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About Adaptive Coding on Countable Alphabets
Dominique Bontemps‡ Stéphane Boucheron∗ Elisabeth Gassiat†

Abstract

This paper sheds light on universal coding with respect to classes of memoryless sources over a countable alphabet defined
by an envelope function with finite and non-decreasing hazard rate. We prove that the auto-censuring (AC) code introduced by
Bontemps (2011) is adaptive with respect to the collection of such classes. The analysis builds on the tight characterization of
universal redundancy rate in terms of metric entropy by Haussler and Opper (1997) and on a careful analysis of the performance
of the AC-coding algorithm. The latter relies on non-asymptotic bounds for maxima of samples from discrete distributions with
finite and non-decreasing hazard rate.
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I. I NTRODUCTION

A. Universal coding over countable alphabets

This paper is concerned with problems of universal coding over a countable alphabetX (say the set of positive integersN+

or the set of integersN). Sources over alphabetX are probability distributions on the setXN of infinite sequences of symbols
from X . In this paper, the symbolΛ will be used to denote various collections of sources on alphabetX . The symbols emitted
by a source are denoted by a sequenceX of X -valued random variableX = (Xn)n∈N

. If P is the distribution ofX, Pn

denotes the distribution of the firstn symbolsX1:n = (X1, ..., Xn), and we letΛn = {Pn : P ∈ Λ}. Finally, for any countable
setX , let M1(X ) be the set of all probability distributions overX .

The expected redundancyof any (coding) distributionQn ∈ M1(Xn) with respect toP is equal to the Kullback-Leibler

divergence (or relative entropy) betweenPn andQn: D(Pn, Qn) =
∑

x∈Xn P
n{x} log P

n(x)
Qn(x) = EPn

[
log P

n(X1:n)
Qn(X1:n)

]
. Notice

that the definition of redundancy uses base2 logarithms. Throughout this note,log x denotes the base2 logarithm ofx while
lnx denotes its natural logarithm.

Universal coding attempts to develop sequences of coding probabilities(Qn)n so as to minimize expected redundancy over
a whole class of sources. Themaximal redundancyof Qn with respect toΛ is defined by:

R+(Qn,Λn) = sup
P∈Λ

D(Pn, Qn) .

The infimum ofR+(Qn,Λn) is called theminimax redundancywith respect toΛ:

R+(Λn) = inf
Qn∈M1(Xn)

R+(Qn,Λn).

A corollary of early results by Kieffer (1978), Gyorfi, Pali,and van der Meulen (1993; 1994) shows that finite minimax
redundancy is not a trivial property as soon as the alphabet is infinite even for classes of memoryless sources.

Proposition 1: If a classΛ of stationary sources over a countable alphabetX has finiteminimax redundancythen there
exists a probability distributionQ ∈ M1(X ) such that for everyP ∈ Λ with limn H(Pn)/n < ∞ where H(Pn) =∑

x∈X −P
n(x) log Pn(x) (finite Shannon entropy rate),Q satisfiesD(P1, Q) < ∞.

This observation contrasts with what we know about the finitealphabet setting where coding probabilities asymptotically
achieving minimax redundancies have been described (Xie and Barron, 2000; Barron et al., 1998; Yang and Barron, 1998; Xie
and Barron, 1997; Clarke and Barron, 1994). Note that delicate asymptotic results for coding over large finite alphabetswith
unknown size have started to appear (Szpankowski and Weinberger, 2010).

This prompted Boucheron, Garivier, and Gassiat (2009) to study the redundancy of specific memoryless source classes,
namely classes defined by an envelope function.

B. Envelope classes

Definition 1: Let f be a mapping fromN+ to [0, 1], with 1 ≤
∑

j>0 f(j) < ∞. The envelope classΛf defined by the
function f is the collection of stationary memoryless sources with first marginal distribution dominated byf :

Λf =
{
P : ∀x ∈ N, P1{x} ≤ f(x) ,

andP is stationary and memoryless.
}
.
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Definition 2: Let f be an envelope function. The associatedenvelope distributionhas lower endpointlf = max{k : ∑j≥k f(j) ≥
1}. The envelope distributionF is defined byF (k) = 0 for k < lf , andF (k) = 1−∑j>k f(j) for k ≥ lf . The tail functionF
is defined byF = 1−F . The associated probability mass function coincides withf for u > lf and is equal toF (lf ) ≤ f(lf )
at u = lf .
This envelope probability distribution plays a special role in the analysis of the minimax redundancyR+(Λn

f ). Boucheron,
Garivier, and Gassiat (2009) related the summability of theenvelope function and the minimax redundancy of the envelope
class. They proved almost matching upper and lower bounds onminimax redundancy for envelope classes as for example:
R+(Λn

f ) ≤ infu≤n

[
n log(1+F (u))+ u−1

2 logn
]
+2. The minimax redundancy of classes defined by exponentiallyvanishing

envelopes was fully characterized by Bontemps (2011) usingarguments borrowed from Haussler and Opper (1997), it avers
that the minimax redundancy is half the upper bound obtainedby choosingu so asF (u) ≈ 1/n in the above-stated inequality.
This raises the question: Is it possible to describe the minimax redundancy as a simple functional of the envelope distribution?

