = F−1
s (1− 1/t) (1)

where Fs is the smoothed envelope distribution.
The main result may be phrased as follows.

Theorem 2. The AC-code is adaptive with respect to source

classes defined by envelopes with finite and non-decreasing

hazard rate.

Let Qn be the coding probability associated with the AC-

code, then if f is an envelope with non-decreasing hazard rate,

and U : [1,∞) → R is defined by (1), then

R+(Qn; Λn
f ) ≤ (1 + of (1))(log e)

∫ n

1

U(x)

2x
dx

while

R+(Λn
f ) ≥ (1 + of (1))(log e)

∫ n

1

U(x)

2x
dx

as n tends to infinity.

Remark 3. Note that the AC-code is almost trivially adap-

tive over classes of memoryless sources with alphabet

{1, . . . , k}, k ∈ N+: almost-surely eventually, the largest

symbol in the sequence coincides with the right-end of the

source distribution, and the minimaxity (up to the first order)

of Krichevsky-Trofimov mixtures settles the matter.

The following corollary provides the bridge with
Bontemps’s work on classes defined by exponentially
decreasing envelopes (See Definition 3).

Corollary 1. The AC-code is adaptive with respect to sub-

exponential envelope classes ∪α≥1,β>0,γ>1Λ(α, β, γ). Let Qn

be the coding probability associated with the AC-code, then

R+(Qn; Λn(α, β, γ)) ≤ (1 + oα,β,γ(1))R
+(Λn(α, β, γ))

as n tends to infinity.

Bontemps (2011) showed that the AC-code is adap-
tive over exponentially decreasing envelopes, that is over
∪β>0,γ>1Λ(1, β, γ). Theorem 1 shows that the AC-code is
adaptive to both the scale and the shape parameter.

The next equation helps in understanding the relation be-
tween the redundancy of the AC-code and the metric entropy:

∫ t

1

U(x)

2x
dx =

∫ U(t)

0

ln(tF s(x))

2
dx . (2)

The elementary proof relies on the fact t 7→ U(et) is the
inverse of the hazard function of the smoothed envelope
distribution − lnF s, it is given at the end of the appendix.
The left-hand-side of the equation appears (almost) naturally
in the derivation of the redundancy of the AC-code. The
right-hand-side or rather an equivalent of it, appears during
the computation of the minimax redundancy of the envelope
classes considered in this paper.

The proof of Theorem 1 is organized in two parts: Propo-
sition 6 from Section V gives a lower bound for the minimax
redundancy of source classes defined by envelopes with finite
and non-decreasing hazard rate.
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The redundancy of the AC-coding probability Qn with
respect to P

n ∈ Λn
f is analyzed in Section VI. The pointwise

redundancy is upper bounded in the following way:

− logQn(X1:n) + logPn(X1:n)

≤ ℓ(CE)︸ ︷︷ ︸
(I)

+ ℓ(CM ) + logPn(X̃1:n)︸ ︷︷ ︸
(II)

.

Proposition 10 asserts that (I) is negligible with respect to
R+(Λn

f ) and Proposition 11 asserts that the expected value of
(II) is equivalent to R+(Λn

f ).

V. MINIMAX REDUNDANCIES

A. The Haussler-Opper lower bound

The minimax redundancy of source classes defined by
envelopes f with finite and non-decreasing hazard rate is
characterized using Theorem 5 from (Haussler and Opper,
1997). This theorem relates the minimax redundancy (the
minimax cumulative entropy risk in the language of
Haussler and Opper) to the metric entropy of the class of
marginal distributions with respect to Hellinger distance. Re-
call that the Hellinger distance (denoted by dH ) between two
probability distributions P1 and P2 on N, is defined as the
ℓ2 distance between the square roots of the corresponding
probability mass functions p1 and p2:

d2H(P1, P2) =
∑

k∈N

(
p1(k)

1/2 − p2(k)
1/2
)2
.

The next lower bound on minimax redundancy can be
extracted from Theorem 5 in (Haussler and Opper, 1997). It
relies on the fact that the Bayes redundancy is never larger
than the minimax redundancy.

Theorem 3. Using notation and conventions from Section I,

for any prior probability distribution π on Λ1,

R+(Λn) ≥ Eπ1

[
− logEπ2e

−n
d2H (P1,P2)

2

]
.

where π1 = π2 = π and P1 ∼ π1, P2 ∼ π2 are picked

independently.

For the sake of self-reference, a rephrasing of the proof from
(Haussler and Opper, 1997) is given in the Appendix.

For a source class Λ, Let Hǫ(Λ) be the ǫ-entropy of Λ1 with
respect to the Hellinger metric. That is, Hǫ(Λ) = lnDǫ(Λ)
where Dǫ(Λ) is the cardinality of the smallest finite partition of
Λ1 into sets of diameter at most ǫ when such a finite partition
exists.

The connection between the minimax redundancy of Λn and
the metric entropy of Λ1 under Hellinger metric is a direct
consequence of Theorem 3.

Theorem 4. Let ǫn > 0 be such that

nǫ2n
8

≥ Hǫn(Λ)

then

R+(Λn) ≥ log(e)Hǫn(Λ)− 1 .

Proof of Theorem 4: Choose a prior π that is uniformly
distributed over an ǫ/2-separated set of maximum cardinality.
Such a set has cardinality at least Dǫ = Dǫ(Λ

1).
For each P1 in the ǫ/2-separated,

−logEπ2e
−n

d2H (P1,P2)

2 ≥ − log

(
1

Dǫ
+

Dǫ − 1

Dǫ
e−n ǫ2

8

)
.

Averaging over P1 leads to

R+(Λn) ≥ − log

(
1

Dǫ
+ e−n ǫ2

8

)

≥ log e sup
ǫ

min

(
Hǫ(Λ),

nǫ2

8

)
− 1 .

Up to this point, no assumption has been made regarding the
behavior of Hǫ(Λ) as ǫ tends to 0. Recall that a measurable
function f : (0,∞) → [0,∞) is said to be slowly varying

at infinity if for all κ > 0, limx→+∞
f(κx)
f(x) = 1 (See

Bingham et al., 1989, for a thorough treatment of regular
variation).

Assuming that x 7→ H1/x(Λ) is slowly varying at infinity
allows us to solve equation Hǫ(Λ) = nǫ2/8 as n tends to
infinity.

