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About Adaptive Coding on Countable Alphabets

Dominique BontempsStéphane BoucherdrElisabeth Gassiat

Abstract

This paper sheds light on universal coding with respect assgs of memoryless sources over a countable alphabetdlefine
by an envelope function with finite and non-decreasing lthrate. We prove that the auto-censurimgc) code introduced by
Bontemps (2011) is adaptive with respect to the collectibsuzh classes. The analysis builds on the tight charaetesiz of
universal redundancy rate in terms of metric entropy by Kiensand Opper (1997) and on a careful analysis of the pedioce
of the Ac-coding algorithm. The latter relies on non-asymptotic sl for maxima of samples from discrete distributions with
finite and non-decreasing hazard rate.

Keywords: countable alphabets; redundancy; adaptive compressimimax;

I. INTRODUCTION
A. Universal coding over countable alphabets

This paper is concerned with problems of universal codingr @/countable alphabét (say the set of positive integels,
or the set of integer®). Sources over alphabgt are probability distributions on the sat" of infinite sequences of symbols
from X. In this paper, the symbad\ will be used to denote various collections of sources onabdpht’. The symbols emitted
by a source are denoted by a sequekcef X'-valued random variablX = (X,),y. If P is the distribution ofX, P"
denotes the distribution of the firastsymbolsX;.,, = (X1, ..., X,,), and we letA™ = {P" : P € A}. Finally, for any countable
setX, let My (') be the set of all probability distributions ovét.

The expected redundanayf any (coding) distributior@Q™ € 2t (X™) with respect toP is equal to the Kullback-Leibler

divergence (or relative entropy) betweBh and Q™: D(P",Q") = >, . v» P"{x} log Qn(’;)) = Ep» |log Qn((Xl ")) Notice
that the definition of redundancy uses basegarithms. Throughout this notéyg « denotes the base logarithm of x while
In z denotes its natural logarithm.

Universal coding attempts to develop sequences of codiolggilities(Q"),, so as to minimize expected redundancy over

a whole class of sources. Theaximal redundancgf Q™ with respect toA is defined by:

RT(Q™,A™) = sup D(P", Q™).
PeA

The infimum of RT(Q™, A™) is called theminimax redundancyvith respect toA:

+ /ANy : + n oA
R™(A"™) Q"'eg?llf(X")R (Q™,A").

A corollary of early results by Kieffer (1978), Gyorfi, Paind van der Meulen (1993; 1994) shows that finite minimax
redundancy is not a trivial property as soon as the alphabieffinite even for classes of memoryless sources.

Proposition 1:If a classA of stationary sources over a countable alphabetas finiteminimax redundancyhen there
exists a probability distributior) € 91;(X) such that for everyP € A with lim,, H(P")/n < oo where H(P") =
> ex —P(x)log P"(x) (finite Shannon entropy rate}) satisfiesD (P!, Q) < occ.
This observation contrasts with what we know about the fialfghabet setting where coding probabilities asymptdyical
achieving minimax redundancies have been described (XeBanron, 2000; Barron et al., 1998; Yang and Barron, 1998; Xi
and Barron, 1997; Clarke and Barron, 1994). Note that delieaymptotic results for coding over large finite alphalvéth
unknown size have started to appear (Szpankowski and Weiahe010).

This prompted Boucheron, Garivier, and Gassiat (2009) udysthe redundancy of specific memoryless source classes,
namely classes defined by an envelope function.