C. Adaptive coding

A sequence(Qn)n of coding probabilities (see Cover and Thomas, 1991, for a gentle introduction to the notion of coding
probability) is said to beasymptotically adaptivewith respect to a collection(Λm)m∈M of source classes if for allm ∈ M:

R+(Qn,Λn
m) = sup

P∈Λm

D(Pn, Qn) ≤ (1 + o(1))R+(Λn
m)

as n tends to infinity. Effective and (almost) adaptive coding techniques for the collection of source classes defined by
algebraically vanishing envelopes were introduced in (Boucheron, Garivier, and Gassiat, 2009). Moreover, Bontemps designed
and analyzed theAC-code (Auto-Censuring code) and proved that this code is adaptive over the union of classes of sources
with exponentially decreasing envelopes. As theAC-code does not benefit from side information concerning the envelope, it is
natural to ask whether it is adaptive to a larger class of sources. That kind of question has been addressed in data compression
by Garivier (2006) who proved that Context-Tree-Weighting(Willems, 1998; Catoni, 2004) is adaptive over Renewal sources
while it had been designed to compress sources with bounded memory. In a broader context, investigating the situations where
an appealing procedure is minimax motivates the maxiset approach pioneered in (Cohen et al., 2001; Kerkyacharian and Picard,
2002). This raises a second question: Is it possible to design coding probabilities that are adaptive with respect to larger families
of envelope classes, and how do these coding probabilities depend on the collection of envelope distribution functions?

D. Answers and organization of the paper

This paper aims at clarifying the difficulty of universal coding with respect to envelope classes. We provide positive and
precise answers to the aforementioned questions for a family of envelope classes that lie between the exponential envelope
classes investigated in (Boucheron et al., 2009; Bontemps,2011) and the classes of sources with finite alphabets.

Haussler and Opper (1997) characterize the minimax redundancy of a collection of sources using the metric entropy of the
class of marginal distributions, when the class is not too large. Intuition suggests that an envelope class is not too large when
the envelope decreases fast enough. On the other hand, a bird’s eye-view at theAC-code shows that it uses mixture coding
over the observed alphabet in a sequential way. Intuition suggests that adaptivity depends on the fact that the observedalphabet
does not grow too fast.

Borrowing ideas from extreme value theory, we prove that if the envelope distribution function has finite and non decreasing
hazard rate (defined in Section II): i) an explicit formula connects the minimax redundancy and the envelope distribution; ii)
the AC-code achieves the minimax redundancy, that is theAC-code is adaptive with respect to the collection of envelopeclasses
with finite and non decreasing hazard rate.

The paper is organized as follows. Section II provides notation and definitions concerning hazard rates. Section III describes
the AC-code. The main result concerning the adaptivity of theAC-code over classes with envelopes with finite and non-
decreasing hazard rate is stated in Section IV. The minimax redundancy of source classes defined by envelopes with finite and
non-decreasing hazard rate is characterized in Section V. Section VI is dedicated to the characterization of the redundancy
of the AC-code over source classes defined by envelopes with finite andnon-decreasing hazard rate. Proofs are given in the
Appendix.

II. H AZARD RATE AND CONTINUOUS ENVELOPE DISTRIBUTION FUNCTION

Following Anderson (1970), it proves convenient to define a continuous distribution functionFc starting from the envelope
distribution functionF . The distribution function is characterized by its hazard functionhc : [lf − 1,∞) → R+, defined by
hc(n) = − lnF (n) for n ∈ N, andhc(t) = hc(⌊t⌋) + (t − ⌊t⌋)(hc(⌊t⌋ + 1) − hc(⌊t⌋)) for t ≥ 0. The tail function ofFc is
F c(t) = exp(−hc(t)) for t > 0. For all integersn, F c(n) = F (n). The hazard rateh′

c is piecewise constant, it equals

hc(⌊t⌋+ 1)− hc(⌊t⌋) = ln(F (⌊t⌋)/F (⌊t⌋+ 1))

= ln
(
1 + f(⌊t⌋+ 1)/F (⌊t⌋+ 1)

)
.
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The essential infimum of the hazard rate isb = − lnF (lf ) > 0. Notice that the hazard rate is finite on[lf − 1,∞) if and
only if f has infinite support. Henceforth, given an envelope function f , F, Fc, F , F c will be defined accordingly. We will also
consistently defineU,Uc : ]1,∞) → R by

U(t) = inf{x : F (x) ≥ 1− 1/t} = inf{x : 1/F (x) ≥ t}

andUc(t) = inf{x : 1/F c(x) ≥ t}. The last two functions prove illuminating in extreme valuetheory. If the hazard rate is
finite, thenU(n) → ∞ and Uc(n) → ∞ as n tends to infinity. Note that ifF is the envelope distribution defined byf ,
thenFc(t) = 0 for t ≤ lf − 1. Recall that ifX is distributed according toFc then ⌊X⌋+ 1 is distributed according toF or
equivalently thatU(t) = ⌊Uc(t)⌋+ 1 for t > 1.

The envelopes introduced in the next definition provide examples where the associated continuous distribution function has
non-decreasing hazard rate. Poisson distributions offer other examples.

Definition 3: The sub-exponential envelope classwith parametersα ≥ 1 (shape),β > 0 (scale) andγ > 1 is the set
Λ(α, β, γ) of probability mass functions(p(k))k≥1 on the positive integers such that

∀k ≥ 1, p(k) ≤ f(k), wheref(k) = γe
−

(
k
β

)α
.

Exponentially vanishing envelopes (Boucheron et al., 2009; Bontemps, 2011) are obtained by fixingα = 1.

III. T HE AC-CODE

The AC-code encodes a sequencex1:n = x1, . . . , xn of symbols fromN+ = N\{0} in the following way. Fori : 1 ≤ i ≤ n,
let mi = max1≤j≤i xj . Theith symbol is arecord if mi 6= mi−1. Let n0

i be the number of records up to indexi. Thej th record
is denoted bym̃j . From the definitions,̃mn0

i
= mi for all i. Let m̃0 = 0 and letm̃ be the sequence of differences between

records terminated by a1, m̃ = (m̃i − m̃i−1 + 1)1≤i≤n0
n
1 (the last1 in the sequence serves as a terminating symbol). The

symbols inm̃ are encoded using Elias penultimate code (Elias, 1975). This sequence of codewords formsCE . The sequence
of censored symbols̃x1:n is defined byx̃i = xiIxi≤mi−1