Indeed, using g(x) as a shorthand for H1/x(Λ), we look for
x satisfying n/8 = x2g(x) or equivalently

1 =
x

(n/8)1/2

√
g

(
(n/8)1/2

x

(n/8)1/2

)
. (3)

Assume that g is slowly varying. A Theorem by De Bruijn (See
Bingham et al., 1989, Theorem 1.5.13) asserts that there exists
slowly varying functions g# such that g#(x)g(xg#(x)) ∼ 1
as x tends to infinity. Moreover all such functions are asymp-
totically equivalent, they are called De Bruijn conjugates of g.
If g is slowly varying, so is

√
g, and we may consider its De

Bruijn conjugate (
√
g)#.

Any sequence (xn)n of solutions of Equation (3) is such that
xn/

√
n/8 is asymptotically equivalent to

√
g#((n/8)1/2).

Hence ǫn = 1/xn ∼ (n/8)−1/2(
√
g#((n/8)1/2))−1. We may

deduce that

R+(Λn) ≥ (1 + o(1)) log e
nǫ2n
8

= log e
(√

g#((n/8)1/2)
)−2

. (4)

The computation of De Bruijn conjugates is usually a delicate
topic (see again Bingham et al., 1989), but strengthening the
slow variation assumption simplifies the matter. We have not
been able to find a name for the next notion in the literature,
although it appears in early work by Bojanic and Seneta
(1971). We nickname it very slow variation in the paper.

Definition 4. A continuous, non decreasing function

g : (0,∞) → [0,∞) is said to be very slowly varying at

infinity if for all η ≥ 0 and κ > 0,

lim
x→+∞

g(κx(g(x))η)

g(x)
= 1 .

Note that not all slowly varying functions satisfy these
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conditions. For example, x 7→ exp((lnx)β) with β > 1/2
does not (see Bingham et al., 1989).

Remark 4. If g is very slowly varying, then for all α, β > 0,

the function defined by x 7→ (g(xβ))α is also very slowly

varying.

Bojanic and Seneta have proved that if g is a very slowly
varying function, the De Bruijn conjugates of g are asymptot-
ically equivalent to 1/g (See Bingham et al., 1989, Corollary
2.3.4). Hence, if g is very slowly varying, the De Bruijn
conjugates of x 7→ √

g(x) are asymptotically equivalent to
1/

√
g(x).

Taking advantage of the very slow variation property allows
us to make lower bound (4) transparent.

Theorem 5. (Haussler and Opper, 1997, Theorem 5) Assume

that the function over [1,∞) defined by x 7→ H1/x(Λ
1) is

very slowly varying, then

R+ (Λn) ≥ (log e)Hn−1/2(Λ) (1 + o(1)) as n tends to +∞.

In order to lower bound the minimax redundancy of source
classes defined by envelope distribution with non-decreasing
hazard rate, in the next section we establish that the function
t 7→

∫ t2

1
U(x)
x dx has the very slow variation property, then in

Section V-C we check that
∫ t2

1
U(x)
x dx ∼ H1/t(Λ).

B. Slow variation and consequences

Let us now state some analytic properties that will prove
useful when checking that source classes defined by envelopes
with finite and non-decreasing hazard rate are indeed small.

Proposition 2. Let F be an absolutely continuous distribution

with finite and non-decreasing hazard rate. Let U : [1,∞) →
R be defined by U(t) = F−1(1− 1/t). Then

(i) the inverse of the hazard function, that is the function on

]0,∞) defined by t 7→ U(et) = F−1(1−e−t) is concave.

(ii) The function U is slowly varying at infinity.

The proof relies on some classical results from regular
variation theory. For the sake of self-reference, we reproduce
those results here, proofs can be found in (Bingham et al.,
1989) or in (de Haan and Ferreira, 2006).

Theorem 1.2.6 in de Haan and Ferreira (2006) characterizes
the so-called domains of attraction of Extreme Value Theory
thanks to an integral representation of the hazard function
− lnF . We reproduce here what concerns the Gumbel domain
of attraction as the envelope distributions we deal with belong
to this domain.

Theorem 6. A distribution function F belongs to the Gumbel

max-domain of attraction, if and only if there exists t0 <
F−1(1) and c : [t0, F

−1(1)) → R+, and a continuous function

ψ such that limt→F−1(1) c(t) = c∗ ∈ R+ such that for

t ∈ [t0, F
−1(1)),

− lnF (t) = − ln c(t) +

∫ t

t0

1

ψ(s)
ds

where limt→F−1(1) ψ
′(t) = 0 and limt→F−1(1) ψ(t) = 0 when

F−1(1) <∞.

If F belongs to the Gumbel max-domain of attraction, then

t 7→ F−1(1− 1/t) is slowly varying at infinity.

Remark 5. Under the so-called Von Mises conditions ψ may

be chosen as the reciprocal of the hazard rate.

Proof of Proposition 2: (i) As t 7→ F−1(1− e−t) is the
inverse of the hazard function − lnF , its derivative is equal to
the reciprocal of the hazard rate evaluated at F−1(1−e−t). As
the hazard rate is assumed to be non-decreasing, the derivative
of F−1(1− e−t) is non-increasing with respect to t.
(ii) As we consider an absolutely continuous distribution, we
may and do assume that using the notation of Theorem 6,
c(t) is constant and that ψ is the reciprocal of the hazard
rate and that it is differentiable. The function ψ is a positive
non increasing function, thus its derivative converges to 0
at infinity. Hence, by Theorem 6, the smoothed envelope
distribution belongs to the Gumbel max-domain of attraction.
This entails that t 7→ F−1(1−1/t) is slowly varying at infinity.

The next Theorem from Bojanic and Seneta (1971) can be
found in (Bingham et al., 1989, Theorem 2.3.3). It asserts that
if g is slowly varying and if for some x > 0, g(tx)/g(t)
converges sufficiently fast towards 1, then g is also very slowly
varying.

Theorem 7. If g varies slowly at infinity and for some x ∈ R+

lim
t→∞

(
g(tx)

g(t)
− 1

)
ln g(t) = 0

then g is very slowly varying,

lim
t→∞

(
g(t(g(t))κ)

g(t)
− 1

)
= 1

locally uniformly in κ ∈ R.

The next proposition establishes that if F is an envelope
distribution with finite non-decreasing hazard rate, U(t) =

F−1(1 − 1/t), then the function t 7→
∫ t

1
U(x)
x dx satisfies

the condition of Theorem 7. As a byproduct of the proof,
we show that U(t) lnU(t) is asymptotically negligible with
respect to

∫ t

1
U(x)
x dx as t tends to infinity. Both properties are

instrumental in the derivation of the main results of this paper.
First the sequence (

∫ n

1
U(x)
x dx)n is asymptotically equivalent

to H1/n1/2(Λ1
f ) and thus to the lower bound on the minimax

redundancy rate for Λf ; second, by Proposition 11, it is also
equivalent to the average redundancy of the mixture encoding
produced by the AC-code (the negligibility of U(t) lnU(t) is
used in the proof); third, the cost of the Elias encoding of
censored symbols does not grow faster than U(n).