B. Envelope classes

Definition 1: Let f be a mapping fronN,. to [0, 1], with 1 < Zj>0 f(j) < oco. The envelope class\; defined by the
function f is the collection of stationary memoryless sources with fitrarginal distribution dominated by:

Aj = {]P’ . Yz eN, Pz} < f(a),
andP is stationary and memoryle%s.
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Definition 2: Let f be an envelope function. The associateslelope distributiohas lower endpoirly = max{k: > .., f(j) >
1}. The envelope distributiof is defined byF'(k) = 0 for k <y, andF'(k) =1—>_._, f(j) for k > I;. The tail functionF’
is defined byF = 1 — F. The associated probability mass function coincides wiflor u > I; and is equal taF'(I7) < f(ls)
atu = ly.
This envelope probability distribution plays a specialerah the analysis of the minimax redundanRgi(A?). Boucheron,
Garivier, and Gassiat (2009) related the summability ofe@heelope function and the minimax redundancy of the eneelop

class. They proved almost matching upper and lower boundsiaoimax redundancy for envelope classes as for example:
RT(A}) <infy,<, Ln log(1+ F(u)) + “5* logn| + 2. The minimax redundancy of classes defined by exponentiafyshing
envelopes was fully characterized by Bontemps (2011) uamggments borrowed from Haussler and Opper (1997), it avers
that the minimax redundancy is half the upper bound obtaliyechoosingu so asF'(u) ~ 1/n in the above-stated inequality.
This raises the question: Is it possible to describe themariredundancy as a simple functional of the envelope bigtan?

C. Adaptive coding

A sequencd@™),, of coding probabilities (see Cover and Thomas, 1991, forrglgeéntroduction to the notion of coding

probability) is said to besymptotically adaptivevith respect to a collectiofA,,,)..c 1 Of source classes if for ath € M:
RY(Q", A7) = sup D(P",Q") < (1 +o(1))R" (A7)
PEAR

as n tends to infinity. Effective and (almost) adaptive codinghteiques for the collection of source classes defined by
algebraically vanishing envelopes were introduced in @auon, Garivier, and Gassiat, 2009). Moreover, Bontengssgded
and analyzed thec-code (Auto-Censuring code) and proved that this code iptagaover the union of classes of sources
with exponentially decreasing envelopes. As ftecode does not benefit from side information concerning thelepe, it is
natural to ask whether it is adaptive to a larger class ofcsurThat kind of question has been addressed in data casigores
by Garivier (2006) who proved that Context-Tree-Weight{igllems, 1998; Catoni, 2004) is adaptive over Renewal sesir
while it had been designed to compress sources with bounéeabny. In a broader context, investigating the situatiohens
an appealing procedure is minimax motivates the maxisaagh pioneered in (Cohen et al., 2001; Kerkyacharian acar;
2002). This raises a second question: Is it possible to desiding probabilities that are adaptive with respect tgdafamilies
of envelope classes, and how do these coding probabiligpertti on the collection of envelope distribution functidns

D. Answers and organization of the paper

This paper aims at clarifying the difficulty of universal @og with respect to envelope classes. We provide positivce an
precise answers to the aforementioned questions for ayfashienvelope classes that lie between the exponential epeel
classes investigated in (Boucheron et al., 2009; Bonte2{ik]l) and the classes of sources with finite alphabets.

Haussler and Opper (1997) characterize the minimax redwydaf a collection of sources using the metric entropy of the
class of marginal distributions, when the class is not tegdalntuition suggests that an envelope class is not tae lathen
the envelope decreases fast enough. On the other hand,’sa dyjedview at theac-code shows that it uses mixture coding
over the observed alphabet in a sequential way. Intuitigqyssts that adaptivity depends on the fact that the obselpbdbet
does not grow too fast.

Borrowing ideas from extreme value theory, we prove thatéf ¢nvelope distribution function has finite and non deéngas
hazard rate (defined in Section II): i) an explicit formulanoects the minimax redundancy and the envelope distrifbutip
the Ac-code achieves the minimax redundancy, that issthecode is adaptive with respect to the collection of enveldpsses
with finite and non decreasing hazard rate.

The paper is organized as follows. Section Il provides mteind definitions concerning hazard rates. Section litdless
the Ac-code. The main result concerning the adaptivity of f@code over classes with envelopes with finite and non-
decreasing hazard rate is stated in Section 1V. The miniradundancy of source classes defined by envelopes with fimite a
non-decreasing hazard rate is characterized in Sectione®tid® VI is dedicated to the characterization of the redunog
of the Ac-code over source classes defined by envelopes with finitenanelecreasing hazard rate. Proofs are given in the
Appendix.