. The binary stringCM is obtained by arithmetic encoding ofx̃1:n0.
The coding probability used to (arithmetically) encodex̃1:n0 is

Qn+1(x̃1:n0) = Qn+1(0 | x1:n)
n−1∏

i=0

Qi+1(x̃i+1 | x1:i) .

with

Qi+1

(
X̃i+1 = j | X1:i = x1:i

)
=

nj
i +

1
2

i + mi+1
2

wherenj
i is the number of occurrences of symbolj amongst the firsti symbols (inx1:i). We agree onnj

0 = 0 for all j > 0.
If i < n, the event{X̃i+1 = 0} = {Xi+1 = Mi+1 > Mi} has conditional probabilityQi+1

(
X̃i+1 = 0 | X1:i = x1:i

)
=

1/2
i+(mi+1)/2 . Note that0 is always encoded as a new symbol: ifxi+1 = j > mi, the AC-code encodes a0, but nj

i rather
thann0

i is incremented. In words, the mixture code consists of progressively enlarging the alphabet and feeding an arithmetic
coder with Krichevsky-Trofimov mixtures over the smallest alphabet seen so far (Cesa-Bianchi and Lugosi, 2006). Bontemps
(2011) describes a nice way of interleaving the Elias codewords and the mixture code in order to perform online encoding and
decoding.

IV. M AIN RESULT

The main result may be phrased as follows.
Theorem 1:The AC-code is adaptive with respect to source classes defined by envelopes with finite and non-decreasing

hazard rate.
Let Qn be the coding probability associated with theAC-code, then iff is an envelope with non-decreasing hazard rate,

R+(Qn; Λn
f ) ≤ (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx

while

R+(Λn
f ) = (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx

asn tends to infinity.
The following corollary provides the bridge with Bontemps’s work.

Corollary 1: The AC-code is adaptive with respect to sub-exponential envelopeclasses:∪α≥1,β>0,γ>1Λ(α, β, γ). Let Qn

be the coding probability associated with theAC-code, then

R+(Qn; Λn(α, β, γ)) ≤ (1 + o(1))R+(Λn(α, β, γ))
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asn tends to infinity.
Bontemps (2011) showed that theAC-code is adaptive over exponentially decreasing envelopes, that is over∪β>0,γ>1Λ(1, β, γ).

Theorem 1 shows that theAC-code is adaptive to both the scale and the shape parameter.
The next equation helps in understanding the relation between the redundancy of theAC-code and the metric entropy:

∫ t

1

Uc(x)

2x
dx =

∫ Uc(t)

0

ln(tF c(x))

2
dx . (1)

The elementary proof is given at the end of the appendix. The left-hand-side of the equation appears (almost) naturally in the
derivation of the redundancy of theAC-code. The right-hand-side or rather an equivalent of it, appears during the computation
of the minimax redundancy of the envelope classes considered in this paper.

The proof of Theorem 1 is organized in two parts : Proposition5 from Section V describes the minimax redundancy of
source classes defined by envelopes with finite and non-decreasing hazard rate.

The redundancy of theAC-coding probabilityQn with respect toPn ∈ Λn(f) is analyzed in Section VI. The pointwise
redundancy is upper bounded in the following way:

− logQn(X1:n) + logPn(X1:n)

≤ ℓ(CE)︸ ︷︷ ︸
I

+ ℓ(CM ) + logPn(X̃1:n)︸ ︷︷ ︸
II

.

Proposition 9 asserts that (I) is negligible with respect toR+(Λn
f ) and Proposition 10 asserts that the expected value of (II )

is equivalent toR+(Λn
f ).

V. M INIMAX REDUNDANCIES

The minimax redundancy of source classes defined by envelopesf with finite and non-decreasing hazard rate is characterized
using Theorem 5 from (Haussler and Opper, 1997). This theorem relates the miximax redundancy to the metric entropy of the
class of marginal distributions with respect to Hellinger distance. Recall that the Hellinger distance between two probability
distributionsP1 andP2 on N, defined by the corresponding probability mass functionsp1 andp2 is

(
∑

k∈N

(√
p1(k)−

√
p2(k)

)2
)1/2

.

If probability distributions overN are parametrized by the square root of their probability mass function, the Hellinger metric
is just theℓ2 distance between parameters. For a source classΛ, LetHǫ(Λ) be theǫ-entropy ofΛ1 with respect to the Hellinger
metric. That is,Hǫ(Λ) = lnDǫ(Λ) whereDǫ(Λ) is the cardinality of the smallest finite partition ofΛ1 into sets of diameter
at mostǫ when such a finite partition exists.

We also need to introduce further notation.
Definition 4: A continuous, non decreasing functionh : (0,∞) → [0,∞) is said to bevery slowly varyingat infinity if for

all η ≥ 0 andκ > 0,

lim
x→+∞

h(κx(h(x))η)

h(x)
= 1 and lim

x→+∞

h(κx(ln x)η)

h(x)
= 1.

Recall that a measurable functionh : (0,∞) → [0,∞) is said to beslowly varyingat infinity if for all κ > 0, limx→+∞
h(κx)
h(x) =

1. (See Bingham et al., 1989).
Theorem 2:(Haussler and Opper, 1997, Theorem 5) Assume there exists a very slowly varying functionh such that:

Hǫ(Λ) = h
(

1
ǫ

)
(1 + o(1)) as ǫ tends to0.

Then
R+ (Λn) = (log e)h(

√
n) (1 + o(1)) asn tends to+∞.

This theorem tightly characterizes the asymptotic redundancy of small source classes. We shall see that source classesdefined by
envelopes with finite and non-decreasing hazard rate are small. Notice that the definition of redundancy uses base2 logarithms
while ǫ-entropy is usually defined using natural logarithms.

Let us now state some analytic properties that will prove useful when checking that source classes defined by envelopes
with finite and non-decreasing hazard rate are indeed small.