Proposition 3. Using notation from Proposition 2.

i)

lim
t→+∞

U(t) lnU(t)
∫ t

1
U(x)
x dx

= 0.

ii) The function h̃ : [1,∞) → R, h̃(t) =
∫ t2

1
U(x)
2x dx is very

slowly varying.

A function g : R+ → R+ has the extended regular variation

property, if there exists γ ∈ R and a measurable function
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a : R+ → R+ such that for all y ≥ 1

lim
t→∞

g(ty)−g(t)
a(t) =

∫ y

1

xγ−1dx .

If γ = 0, g has the extended slow variation property.
The function a is called the auxiliary function. We refer to
(Bingham et al., 1989) or (de Haan and Ferreira, 2006) for a
thorough treatment of this notion. Basic results from regular
variation theory assert that if g has the extended slow variation
property, all possible auxiliary functions are slowly varying
and that limt→∞ a(t)/g(t) = 0.

Proof of Proposition 3: To prove i), note that by
concavity of t 7→ U(et),

∫ t

1

U(x)

x
dx =

∫ ln t

0

U(es)ds

≥ ln(t)

2
U(t) .

Plugging this upper bound leads to

U(t) ln(U(t))
∫ t

1
U(x)
x dx

≤ 2
U(t) ln(U(t))

U(t) ln(t)
= 2

ln(U(t))

ln(t)

which tend to 0 as t tends to infinity (Again by
de Haan and Ferreira, 2006, Proposition B.1.9, Point 1).

ii) We first prove that t 7→
∫ t

1
U(x)
x dx has the extended slow

variation property with auxiliary function U(t), that is for all
y ≥ 1,

lim
t→∞

∫ ty

1
U(x)
x dx−

∫ t

1
U(x)
x dx

U(t)
= log y .

Indeed
∫ ty

1

U(x)

x
dx−

∫ t

1

U(x)

x
dx =

∫ y

1

U(tx)

x
dx

= U(t)

∫ y

1

U(tx)

U(t)

1

x
dx

Now the desired result follows from the Uniform Convergence
Theorem from regular variation theory: if U is slowly varying,
then U(tx)

U(t) converges uniformly to 1 for x ∈ [1, y] as t tends
to infinity.

In order to invoke Theorem 7 to establish ii) it suffices to
notice that

lim
t→∞

(∫ ty

1
U(x)
x dx

∫ t

1
U(x)
x dx

− 1

)
ln

∫ t

1

U(x)

x
dx

= lim
t→∞

∫ ty

1
U(x)
x dx−

∫ t

1
U(x)
x dx

U(t)

U(t) ln
∫ t

1
U(x)
x dx

∫ t

1
U(x)
x dx

= ln y lim
t→∞

U(t) ln
∫ t

1
U(x)
x dx

∫ t

1
U(x)
x dx

≤ ln y lim
t→∞

U(t) ln (U(t) ln(t))
∫ t

1
U(x)
x dx

≤ ln y

{
lim
t→∞

U(t) lnU(t)
∫ t

1
U(x)
x dx

+ lim
t→∞

U(t) ln ln(t)
∫ t

1
U(x)
x dx

}

≤ ln y lim
t→∞

ln ln(t)

2 ln t

= 0

where the first inequality comes from the fact that U is non-
decreasing, the second inequality from i), the third inequality
from the first intermediate result in the proof of i).

C. Minimax rate

The ǫ-entropy of envelope classes defined by envelope
distributions with finite and non-decreasing hazard rate is
related to the behavior of the quantile function of the smoothed
envelope distribution.

Proposition 4. Let f be an envelope function. Assume that

the smoothed envelope distribution F has finite and non-

decreasing hazard rate, let U(t) = F−1(1 − 1/t) be the

quantile of order 1−1/t of the smoothed envelope distribution,

then

Hǫ(Λf ) = (1 + of (1))

∫ 1/ǫ2

0

U(x)

2x
dx

as ǫ tends to 0.

The proof follows the approach of (Bontemps, 2011). It is
stated in the appendix.

The next lower bound for R+(Λn
f ) follows from a direct

application of Theorem 5 and Proposition 3:

Proposition 5. Using notation from Proposition 4,

R+(Λn
f ) ≥ (1 + of (1))(log e)

∫ n

1

U(x)

2x
dx

as n tends to +∞.

A concrete corollary follows easily.

Proposition 6. The minimax redundancy of the sub-

exponential envelope class with parameters (α, β, γ) satisfies

R+(Λn(α, β, γ))

≥ α

2(α+ 1)
β (ln(2))

1/α
(logn)

1+1/α
(1 + o(1))

as n tends to +∞.

Proof: Indeed, if f is a sub-exponential envelope function
with parameters (α, β, γ) one has, for t > 1,

β (ln (γt))
1/α − 1 ≤ U(t) ≤ β (ln (κγt))

1/α − 1 (5)

where κ = 1/(1− exp(−α/βα)).
The lower bound follows from F (k) ≤ f(k + 1) =

γ exp(−((k + 1)/β)α) which entails F (k) ≤ 1/t⇒ k + 1 ≥
β(ln(γt))1/α.

As observed in the introduction, Theorem 1 provides an easy
upper-bound on the minimax redundancy of envelope classes,
R+(Λn

f ) ≤ 2 + log e + U(n)
2 logn. For envelope classes with

non-decreasing hazard rate, this upper-bound is (asymptoti-
cally) within a factor of 2 of the minimax redundancy. Indeed,

∫ n

1

U(x)

2x
dx =

1

2

∫ lnn

0

U (ey) dy
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≥ 1

2

U(n) lnn

2

=
U(n) lnn

4
,

where the inequality comes from concavity and positivity of
y 7→ U (ey). Hence, by Proposition 6, for such envelope
classes

R+(Λn
f ) ≥ (1 + of (1))

U(n) logn

4
.

The merit of the AC-code is to asymptotically achieve the
minimax lower bound while processing the message online
and without knowing the precise form of the envelope. This
is established in the next section.

VI. REDUNDANCY OF AC-CODE

The length of the AC-encoding of x1:n, is the sum of the
length of the Elias encoding CE of the sequence of differences
between records m̃ and of the length of the mixture encoding
CM of the censored sequence x̃1:n0. In order to establish
Theorem 1, we first establish an upper bound on the average
length of CE (Proposition 10).