Il. HAZARD RATE AND CONTINUOUS ENVELOPE DISTRIBUTION FUNCTION

Following Anderson (1970), it proves convenient to defineoatimuous distribution functiort,. starting from the envelope
distribution functionF'. The distribution function is characterized by its hazarddtion h.: [I; — 1,00) — Ry, defined by
he(n) = —InF(n) for n € N, andh.(t) = he([t]) + (t — [t])(he([t] + 1) — he([t])) for t > 0. The tail function ofF, is

F.(t) = exp(—h.(t)) for t > 0. For all integerss, F.(n) = F(n). The hazard raté’, is piecewise constant, it equals

he([t] +1) = he([t]) (F([t)/F([t] +1))
(L+ F([t] +1)/F(|t] + 1)) .

—_

n
n



The essential infimum of the hazard ratebis= —In F(I;) > 0. Notice that the hazard rate is finite ¢fy — 1, 00) if and
only if f has infinite support. Henceforth, given an envelope funcfioF, F.., F, F. will be defined accordingly. We will also
consistently definé/,U.: ]1,00) — R by

U(t)=inf{z: F(z) >1—1/t} =inf{z: 1/F(z) >t}

andU,(t) = inf{x: 1/F.(x) > t}. The last two functions prove illuminating in extreme valheory. If the hazard rate is
finite, thenU(n) — oo andU.(n) — oo asn tends to infinity. Note that ifF’ is the envelope distribution defined b
then F.(t) = 0 for ¢ < Iy — 1. Recall that ifX is distributed according td, then | X | + 1 is distributed according td" or
equivalently that/ (t) = |U.(t)| + 1 for ¢t > 1.

The envelopes introduced in the next definition provide elamwhere the associated continuous distribution fundtias
non-decreasing hazard rate. Poisson distributions offeeraxamples.

Definition 3: The sub-exponential envelope classth parametersy > 1 (shape),3 > 0 (scale) andy > 1 is the set

A(a, ,7) of probability mass functiongp(k)),>1 on the positive integers such that

k\&
Vk > 1, p(k) < f(k), wheref(k)= 76‘(6) '
Exponentially vanishing envelopes (Boucheron et al., 2Bihtemps, 2011) are obtained by fixing= 1.

Ill. THE AC-CODE

The Ac-code encodes a sequengg, = 1, .. .,x, 0f symbols fromN, = N\ {0} in the following way. Fori: 1 <1i < n,
let m; = maxi<j<; ;. Thei" symbol is arecordif m; # m;_;. Let n? be the number of records up to indexThe ;" record
is denoted bym;. From the definitionsin,,o = m, for all i. Let m, = 0 and letm be the sequence of differences between
records terminated by & m = (m; — i1 + 1)1<i<no 1 (the lastl in the sequence serves as a terminating symbol). The
symbols inm are encoded using Elias penultimate code (Elias, 19755 3dguence of codewords forrg;. The sequence
of censored symbols; .,, is defined byz; = z;1;,<.,, ,. The binary stringC), is obtained by arithmetic encoding of.,,0.
The coding probability used to (arithmetically) encage,0 is

n—1
Q" (@1:n0) = Qui1 (0 | 21:n) [ [ Qisa (@i | 214) -

=0

with P
~ ) n; + 35
Qi+1 (Xi+1 =7 | X1 = xm‘) = ﬁ

Wheren{ is the number of occurrences of symboamongst the first symbols (inz1.;). We agree omé =0 forall j > 0.
If i < n, the event{X;;1 = 0} = {X;+1 = M;41 > M,;} has conditional probability;)iH(XiH =0] Xy, = a:ln-) =
ﬁ Note that0 is always encoded as a new symbolxzif.; = j > m;, the Ac-code encodes &, but n] rather
thann? is incremented. In words, the mixture code consists of @sgjvely enlarging the alphabet and feeding an arithmetic
coder with Krichevsky-Trofimov mixtures over the smallekth@bet seen so far (Cesa-Bianchi and Lugosi, 2006). Bgrgem
(2011) describes a nice way of interleaving the Elias codds/and the mixture code in order to perform online encodimgy a
decoding.