Proposition 2: Let f be an envelope function with finite and non-decreasing hazard rate. Then

(i) Uc is slowly varying at infinity,
(ii) Uc ◦ exp is a concave function,
(iii) The function h̃ : [1,∞) → R, h̃(t) =

∫ t2

1
Uc(x)
2x dx is very slowly varying.
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(iv)

lim
t→+∞

Uc(t) lnUc(t)∫ t

1
Uc(x)

x dx
= 0.

Proof: (i) The inverse of the hazard ratehc is a positive non increasing function, thus its derivative converges to0 at
infinity, and (i) follows from Theorem 1.2.6 in de Haan and Fereira (2006).
(ii) The derivative ofUc ◦ exp is equal toF c(Uc(exp(t)))/fc(Uc(exp(t))) which is non-increasing as the hazard rate is non-
decreasing.
To prove (iii), notice first that since the hazard rate is finite, Uc tends to infinity at infinity.Uc is non decreasing, so that for
large enought,

3 ln t ≤ h̃(t) ≤ Uc(t
2) ln t. (2)

Thus, it is enough to prove that for allη ≥ 0 andκ > 0,

lim
x→+∞

h̃(κx(h̃(x))η)

h̃(x)
= 1.

Let g : R+ → R+ be defined byg(t) = ln(h̃(exp(t))) = ln
( ∫ t

0
Uc(exp(2x))dx

)
. It is enough to check that

lim
t→∞

g(t+ ηg(t) + z)− g(t) = 0

for z ∈ R, η > 0. But,

g(t+ ηg(t) + z)− g(t)

= ln

(
1 +

∫ t+ηg(t)+z

t
Uc(exp(2x))dx∫ t

0
Uc(exp(2x))dx

)
.

For large enought, ηg(t) + z > 0, and by concavity ofUc ◦ exp,
∫ t+ηg(t)+z

t

Uc(exp(2x))dx

≤ (z + ηg(t))Uc

(
exp

(
2t+ ηg(t) + z

))

≤ (z + ηg(t))Uc (exp(2t))

+
F c (Uc (exp(2t)))

fc (Uc (exp(2t)))
(z + ηg(t))2 .

Letting b be the infimum of the hazard rate,

g(t+ ηg(t) + z)− g(t)

≤ (z + ηg(t))g′(t) +
1

b

(z + ηg(t))2

exp(g(t))
.

The second summand tends to0 as t tends to infinity. Sinceg(t) tends to infinity at infinity, there remains to prove that
g(t)g′(t) tends to0 at infinity, that is to establish thatUc(u

2) ln h̃(u)/eh̃(u) tends to0 at infinity. But asUc(x)/x is regularly
varying with index−1, t 7→

∫ t

0
Uc(x)/xdx is slowly varying (regularly varying with index0) (See de Haan and Fereira, 2006,

Proposition B.1.9, Point 4) and so ist 7→ h̃(t) =
∫ t2

0
Uc(x)/xdx, this follows from Karamata integral representation Theorem

(de Haan and Fereira, 2006, Theorem B.1.6). So that using (2),

Uc(u
2) ln h̃(u)

eh̃(u)
≤ Uc(u

2)

u2

ln h̃(u)

ln(u)

ln(u)

u

now, by (de Haan and Fereira, 2006, Proposition B.1.9, Point1), the first two factors tend to0 asu tends to infinity, and (iii)
follows.
To prove (iv), note that

∫ t

1

Uc(x)

x
dx =

∫ ln t

0

Uc(exp(s))ds

≥ ln(t)

2
Uc(t)

by concavity ofUc ◦ exp.
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Plugging this upper bound leads to:

Uc(t) ln(Uc(t))∫ t

1
Uc(x)

x dx
≤ 2

Uc(t) ln(Uc(t))

Uc(t) ln(t)
= 2

ln(Uc(t))

ln(t)

which tend to0 as t tends to infinity (Again by de Haan and Fereira, 2006, Proposition B.1.9, Point 1).
Proposition 3: (Entropy of envelope classes with finite and non-decreasinghazard rate.) Letf be an envelope function with

finite and non-decreasing hazard rate, then

Hǫ(Λf ) = (1 + o(1))

∫ 1/ǫ2

0

Uc(x)

2x
dx

as ǫ tends to0.
The proof follows the approach of (Bontemps, 2011). It is stated in the appendix.

The characterization ofR+(Λn
f ) follows from a direct application of Theorem 2 and Proposition 2 (iii):

Proposition 4: (Minimax redundancy of envelope classes with finite and non-decreasing hazard rate.) Letf be an envelope
function with finite and non-decreasing hazard rate, then

R+(Λn
f ) = (1 + o(1))(log e)

∫ n

1

Uc(x)

2x
dx

asn tends to+∞.
A concrete corollary follows easily.

Proposition 5: The minimax redundancy of the sub-exponential envelope class with parameters(α, β, γ) satisfies

R+(Λn(α, β, γ))

=
α

2(α+ 1)
β (ln(2))1/α (logn)1+1/α (1 + o(1))

asn tends to+∞.

Proof: Indeed, iff is a sub-exponential envelope function with parameters(α, β, γ) one has, fort > 1,

β (ln (γt))
1/α − 1 ≤ Uc(t) ≤ β (ln (κγt))

1/α − 1 (3)

whereκ = 1/(1− exp(−α/βα)).
The lower bound follows fromF (k) ≤ f(k+1) = γ exp(−((k+1)/β)α) which entailsF (k) ≤ 1/t ⇒ k+1 ≥ β(ln(γt))1/α.
The upper bound follows from

F (k) ≤
∑

j≥0

γ exp
(
−
(

k+1
β

)α
− jα (k+1)α−1

βα

)

≤ f(k + 1)

1− exp
(
− α(k + 1)α−1/βα

) ≤ f(k + 1)

κ
,

for α ≥ 1.