A. Maximal inequalities

Bounds on the codeword length of Elias encoding and on
the redundancy of the mixture code essentially rely on bounds
on the expectation of the largest symbol max(X1, . . . , Xn)
collected in the next propositions. In the sequel, Hn denotes
the nth harmonic number

ln(n) ≤ Hn =

n∑

i=1

1

i
≤ ln(n) + 1 .

Proposition 7. Let Y1, . . . , Yn be independently identically

distributed according to an absolutely continuous distribution

function F with density f = F ′ and non-decreasing hazard

rate f/F . Let b be the infimum of the hazard rate. Let U(t) =
F−1(1 − 1/t) and Y1,1 ≤ . . . ≤ Yn,n be the order statistics.

Then,

E[Yn,n] ≤ U(exp(Hn))

E[Y 2
n,n] ≤ E[Yn,n]

2 + 2/b2

E[Yn,n ln(Yn,n)] ≤ (EYn,n) ln(EYn,n)) + 2/b2 if Yi ≥ 1 a.s.

Remark 6. If the hazard rate is strictly increasing, Yn,n −
U(n) satisfies a law of large numbers (See Anderson, 1970).

We refer to (Boucheron and Thomas, 2012) for more results

about concentration inequalities for order statistics.

Remark 7. The upper bound on E[Yn,n] may be tight. For ex-

ample it allows to establish that the expected value of the max-

imum of n independent standard Gaussian random variables

is less than
√
2Hn − lnHn − lnπ (Boucheron and Thomas,

2012).

The proof of proposition 7 relies on a quantile coupling
argument and on a sequence of computational steps inspired
by extreme value theory (de Haan and Ferreira, 2006) and
concentration of measure theory (Ledoux, 2001). The proof
also takes advantage of the Rényi representation of order

statistics (See de Haan and Ferreira, 2006, Chapter 2). The
next theorem rephrases this classical result.

Theorem 8. (RÉNYI’S REPRESENTATION) Let

(X1,n, . . . , Xn,n) denote the order statistics of an

independent sample picked according to a distribution

function F . Then (X1,n, . . . , Xn,n) is distributed as

(U(exp(E1,n)), . . . , U(exp(En,n))) where U : (1,∞) → R

is defined by U(t) = inf{x : F (x) ≥ 1 − 1/t} and

(E1,n, . . . , En,n) are the order statistics of an n-sample of

the exponential distribution with scale parameter 1. Agreeing

on E0,n = 0, (Ei,n − Ei−1,n)1≤i≤n are independent and

exponentially distributed with scale parameter 1/(n+ 1− i).

We will also use the following general relations on moments
of maxima of independent random variables.

Proposition 8. Let (Y1,n, . . . , Yn,n) denote the order statistics

of an independent sample picked according to a common

probability distribution, then

E[Y 2
n,n] ≤ (EYn,n)

2 + E
[
(Yn,n − Yn−1,n)

2
]
,

and if the random variables (Yi)i≤n are non-negative,

E [Yn,n lnYn,n] ≤ EYn,n ln(EYn,n)+E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]
.

In the proof of this proposition, E(i) denotes conditional
expectation with respect to Y1, . . . , Yi−1, Yi+1, . . . , Yn and for
each Zi denotes the maximum of Y1, . . . , Yi−1, Yi+1, . . . , Yn,
that is Yn,n if Yi < Yn,n and Yn−1,n otherwise. Order
statistics are functions of independent random variables. The
next theorem, the proof of which can be found in (Ledoux,
2001) has proved to be a powerful tool when investigating
the fluctuations of independent random variables (See for
example Efron and Stein, 1981; Steele, 1986; Massart, 2007;
Boucheron et al., 2013) .

Theorem 9. (SUB-ADDITIVITY OF VARIANCE AND EN-
TROPY.) Let X1, . . . , Xn be independent random vari-

ables and let Z be a square-integrable function of X =
(X1, . . . , Xn). For each 1 ≤ i ≤ n, let Zi be a square-

integrable function of X(i) = (X1, . . . , Xi−1, Xi+1, Xn) .
Then

Var (Z) ≤
n∑

i=1

E

[(
Z − E

(i)Z
)2]

≤
n∑

i=1

E

[
(Z − Zi)

2
]
,

and if Z and all Zi, 1 ≤ i ≤ n, are positive,

E [Z ln(Z)]− EZ ln(EZ)

≤
n∑

i=1

E

[
E
(i) [Z ln(Z)]− E

(i)Z ln(E(i)Z)
]

≤
n∑

i=1

E

[
Z ln

(
Z

Zi

)
− (Z − Zi)

]
.

Proof of Proposition 8: As E[Y 2
n,n] = Var(Yn,n) +

(EYn,n)
2 , it is enough to bound Var(Yn,n). As Z = Yn,n
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is a function of n independent random variables Y1, . . . , Yn,
choosing the Zi as max(X(i)), Zi = Z except possibly when
Xi = Z , and then Zi = Yn−1,n. The sub-additivity property
of the variance imply that

Var(Yn,n) ≤ E
[
(Yn,n − Yn−1,n)

2
]
.

Using the sub-additivity of entropy with the convention about
Zi,

E [Yn,n lnYn,n]− EYn,n ln(EYn,n)

≤ E

[
Yn,n ln

Yn,n
Yn−1,n

− (Yn,n − Yn−1,n)

]

≤ E

[
Yn,n ln

(
1 +

Yn,n − Yn−1,n

Yn−1,n

)
− (Yn,n − Yn−1,n)

]

≤ E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]

as ln(1 + u) ≤ u for u > −1.
Proof of Proposition 7: Thanks to Rényi’s represen-

tation of order statistics, E[Yn,n] = E[U(exp(En,n))], the
proof of the first statement follows from the concavity of
t 7→ U(exp(t)), that is from Proposition 2.

By the Efron-Stein inequality (See Proposition 8),

Var(Yn,n) ≤ E
[
(Yn,n − Yn−1,n)

2
]
.

Thanks again to Rényi’s representation, Yn,n − Yn−1,n is dis-
tributed like U(exp(En,n))−U(exp(En−1,n)). By concavity,
this difference is upper-bounded by

U(exp(En,n))− U(exp(En−1,n))

≤ F (U(exp(En−1,n)))

f(U(exp(En−1,n)))
(En,n − En−1,n) .

The two factors are independent. While E[(En,n −
En−1,n)

2] = 2,

F (U(exp(En−1,n)))
f(U(exp(En−1,n)))

≤ 1

b
.