VI. REDUNDANCY OF AC-CODE

The length of theAC-encoding ofx1:n, is the sum of the length of the Elias encodingCE of the sequence of differences
between records̃m and of the length of the mixture encodingCM of the censored sequencẽx1:n0. In order to establish
Theorem 1, we first establish an upper bound on the average length of CE (Proposition 9).

A. Maximal inequalities

Bounds on the codeword length of Elias encoding and on the redundancy of the mixture code essentially rely on bounds on
the expectation of the largest symbolmax(X1, . . . , Xn) collected in the next propositions. In the sequel,Hn denotes thenth

harmonic number

ln(n) ≤ Hn =

n∑

i=1

1

i
≤ ln(n) + 1 .

Proposition 6: Let Y1, . . . , Yn be independently identically distributed according to an absolutely continuous distribution
function F with densityf = F ′ and non-decreasing hazard ratef/F . Let b be the infimum of the hazard rate. LetU(t) =
inf{x : F (x) ≥ 1− 1/t} andY1,1 ≤ . . . ≤ Yn,n be the order statistics. Then,

E[Yn,n] ≤ U(exp(Hn))

E[Y 2
n,n] ≤ E[Yn,n]

2 + 2/b2

E[Yn,n ln(Yn,n)] ≤ (EYn,n) ln(EYn,n)) + 2/b2 if Yi ≥ 1 a.s.
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Note that if the hazard rate is strictly increasing,Yn,n − U(n) satisfies a law of large numbers (See Anderson, 1970).
The proof of proposition 6 relies on a quantile coupling argument and on a sequence of computational steps inspired by

extreme value theory (de Haan and Fereira, 2006) and concentration of measure theory (Ledoux, 2001). The proof also takes
advantage of the Rényi representation of order statistics (See de Haan and Fereira, 2006, Chapter 2). The next theorem rephrases
this classical result.

Theorem 3:(RÉNYI’ S REPRESENTATION) Let (X1,n, . . . , Xn,n) denote the order statistics of an independent sample picked
according to a distribution functionF . Then (X1,n, . . . , Xn,n) is distributed as(U(exp(E1,n)), . . . , U(exp(En,n))) where
U : (1,∞) → R is defined byU(t) = inf{x : F (x) ≥ 1 − 1/t} and (E1,n, . . . , En,n) are the order statistics of ann-sample
of the exponential distribution with scale parameter1. Agreeing onE0,n = 0, (Ei,n − Ei−1,n)1≤i≤n are independent and
exponentially distributed with scale parameter1/(n+ 1− i).

We will also use the following general relations on moments of maxima of independent random variables.
Proposition 7: Let (Y1,n, . . . , Yn,n) denote the order statistics of an independent sample pickedaccording to a common

probability distribution, then
E[Y 2

n,n] ≤ (EYn,n)
2 + E

[
(Yn,n − Yn−1,n)

2
]
,

and if the random variables(Yi)i≤n are non-negative,

E [Yn,n lnYn,n] ≤ EYn,n ln(EYn,n) + E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]
.

In the proof of this proposition,E(i) denotes conditional expectation with respect toY1, . . . , Yi−1, Yi+1, . . . , Yn and for each
Zi denotes the maximum ofY1, . . . , Yi−1, Yi+1, . . . , Yn, that isYn,n if Yi < Yn,n andYn−1,n otherwise. Order statistics are
functions of independent random variables. The next theorem, the proof of which can be found in (Ledoux, 2001) has proved
to be a powerful tool when investigating the fluctuations of independent random variables (See for example Efron and Stein,
1981; Massart, 2007) .

Theorem 4:(SUB-ADDITIVITY OF VARIANCE AND ENTROPY.) Let X1, . . . , Xn be independent random variables and let
Z = f(X) be a square-integrable function ofX = (X1, . . . , Xn). For each1 ≤ i ≤ n, let Zi be a square-integrable function
of X(i) = (X1, . . . , Xi−1, Xi+1, Xn) . Then

Var (Z) ≤
n∑

i=1

E

[(
Z − E

(i)Z
)2]

≤
n∑

i=1

E

[
(Z − Zi)

2
]
,

and if Z and allZi, 1 ≤ i ≤ n, are positive,

E [Z ln(Z)]− EZ ln(EZ)

≤
n∑

i=1

E

[
E
(i) [Z ln(Z)]− E

(i)Z ln(E(i)Z)
]

≤
n∑

i=1

E

[
Z ln

(
Z

Zi

)
− (Z − Zi)

]
.

Proof of Proposition 7:As E[Y 2
n,n] = Var(Yn,n)+(EYn,n)

2 , it is enough to boundVar(Yn,n). As Z = Yn,n is a function
of n independent random variablesY1, . . . , Yn, choosing theZi asmax(X(i)), Zi = Z except possibly whenXi = Z, and
thenZi = Yn−1,n. The sub-additivity property of the variance imply that

Var(Yn,n) ≤ E
[
(Yn,n − Yn−1,n)

2
]
.

Using the sub-additivity of entropy with the convention about Zi,

E [Yn,n ln Yn,n]− EYn,n ln(EYn,n)

≤ E

[
Yn,n ln

Yn,n

Yn−1,n
− (Yn,n − Yn−1,n)

]

≤ E

[
Yn,n ln

(
1 +

Yn,n − Yn−1,n

Yn−1,n

)
− (Yn,n − Yn−1,n)

]

≤ E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]

as ln(1 + u) ≤ u for u > −1.
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Proof of Proposition 6: Thanks to Rényi’s representation of order statistics,E[Yn,n] = E[U(exp(En,n))], the proof of
the first statement follows from the concavity oft 7→ U(exp(t)), that is from Proposition 2 ii).

By the Efron-Stein inequality (See Proposition 7),

Var(Yn,n) ≤ E
[
(Yn,n − Yn−1,n)

2
]
.