By Proposition 8,

E[Yn,n ln(Yn,n)]

≤ (EYn,n) ln(EYn,n)) + E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]

≤ (EYn,n) ln(EYn,n)) +
2

b2
.

When handling subexponential envelopes classes, Propo-
sition 7 provides a handy way to upper bound the various
statistics that are used to characterize the redundancy of the
AC-code. If the source belongs to Λ(α, β, γ), let Y1, . . . , Yn
be identically independently distributed according to the prob-
ability distribution with tail function F (u) = 1 ∧∑k>u f(k)
where f(u) = γ exp(−(u/β)α). The quantile coupling argu-
ment ensures that there exists a probability space with random
variables (X ′

1, . . . , X
′
n) distributed like (X1, . . . , Xn) and

random variables (Y ′
1 , . . . , Y

′
n) distributed like (Y1, . . . , Yn)

and X ′
i ≤ Y ′

i for all i ≤ n almost surely.
Let Y1,n ≤ . . . ≤ Yn,n denote again the order statistics of a

sample Y1, . . . , Yn from the envelope distribution, then for any
non-decreasing function g, E[g(Mn)] ≤ E[g(Yn,n)]. Using (5)
one gets the following.

Proposition 9. Let X1, . . . , Xn be independently identi-

cally distributed according to P ∈ Λ1(α, β, γ), let Mn =
max(X1, . . . , Xn), then,

EMn ≤ β (ln (κγen))
1/α

.

E[Mn logMn] ≤ β (ln (κγen))
1/α

×
(
lnβ +

1

α
ln(ln(κγen))

)
+ 2κ2

E[M2
n] ≤ β2 (ln (κγen))2/α + 2κ2.

It provides a simple refinement of Lemma 4 from
(Bontemps, 2011).

Remark 8. From Proposition 9, it follows that the number of

distinct symbols in X1:n grows at most logarithmically with n.

A simple argument stated at the end of the Appendix shows

that, if the hazard rate is non-decreasing, the number of dis-

tinct symbols may grow as fast as U(n) = F−1(1−1/n) where

F is the envelope distribution. This suggests a brute force

approach to the analysis of the redundancy of the AC-code

based on the next two informal observations: the redundancy

of Krichevsky-Trofimov mixtures for an alphabet with size

Mn = OP (logn), should not be larger than E
[
Mn

2

]
logn; the

cost of the Elias encoding of records is negligible with respect

to the redundancy of Krichevsky-Trofimov mixture. This leads

to a simple estimate of redundancy : (1 + of (1))
U(n)
2 logn

which is always larger than
∫ n

1
U(x)
2x dx, but may be within a

constant of the optimal bound. Indeed, the cautious analysis of

the AC-code pioneered in (Bontemps, 2011) and pursued here

allows us to recover the exact redundancy rate of the AC-code

and to establish asymptotic minimaxity.

B. Elias encoding

The average length of the Elias encoding for sources from
a class with a smoothed envelope distribution F with non-
decreasing hazard rate is O(U(n)) (where U(t) = F−1(1 −
1/t)). It does not grow as fast as the minimax redundancy
and as far as subexponential envelope classes are concerned,
it contributes in a negligible way to the total redundancy.

Proposition 10. Let f be an envelope function with associated

non-decreasing hazard rate. Then, for all P ∈ Λf , the

expected length of the Elias encoding of the sequence of record

increments amongst the first n symbols is upper-bounded by

E [ℓ(CE)] ≤ (2 log(e) + ρ)(U(exp(Hn)) + 1) .

where ρ is a universal constant (which may be chosen as

ρ = 2).

In general if X1, . . . , Xn are independently identically dis-

tributed, letting Mn = max(X1, . . . , Xn), the following holds

E [ℓ(CE)] ≤ 2Hn(log(2E[Mn + 1]) + ρ) .

For classes defined by power law envelopes, Mn grows like
a power of n, the last upper bound shows that the length of
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the Elias encoding of records remains polylogarithmic with
respect to n while the minimax redundancy grows like a power
of n (Boucheron et al., 2009). However the AC-code is not
likely to achieve the minimax redundancy over classes defined
by power-law envelopes.

The last statement stems from the fact that the Elias code-
length is less than a concave function of the encoded value.
The average Elias codelength of record differences should
not be larger than the Elias codelength of the average record
difference which is the maximum divided by the number of
records.

Proof of Proposition 10: The length of the Elias code-
words used to encode the sequence of record differences m̃

is readily upper-bounded:

ℓ(CE) ≤
n0
n∑

i=1

(2 log (1 + m̃i − m̃i−1) + ρ)

≤
n0
n∑

i=1

2 log(e) (m̃i − m̃i−1) + ρn0
n

≤ 2 log(e)Mn + ρn0
n

≤ (2 log(e) + ρ)Mn

for some universal constant ρ. The bound on the length of the
Elias encoding follows from Proposition 9.

If we were only interested in subexponential envelope
classes, this would be enough. The next lines may be used
to establish that the length of the Elias encoding remains
negligible with respect to minimax redundancy for larger
envelope source classes.

Using the arithmetic-geometric mean inequality and∑n0
n

i=1 (m̃i − m̃i−1) ≤Mn, we also have

ℓ(CE) ≤ 2

n0
n∑

i=1

log (1 + m̃i − m̃i−1) + n0
nρ

≤ 2n0
n log(1 +Mn/n

0
n) + n0

nρ .

The average length of CE satisfies:

E [ℓ(CE)]

≤ E
[
n0
n(2 log(1 +Mn/n

0
n) + ρ)

]

≤ 2
(
E
[
n0
n log(2Mn)

]
− En0

n(logEn
0
n − ρ)

)

by concavity of x 7→ −x logx

≤ 2

(( n∑

i=1

1

i

)
E log(2(Mn + 1))− En0

n(logEn
0
n − ρ)

)

≤ 2 ln(en)(log(2E[Mn + 1]) + ρ) .

The penultimate inequality comes from the following ob-
servation. Any integer valued random variable can be rep-
resented as the integer part of a real valued random
variable with absolutely continuous distribution. For ex-
ample, X1, . . . , Xn may be represented as ⌊Y1⌋, . . . , ⌊Yn⌋
where Y1, . . . , Yn are i.i.d. and supported by ∪n∈N+ [n, n +
1/2]. Any record in X1, . . . , Xn comes from a record
in Y1, . . . , Yn (but the converse may not be true). Let-
ting Rn denote the number of records in Y1, . . . , Yn, we

have n0
n log(Mn) ≤ Rn log(max(Y1, . . . , Yn)). Moreover Rn

and max(Y1, . . . , Yn) are independent, and Rn is a sum
of independent Bernoulli random variables with parameters
1, 1/2, . . . , 1/n. This entails

E[Rn log(max(Y1, . . . , Yn))]

= ERnE[log(max(Y1, . . . , Yn))]

≤
n∑

i=1

1

i
log(2Emax(Y1, . . . , Yn))

≤ Hn log(2(EMn + 1)) .

C. Adaptive mixture coding

The next proposition compares the length of the mixture
encoding CM with the ideal codeword length of X̃1:n.

Proposition 11. Let f : N+ → [0, 1] be an envelope with

finite and non-decreasing hazard rate. The expected difference

between the mixture encoding of the censored sequence X̃1:n

and its ideal codeword length is upper-bounded by

E

[
ℓ(CM ) + logP(X̃1:n)

]
≤ log(e)

∫ n

1

U(x)

2x
dx (1 + o(1))

as n tends to infinity.

The proof of Proposition 11 is organized in two steps. The
first step consists in establishing a pointwise upper bound
on the difference between the ideal codeword length and
codeword length of the AC-code (Proposition 12 below). This
upper-bound consists of three summands. The expected value
of the three summands is then upper-bounded under the
assumption that the source belongs to an envelope class with
non-decreasing hazard rate.

Proposition 12. (POINTWISE BOUND) Let i0 be the random

integer defined by: i0 = 1 ∨ ⌊Mn/4⌋, then,

− lnQn(X̃1:n) + lnPn(X̃1:n)

≤ Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A.I)

+
n−1∑

i=i0

(
Mi

2i+ 1

)

︸ ︷︷ ︸
(A.II)

Proof: Let CM be the mixture encoding of X̃1:n, then
ℓ(CM ) = − logQn(X̃1:n). The pointwise redundancy can be
decomposed into

− lnQn(X̃1:n) + lnPn(X̃1:n)

= − ln KTMn+1(X̃1:n) + lnPn(X̃1:n)︸ ︷︷ ︸
(A)

− lnQn(X̃1:n) + ln KTMn+1(X̃1:n)︸ ︷︷ ︸
(B)

where KTMn+1 is the Krichevsky-Trofimov mixture coding
probability over an alphabet of cardinality Mn+1. Summand
(A) may be upper bounded thanks to the next bound the proof
of which can be found in (Boucheron, Garivier, and Gassiat,
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2009),

(A) = − ln(KTMn+1(X̃1:n)) + ln(Pn(X̃1:n))

≤ Mn + 1

2
ln(n) + 2 ln(2) .

The second summand (B) is negative, this is the codelength the
AC-code pockets by progressively enlarging the alphabet rather
than using {0, . . . ,Mn} as the alphabet. Bontemps (2011, in
the proof of Proposition 4) points out a simple and useful
connexion between the coding lengths under Qn and KTMn+1,

(B) = − lnQn(X̃1:n) + ln KTMn+1(X̃1:n)

= −
n−1∑

i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)
.

The difference between the codelengths can be further upper
bounded.

−
n−1∑

i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)
= −

n−1∑

i=1

ln

(
1 +

Mn −Mi

2i+ 1 +Mi

)

≤ −
n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)

+
1

2

n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

as ln(1 + x) ≥ x− x2/2 for x ≥ 0

=

n−1∑

i=i0

( −Mn

2i+ 1 +Mi

)

︸ ︷︷ ︸
(B.I)

+

n−1∑

i=i0

(
Mi

2i+ 1 +Mi

)

︸ ︷︷ ︸
(B.II)

+
1

2

n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

︸ ︷︷ ︸
(B.III)

.

The upper bound on (A) can be used to build an upper bound
on (A)+(B.I).

(A) + (B.I)

≤Mn

(
ln(n)

2
−

n−1∑

i=i0

1

2i+ 1 +Mi

)
+

lnn

2

=Mn

(
n−1∑

i=i0

(
1

2i
− 1

2i+ 1 +Mi

)

+
ln(n)

2
−

n−1∑

i=i0

1

2i

)
+

lnn

2

≤Mn

(
n−1∑

i=i0

Mi + 1

(2i+ 1 +Mi)(2i)
+
Hi0

2
+

1

2n

)
+

lnn

2

≤Mn

n−1∑

i=i0

Mi + 1

(2i+ 1)(2i)
+
Mn(ln(Mn) + 2)

2
+

lnn

2
.

Adding (B.III) to the first summand in the last expression,

Mn

n−1∑

i=i0

Mi + 1

(2i+ 1)(2i)
+ (B.III)

≤Mn

n−1∑

i=i0

Mi

(2i+ 1)2(2i)
+Mn

n−1∑

i=i0

1

(2i+ 1)(2i)

+
1

2

n−1∑

i=i0

M2
n +M2

i

(2i+ 1)2

≤M2
n

∑

i≥i0

(
1

2i(2i+ 1)2
+

1

(2i+ 1)2

)
+
Mn

2i0

≤Mn

(
Mn

2i0
+

1

2i0

)

≤ 4Mn .

Proof of Proposition 11: The average redundancy of the
mixture code is thus upper bounded by

log(e)

(
E

[Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A.I)

]
+E

[ n−1∑

i=i0

(
Mi

2i+ 1

)

︸ ︷︷ ︸
(A.II)

])

We may now use the maximal inequalities from Proposition 7.

n−1∑

i=1

EMi

2i+ 1
≤

n−1∑

i=1

U(exp(Hi)) + 1

2i+ 1

≤
n−1∑

i=1

U(ei) + 1

2i+ 1

≤
∫ n

1

U(ex)

2x
dx+

U(e)

3
+

ln(n)

2
.

Meanwhile, letting b be the infimum of the hazard rate of the
envelope,

E

[Mn(ln(Mn) + 10)

2
+

lnn

2

]

≤ (U(en) + 1)(ln(U(en) + 1) + 10)

2
+

2

b2
+

lnn

2
.

Now using Propositions 2 and 3 and the fact that U tends to
infinity at infinity one gets that

lnn+ U(n) lnU(n) = o

(∫ n

1

U(ex)

2x
dx

)

as n tends to infinity and the result follows.

APPENDIX

A. Haussler-Opper lower bound

Proof of Theorem 3: The proof of the Haussler-Opper
lower bound consists of ingenuously using Fubini’s theorem
and Jensen’s inequality.