Thanks again to Rényi’s representation,Yn,n − Yn−1,n is distributed likeU(exp(En,n)) − U(exp(En−1,n)). Thanks to the
concavity ofU ◦ exp, this difference is upper-bounded by

U(exp(En,n))− U(exp(En−1,n))

≤ F (U(exp(En−1,n)))

f(U(exp(En−1,n)))
(En,n − En−1,n) .

The two factors are independent. WhileE[(En,n − En−1,n)
2] = 2,

F (U(exp(En−1,n)))
f(U(exp(En−1,n)))

≤ 1

b
.

By Proposition 7,

E[Yn,n ln(Yn,n)]

≤ (EYn,n) ln(EYn,n)) + E

[
(Yn,n − Yn−1,n)

2

Yn−1,n

]

≤ (EYn,n) ln(EYn,n)) +
2

b2
.

When handling subexponential envelopes classes, Proposition 6 provides a handy way to upper bound the various statistics
that are used to characterize the redundancy of theAC-code. If the source belongs toΛ(α, β, γ), let Y1, . . . , Yn be iden-
tically independently distributed according to the probability distribution with tail functionF (u) = 1 ∧∑k>u f(k) where
f(u) = γ exp(−(u/β)α). The quantile coupling argument ensures that there exists a probability space with random variables
(X ′

1, . . . , X
′
n) distributed like(X1, . . . , Xn) and random variables(Y ′

1 , . . . , Y
′
n) distributed like(Y1, . . . , Yn) andX ′

i ≤ Y ′
i for

all i ≤ n almost surely.
Let Y(1) ≤ . . . ≤ Y(n) denote the order statistics ofY1, . . . , Yn, then for any non-decreasing functiong, E[g(Mn)] ≤

E[g(Y(n))]. Using (3) one gets the following.
Proposition 8: LetX1, . . . , Xn be independently identically distributed according toP ∈ Λ1(α, β, γ), letMn = max(X1, . . . , Xn),

then,

EMn ≤ β (ln (κγen))1/α .

E[Mn logMn] ≤ β (ln (κγen))1/α

×
(
lnβ +

1

α
ln(ln(κγen))

)
+ 2κ2

E[M2
n] ≤ β2 (ln (κγen))

2/α
+ 2κ2.

It provides a simple refinement of Lemma 4 from (Bontemps, 2011).

B. Elias encoding

The average length of the Elias encoding for sources from a class defined by an envelope with non-decreasing hazard rate
is O(Uc(n)). It does not grow as fast as the minimax redundancy and as far as subexponential envelope classes are concerned,
it contributes in a negligible way to the total redundancy.

Proposition 9: Let f be an envelope function with associated non-decreasing hazard rate. Then, for allP ∈ Λf , the expected
length of the Elias encoding of the sequence of record increments amongst the firstn symbols is upper-bounded by

E [ℓ(CE)] ≤ (2 log(e) + ρ)(Uc(exp(Hn)) + 1) .

whereρ is a universal constant (which may be chosen asρ = 2).
In general ifX1, . . . , Xn are independently identically distributed, the followingholds

E [ℓ(CE)] ≤ 2Hn(log(2E[Mn + 1]) + ρ) .

For classes defined by power law envelopes,Mn grows like a power ofn, the last upper bound shows that the length of
the Elias encoding of records remains polylogarithmic withrespect ton while the minimax redundancy grows like a power
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of n (Boucheron et al., 2009). However theAC-code is not likely to achieve the minimax redundancy over classes defined by
power-law envelopes.

The last statement stems from the fact that the Elias codelength is less than a concave function of the encoded value. The
average Elias codelength of record differences should not be larger than the Elias codelength of the average record difference
which is the maximum divided by the number of records.

Proof of Proposition 9:The length of the Elias codewords used to encode the sequenceof record differences̃m is readily
upper-bounded:

ℓ(CE) ≤
n0
n∑

i=1

(2 log (1 + m̃i − m̃i−1) + ρ)

≤
n0
n∑

i=1

2 log(e) (m̃i − m̃i−1) + ρn0
n

≤ 2 log(e)Mn + ρn0
n

≤ (2 log(e) + ρ)Mn

for some universal constantρ. The bound on the length of the Elias encoding follows from Proposition 8.
If we were only interested in subexponential envelope classes, this would be enough. The next lines may be used to establish

that the length of the Elias encoding remains negligible with respect to minimax redundancy for larger envelope source classes.
Using the arithmetic-geometric mean inequality and

∑n0
n

i=1 (m̃i − m̃i−1) ≤ Mn, we also have

ℓ(CE) ≤ 2

n0
n∑

i=1

log (1 + m̃i − m̃i−1) + n0
nρ

≤ 2n0
n log(1 +Mn/n

0
n) + n0

nρ .

The average length ofCE satisfies:

E [ℓ(CE)]

≤ E
[
n0
n(2 log(1 +Mn/n

0
n) + ρ)

]

≤ 2
(
E
[
n0
n log(2Mn)

]
− En0

n(logEn
0
n − ρ)

)

by concavity ofx 7→ −x log x

≤ 2

(( n∑

i=1

1

i

)
E log(2(Mn + 1))− En0

n(logEn
0
n − ρ)

)

≤ 2 ln(en)(log(2E[Mn + 1]) + ρ) .

The penultimate inequality comes from the following observation. Any integer valued random variable can be represented as
the integer part of a real valued random variable with absolutely continuous distribution. For example,X1, . . . , Xn may be
represented as⌊Y1⌋, . . . , ⌊Yn⌋ whereY1, . . . , Yn are i.i.d. and supported by∪n∈N+

[n, n + 1/2]. Any record inX1, . . . , Xn

comes from a record inY1, . . . , Yn (but the converse may not be true). LettingRn denote the number of records inY1, . . . , Yn,
we haven0

n log(Mn) ≤ Rn log(max(Y1, . . . , Yn)). MoreoverRn andmax(Y1, . . . , Yn) are independent, andRn is a sum of
independent Bernoulli random variables with parameters1, 1/2, . . . , 1/n. This entails

E[Rn log(max(Y1, . . . , Yn))]

= ERnE[log(max(Y1, . . . , Yn))]

≤
n∑

i=1

1

i
log(2Emax(Y1, . . . , Yn))

≤ Hn log(2(EMn + 1)) .