Throughout this proof, we think of Λ1 as a measurable
parameter space denoted by Θ endowed with a probability
distribution π, θ, θ∗, θ̃, θ̂ denote random elements of Θ picked



12

according to the prior π. Each Pθ define an element of Λn.
The model is assumed to be dominated and for each θ ∈ Θ,
dPn

θ denotes the density of Pn
θ with respect to the dominating

probability. In this paragraph
∫
Xn . . . should be understood as

integration with to the dominating probability.
Recall that the Bayes redundancy under prior π satisfies

Eπ1

[
D
(
Pn
θ∗ ,Eπ2P

n
θ̃

)]

= −
∫

Θ

dπ(θ∗)

∫

Xn

dPn
θ∗(x1:n) log

∫

Θ

dπ(θ̃)
dPn

θ̃
(x1:n)

dPn
θ∗(x1:n)

where θ∗ (resp. θ̃) is distributed according to π1 = π (resp.
π2 = π). The next equation

∫

Θ

dπ(θ∗)

∫

Xn

dPn
θ∗(x1:n)




∫
Θ dπ(θ̃)

dPn
θ̃
(x1:n)

dPn
θ∗

(x1:n)

∫
Θ
dπ(θ̂)

√
dPn

θ̂
(x1:n)

dPn
θ∗

(x1:n)


 = 1

is established by repeated invokation of Fubini’s Theorem as
follows:

∫

Θ

dπ(θ∗)

∫

Xn

dPn
θ∗(x1:n)




∫
Θ
dπ(θ̃)

dPn
θ̃
(x1:n)

dPn
θ∗

(x1:n)

∫
Θ dπ(θ̂)

√
dPn

θ̂
(x1:n)

dPn
θ∗

(x1:n)




=

∫

Θ

dπ(θ∗)

∫

Xn

√
dPn

θ∗(x1:n)



∫
Θ dπ(θ̃)dPn

θ̃
(x1:n)

∫
Θ
dπ(θ̂)

√
dPn

θ̂
(x1:n)




=

∫

Xn

∫

Θ

dπ(θ∗)
√
dPn

θ∗(x1:n)



∫
Θ
dπ(θ̃)dPn

θ̃
(x1:n)

∫
Θ
dπ(θ̂)

√
dPn

θ̂
(x1:n)




=

∫

Xn

(∫

Θ

dπ(θ̃)dPn
θ̃
(x1:n)

)

=

∫

Θ

dπ(θ̃)

∫

Xn

dPn
θ̃
(x1:n)

= 1 .

Starting from the previous equation, using twice the Jensen
inequality and the convexity of − log leads to

−
∫

Θ

dπ(θ∗)

∫

Xn

dPn
θ∗(x1:n) log

∫

Θ

dπ(θ̃)
dPn

θ̃
(x1:n)

dPn
θ∗(x1:n)

≥ −
∫

Θ

dπ(θ∗)

∫

Xn

dPn
θ∗(x1:n) log

∫

Θ

dπ(θ̂)

√
dPn

θ̂
(x1:n)

dPn
θ∗(x1:n)

≥ −
∫

Θ

dπ(θ∗) log

∫

Xn

dPn
θ∗(x1:n)

∫

Θ

dπ(θ̂)

√
dPn

θ̂
(X1:n)

dPn
θ∗(X1:n)

.

In the sequel, αH(Pθ̂, Pθ∗) is a shorthand for the Hellinger
affinity between Pθ̂ and Pθ∗ , recall that

αH(Pθ̂, Pθ∗)n = αH(Pn
θ̂
, Pn

θ∗)

=

∫

Xn

√
dPn

θ̂
(x1:n)dPn

θ∗(x1:n)

and that

αH(Pθ̂, Pθ∗) = 1− d2H(Pθ̂, Pθ∗)

≤ exp
(
−d2H(Pθ̂, Pθ∗)

)
.

By Fubini’s Theorem again,

−
∫

Θ

dπ(θ∗) log

∫

Xn

dPn
θ∗(x1:n)

∫

Θ

dπ(θ̂)

√
dPn

θ̂
(X1:n)

dPn
θ∗(X1:n)

≥ −
∫

Θ

dπ(θ∗) log

∫

Θ

dπ(θ̂)

∫

Xn

√
dPn

θ̂
(X1:n)dPn

θ∗(X1:n)

= −
∫

Θ

dπ(θ∗) log

∫

Θ

dπ(θ̂)αH(Pθ̂, Pθ∗)n

≥ −
∫

Θ

dπ(θ∗) log

∫

Θ

dπ(θ̂) exp

(
−nd

2
H(Pθ̂, Pθ∗)

2

)
.

The right hand side can written as

Eπ1

[
− logEπ2 exp

(
−nd

2
H(P1, P2)

2

)]

where P1 (resp. P2) is distributed according to π1 = π (resp.
π2 = π). The proof is terminated by recalling that, whatever
the prior, the minimax redundancy is not smaller than the
Bayes redundancy.

B. Proof of Proposition 4

In order to alleviate notation Hǫ is used as a shorthand for
Hǫ(Λ

1
f ). Upper and lower bounds for Hǫ follow by adapting

the “flat concentration argument” in Bontemps (2011). The
cardinality Dǫ of the smallest partition of Λ1

f into subsets of
diameter less than ǫ is not larger than the smallest cardinality
of a covering by Hellinger balls of radius smaller than ǫ/2.
Recall that Λ1

f endowed with the Hellinger distance may be

considered as a subset of ℓN+

2 :

C =
{
(xi)i>0 :

∑

i>0

x2i = 1
}

⋂{
(xi)i>0 : ∀i > 0, 0 ≤ xi ≤

√
f(i)

}
.

Let Nǫ = U(16ǫ2 ) (Nǫ is the 1−ǫ2/16 quantile of the smoothed
envelop distribution). Let D be the projection of C on the
subspace generated by the first Nǫ vectors of the canonical
basis. Any element of C is at distance at most ǫ/4 of D. Any
ǫ/4-cover for D is an ǫ/2-cover for C. Now D is included in
the intersection of the unit ball of a Nǫ-dimensional Euclidian
space and of an hyper-rectangle

∏Nǫ

i=1[0,
√
f(k)]. An ǫ/4-

cover for D can be extracted from any maximal ǫ/4-packing
of points from D. From such a maximal packing, a collection
of pairwise disjoint balls of radius ǫ/8 can be extracted that
fits into ǫ/8-blowup of D. Let Bm be the m-dimensional
Euclidean unit ball (Vol(Bm) = Γ(1/2)m/Γ(m/2 + 1) with
Γ(1/2) =

√
π). By volume comparison,

Dǫ × (ǫ/8)N(ǫ)Vol(BNǫ) ≤
Nǫ∏

i=1

(√
f(k) + ǫ/4

)
,

or

Hǫ ≤
Nǫ∑

k=1

ln
(√

f(k) + ǫ/4
)
− lnVol(BNǫ) +Nǫ ln

8

ǫ

Let l = U(1) (l = lf + 1). For k ≥ l, f(k) = F (k − 1)(1 −
F (k)/F (k− 1)). As the hazard rate of the envelope distribu-
tion is assumed to be non-decreasing, denoting the essential
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infimum of the hazard rate by b, F (k−1)(1−e−b) ≤ f(k) ≤
F (k − 1). Hence, for l ≤ k ≤ Nǫ,

√
f(k) ≥ ǫ/4

√
1− e−b.

Thus

Hǫ ≤
lf∑

k=1

ln
(√

f(k) + ǫ/4
)
+

Nǫ∑

k=l

ln(
√
f(k))

− lnVol(BNǫ) +
Nǫ − lf√
1− e−b

+Nǫ ln
8

ǫ

≤
Nǫ∑

k=l

1

2
ln

(
64F (k − 1)

ǫ2

)
− lnVol(BNǫ)

+
Nǫ − lf√
1− e−b

+ lf ln
8

ǫ
+

lf∑

k=1

ln
(√

f(k) + ǫ/4
)
.

(6)

Following Bontemps (2011), a lower bound is derived by
another volume comparison argument. From any partition into
sets of diameter smaller than ǫ, one can extract a covering by
balls of radius ǫ. Then for any positive integer m,

Dǫ ≥
∏lf+m

k=l

√
f(k)

ǫmVol(Bm)
.

Hence, choosing m = Nǫ − lf

Hǫ ≥
Nǫ∑

k=l

ln
√
f(k)− lnVol(BNǫ−lf ) + (Nǫ − lf ) ln

1

ǫ

≥
Nǫ∑

k=l

1

2
ln

(
F (k − 1)(1− e−b)

ǫ2

)
− lnVol(BNǫ−lf )

(7)

Now,

lnVol(BNǫ) = [Nǫ lnNǫ] (1 + o(1))

=

[
U

(
16

ǫ2

)
lnU

(
16

ǫ2

)]
(1 + o(1))

as ǫ tends to 0. Since Nǫ → ∞, we have also
lnVol(BNǫ−lf ) = [Nǫ lnNǫ] (1 + o(1)), as ǫ tends to 0.

Now, the term
∑Nǫ

k=l
1
2 ln

(
F (k−1)

ǫ2

)
n (6) and (7) is treated

by (2). The desired result follows from the fact that U and
hence U ln(U) are slowly varying (Proposition 2) and from
Proposition 3.

C. Proof of equation (2)

Performing the change of variable y = U(x) (x =

1/F (y), dxdy = F ′(y)

(F (y))2
),

∫ t

1

U(x)

2x
dx =

∫ U(t)

lf−1

yF ′(y)

2F (y)
dy

=
[
−y
2
ln(F (y))

]U(t)

lf−1
+

∫ U(t)

lf−1

ln(F (y))

2
dy

=
U(t)

2
ln(t) +

∫ U(t)

0

ln(F (y))

2
dy

=

∫ U(t)

0

ln(tF (x))

2
dx,

where the second equation follows by integration by parts.

D. The number of distinct symbols in a geometric sample

The number of distinct symbols in a geometric sample
has been thoroughly investigated using analytic techniques
(See Archibald et al., 2006, and related papers). The next
elementary argument from (Ben-Hamou, 2013) shows that
the number of distinct symbols in a geometric sample is on
average of the same order of magnitude as the maximum.
This is in sharp constrast with what is known for sam-
ples from power-law distributions, See (Gnedin et al., 2007)
for a general survey, (Ohannessian and Dahleh, 2012) and
(Lugosi and Nobel, 1999) for statistical applications.

Assume that X1, . . . , Xn are independently, identically dis-
tributed according to a geometric distribution with parameter
q ∈ (0, 1), that is P{X1 > k} = (1 − q)k for k ∈ N. Let
Kn denote the number of distinct symbols in X1, . . . , Xn and
Mn = max(X1, . . . , Xn).

EMn ≥ EKn ≥ EMn − 1− q

q2
.

Proof: Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the non-
decreasing rearrangement ofX1, . . . , Xn. We agree on X0,n =
0. The difference Mn −Kn is upper-bounded by the sum of
the gaps in the non-decreasing rearrangement:

Mn −Kn ≤
n∑

k=1

(Xk,n −Xk−1,n − 1)+ .

The expected value of (Xk,n −Xk−1,n − 1)+ can be readily
upper-bounded using Rényi’s representation (Theorem 8). The
order statistics X1,n ≤ X2,n ≤ . . . ≤ Xn,n are distributed like
⌊Yk,n/ ln(1/(1−q))⌋ where Y1,n ≤ Y2,n ≤ . . . ≤ Yn,n are the
order statistics of a standard exponential sample. For j ∈ N+,
the event ⌊Yk,n/ ln(1/(1−q))⌋ > j+⌊Yk−1,n/ ln(1/(1−q))⌋
is included in the event Yk,n > j ln(1/(1− q)) + Yk−1,n. As
(n − k + 1)(Yk,n − Yk−1,n) is exponentially distributed, the
last event has probability (1− q)j(n−k+1).

E[Mn −Kn]

≤
n∑

k=1

E[(Xk,n −Xk−1,n − 1)+]

≤
n∑

k=1

∑

j∈N

P {(Xk,n −Xk−1,n − 1)+ > j}

≤
n∑

k=1

∑

j∈N+

(1− q)j(n−k+1)

≤
n∑

k=1

(1− q)k

1− (1− q)k

≤
n∑

k=1

(1− q)k

q
.

As Mn is concentrated around lnn/ ln(1/(1 − q)), this
simple argument reveals that for geometrically distributed
samples, the number of distinct symbols is close to the largest
value encountered in the sample.

This observation can be extended to the setting where the
sampling distribution has finite non-decreasing hazard rate.
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Proposition 13. Assume that X1, . . . , Xn are independently,

identically distributed according to a distribution with finite

non-decreasing hazard rate over N \ {0}. Let Kn denote

the number of distinct symbols in X1, . . . , Xn and Mn =
max(X1, . . . , Xn). Then there exists a constant κ that may

depend on the sampling distribution but not on sample size n
such that

EMn ≥ EKn ≥ EMn − κ .
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