C. Adaptive mixture coding

The next proposition compares the length of the mixture encoding CM with the ideal codeword length of̃X1:n.
Proposition 10: Let f : N+ → [0, 1] be an envelope with finite and non-decreasing hazard rate. The expected difference

between the mixture encoding of the censored sequenceX̃1:n and its ideal codeword length is upper-bounded by

E

[
ℓ(CM ) + logP(X̃1:n)

]
≤ log(e)

∫ n

1

Uc(x)

2x
dx (1 + o(1))
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asn tends to infinity.
The proof of Proposition 10 is organized in two steps. The first step consists in establishing a pointwise upper bound on the

difference between the ideal codeword length and codeword length of theAC-code (Proposition 11 below). This upper-bound
consists of three summands. The expected value of the three summands is then upper-bounded under the assumption that the
source belongs to an envelope class with non-decreasing hazard rate.

Proposition 11: (POINTWISE BOUND) Let i0 be the random integer defined by:i0 = 1 ∨ ⌊Mn/4⌋, then,

− lnQn(X̃1:n) + lnPn(X̃1:n)

≤ Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A .I)

+

n−1∑

i=i0

(
Mi

2i+ 1

)

︸ ︷︷ ︸
(A .II )

Proof: Let CM be the mixture encoding of̃X1:n, then ℓ(CM ) = − logQn(X̃1:n). The pointwise redundancy can be
decomposed into

− lnQn(X̃1:n) + lnPn(X̃1:n)

= − ln KTMn+1(X̃1:n) + lnPn(X̃1:n)︸ ︷︷ ︸
(A)

− lnQn(X̃1:n) + ln KTMn+1(X̃1:n)︸ ︷︷ ︸
(B)

whereKTMn+1 is the Krichevsky-Trofimov mixture coding probability overan alphabet of cardinalityMn +1. Summand (A)
may be upper bounded thanks to the next bound the proof of which can be found in (Boucheron, Garivier, and Gassiat, 2009),

(A) = − ln(KTMn+1(X̃1:n)) + ln(Pn(X̃1:n))

≤ Mn + 1

2
ln(n) + 2 ln(2) .

The second summand (B) is negative, this is the codelength the AC-code pockets by progressively enlarging the alphabet
rather than using{0, . . . ,Mn} as the alphabet. Bontemps (2011, in the proof of Proposition4) points out a simple and useful
connexion between the coding lengths underQn and KTMn+1:

(B) = − lnQn(X̃1:n) + ln KTMn+1(X̃1:n)

= −
n−1∑

i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)
.
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The difference between the codelengths can be further upperbounded.

−
n−1∑

i=1

ln

(
2i+ 1 +Mn

2i+ 1 +Mi

)

= −
n−1∑

i=1

ln

(
1 +

Mn −Mi

2i+ 1 +Mi

)

≤ −
n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)

+
1

2

n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

as ln(1 + x) ≥ x− x2/2 for x ≥ 0

=

n−1∑

i=i0

( −Mn

2i+ 1 +Mi

)

︸ ︷︷ ︸
(B.I)

+

n−1∑

i=i0

(
Mi

2i+ 1 +Mi

)

︸ ︷︷ ︸
(B.II )

+
1

2

n−1∑

i=i0

(
Mn −Mi

2i+ 1 +Mi

)2

︸ ︷︷ ︸
(B.III )

.

The upper bound on (A) can be used to build an upper bound on (A)+(B.I).

(A) + (B.I)

≤ Mn

(
ln(n)

2
−

n−1∑

i=i0

1

2i+ 1 +Mi

)
+

lnn

2

= Mn

(
n−1∑

i=i0

(
1

2i
− 1

2i+ 1 +Mi

)

+
ln(n)

2
−

n−1∑

i=i0

1

2i

)
+

lnn

2

≤ Mn

(
n−1∑

i=i0

Mi + 1

(2i+ 1+Mi)(2i)
+

Hi0

2
+

1

2n

)
+

lnn

2

≤ Mn

n−1∑

i=i0

Mi + 1

(2i+ 1)(2i)
+

Mn(ln(Mn) + 2)

2
+

lnn

2
.
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Adding (B.III ) to the first summand in the last expression,

Mn

n−1∑

i=i0

Mi + 1

(2i+ 1)(2i)
+ (B.III )

≤ Mn

n−1∑

i=i0

Mi

(2i+ 1)2(2i)
+Mn

n−1∑

i=i0

1

(2i+ 1)(2i)

+
1

2

n−1∑

i=i0

M2
n +M2

i

(2i+ 1)2

≤ M2
n

∑

i≥i0

(
1

2i(2i+ 1)2
+

1

(2i+ 1)2

)
+

Mn

2i0

≤ Mn

(
Mn

2i0
+

1

2i0

)

≤ 4Mn .

Proof of Proposition 10: The average redundancy of the mixture code is thus upper bounded by

log(e)

(
E

[Mn(ln(Mn) + 10)

2
+

lnn

2︸ ︷︷ ︸
(A .I)

]
+ E

[ n−1∑

i=i0

(
Mi

2i+ 1

)

︸ ︷︷ ︸
(A .II )

])

We may now use the maximal inequalities from Proposition 6.

n−1∑

i=1

EMi

2i+ 1
≤

n−1∑

i=1

Uc(exp(Hi)) + 1

2i+ 1

≤
n−1∑

i=1

Uc(ei) + 1

2i+ 1

≤
∫ n

1

Uc(ex)

2x
dx+

Uc(e)

3
+

ln(n)

2
.

Meanwhile, lettingb be the infimum of the hazard rate of the envelope,

E

[Mn(ln(Mn) + 10)

2
+

lnn

2

]

≤ (Uc(en) + 1)(ln(Uc(en) + 1) + 10)

2
+

2

b2
+

lnn

2
.

Now using Proposition 2 (i) and (iv) and the fact thatUc tends to infinity at infinity one gets that

lnn+ Uc(n) lnUc(n) = o

(∫ n

1

Uc(ex)

2x
dx

)

asn tends to infinity and the result follows.
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APPENDIX

A. Proof of Proposition 3

In order to alleviate notationHǫ is used as a shorthand forHǫ(Λ
1
f ). Upper and lower bounds forHǫ follow by adapting the

“flat concentration argument” in Bontemps (2011). The cardinality Dǫ of the smallest partition ofΛ1
f into subsets of diameter

less thanǫ is not larger than the smallest cardinality of a covering by Hellinger balls of radius smaller thanǫ/2. Recall that
Λ1
f endowed with the Hellinger distance may be considered as a subset ofℓN+

2 :

C =
{
(xi)i>0 :

∑

i>0

x2
i = 1

}

⋂{
(xi)i>0 : ∀i > 0, 0 ≤ xi ≤

√
f(i)

}
.

Let Nǫ = U(16ǫ2 ) (Nǫ is the 1 − ǫ2/16 quantile of the envelop distribution). LetD be the projection ofC on the subspace
generated by the firstNǫ vectors of the canonical basis. Any element ofC is at distance at mostǫ/4 of D. Any ǫ/4-cover for
D is an ǫ/2-cover forC. Now D is included in the intersection of the unit ball of aNǫ-dimensional Euclidian space and of
an hyper-rectangle

∏Nǫ

i=1[0,
√
f(k)]. An ǫ/4-cover forD can be extracted from any maximalǫ/4-packing of points fromD.

From such a maximal packing, a collection of pairwise disjoint balls of radiusǫ/8 can be extracted that fits intoǫ/8-blowup
of D. Let Bm be them-dimensional Euclidean unit ball (Vol(Bm) = Γ(1/2)m/Γ(m+ 1/2) with Γ(1/2) =

√
π). By volume

comparison,

Dǫ × (ǫ/8)N(ǫ)Vol(BNǫ
) ≤

Nǫ∏

i=1

(√
f(k) + ǫ/4

)
,
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or

Hǫ ≤
Nǫ∑

k=1

ln
(√

f(k) + ǫ/4
)
− lnVol(BNǫ

) +Nǫ ln
8

ǫ

Let l = U(1) (l = lf +1). For k ≥ l, f(k) = F (k− 1)(1−F (k)/F (k− 1)). As the hazard rate of the envelope distribution is
assumed to be non-decreasing, denoting the essential infimum of the hazard rate byb, F (k− 1)(1− e−b) ≤ f(k) ≤ F (k− 1).
Hence, forl ≤ k ≤ Nǫ,

√
f(k) ≥ ǫ/4

√
1− e−b. Thus

Hǫ ≤
lf∑

k=1

ln
(√

f(k) + ǫ/4
)
+

Nǫ∑

k=l

ln(
√
f(k))

− lnVol(BNǫ
) +

Nǫ − lf√
1− e−b

+Nǫ ln
8

ǫ

≤
Nǫ∑

k=l

1

2
ln

(
64F (k − 1)

ǫ2

)
− lnVol(BNǫ

)

+
Nǫ − lf√
1− e−b

+ lf ln
8

ǫ
+

lf∑

k=1

ln
(√

f(k) + ǫ/4
)
.

(4)

Following Bontemps (2011), a lower bound is derived by another volume comparison argument. From any partition into
sets of diameter smaller thanǫ, one can extract a covering by balls of radiusǫ. Then for any positive integerm,

Dǫ ≥
∏lf+m

k=l

√
f(k)

ǫmVol(Bm)
.

Hence, choosingm = Nǫ − lf

Hǫ ≥
Nǫ∑

k=l

ln
√
f(k)− lnVol(BNǫ−lf ) + (Nǫ − lf ) ln

1

ǫ

≥
Nǫ∑

k=l

1

2
ln

(
F (k − 1)(1 − e−b)

ǫ2

)
− lnVol(BNǫ−lf ) (5)

Now,

lnVol(BNǫ
) = [Nǫ lnNǫ] (1 + o(1))

=

[
Uc

(
16

ǫ2

)
lnUc

(
16

ǫ2

)]
(1 + o(1))

as ǫ tends to0. SinceNǫ → ∞, we have alsolnVol(BNǫ−lf ) = [Nǫ lnNǫ] (1 + o(1)), asǫ tends to0.

Now, the term
∑Nǫ

k=l
1
2 ln

(
F (k−1)

ǫ2

)
n (4) and (5) is treated by (1). The desired result follows from the fact thatUc and hence

Uc ln(Uc) are slowly varying (Proposition 2 (i)) and from Proposition2 (iv).

B. Proof of equation (1)

Making the change of variabley = Uc(x) (x = 1/F c(y),
dx
dy = fc(y)

(F c(y))2
),

∫ t

1

Uc(x)

2x
dx =

∫ Uc(t)

lf−1

yfc(y)

2F c(y)
dy

=
[
−y

2
ln(F c(y))

]Uc(t)

lf−1
+

∫ Uc(t)

lf−1

ln(F c(y))

2
dy

=
Uc(t)

2
ln(t) +

∫ Uc(t)

0

ln(F c(y))

2
dy

=

∫ Uc(t)

0

ln(tF c(x))

2
dx,

where the second equation follows by integration by parts.