IV. MAIN RESULT

The main result may be phrased as follows.

Theorem 1:The Ac-code is adaptive with respect to source classes defined \Blogres with finite and non-decreasing
hazard rate.

Let Q™ be the coding probability associated with the-code, then iff is an envelope with non-decreasing hazard rate,

REQ" A7) < (1+0(1))(l0g e) /1 U;—f)dx

hil
while U.()

x

RT(A}) = (1+0(1))(log e)/ dz
1
asn tends to infinity.
The following corollary provides the bridge with Bontemgpstork.
Corollary 1: The Ac-code is adaptive with respect to sub-exponential envetbgEsesU,>1,8>0,,>1A(c, 5,7). Let Q"
be the coding probability associated with the-code, then

RT(Q™ A, 8,7)) < (1+0(1))RT (A" (e, B,7))



asn tends to infinity.

Bontemps (2011) showed that the-code is adaptive over exponentially decreasing envelapasis overtsso >1A(1, 8, 7).
Theorem 1 shows that thec-code is adaptive to both the scale and the shape parameter.

The next equation helps in understanding the relation betviiee redundancy of thec-code and the metric entropy:

t Uc(t Tl
/ Uelw) | _ / ® In(tFo(x)) , o
1 2z 0 2

The elementary proof is given at the end of the appendix. &ftehand-side of the equation appears (almost) natunalthé
derivation of the redundancy of thec-code. The right-hand-side or rather an equivalent of ipe@ps during the computation
of the minimax redundancy of the envelope classes conslderthis paper.

The proof of Theorem 1 is organized in two parts : Proposiiofiom Section V describes the minimax redundancy of
source classes defined by envelopes with finite and non-algogehazard rate.

The redundancy of thec-coding probability@™ with respect toP” € A™(f) is analyzed in Section VI. The pointwise
redundancy is upper bounded in the following way:

—log Q" (X1.) + logP"(X74.p,)
<U(Cg)+L(Cr) 4 logP™(X1.0) -
——
| I

Proposition 9 asserts that) (is negligible with respect t(R*(A;}) and Proposition 10 asserts that the expected value pf (
is equivalent toR* (A’}).

V. MINIMAX REDUNDANCIES

The minimax redundancy of source classes defined by enwefowith finite and non-decreasing hazard rate is characterized
using Theorem 5 from (Haussler and Opper, 1997). This tmeoetates the miximax redundancy to the metric entropy of the
class of marginal distributions with respect to Hellingéstance. Recall that the Hellinger distance between twdalndity
distributions P, and P, on N, defined by the corresponding probability mass functiopngand ps is

(-]

keN

If probability distributions ovelN are parametrized by the square root of their probabilitysriaaction, the Hellinger metric
is just thel, distance between parameters. For a source dlakst H.(A) be thee-entropy of A! with respect to the Hellinger
metric. That is,H.(A) = InD.(A) whereD.(A) is the cardinality of the smallest finite partition &f into sets of diameter
at moste when such a finite partition exists.

We also need to introduce further notation.

Definition 4: A continuous, non decreasing functién (0, c0) — [0, c0) is said to bevery slowly varyingat infinity if for
allp>0andk >0,

i PETREDY _y png gy M@
T —r—+00 h(x) r—+00 h((E)

Recall that a measurable functién (0, co) — [0, c0) is said to beslowly varyingat infinity if for all x > 0, lim, 4 h}f(";)) =
1. (See Bingham et al., 1989).

Theorem 2:(Haussler and Opper, 1997, Theorem 5) Assume there exissyaslowly varying functionh such that:

He(A) = h(%) (1+o0(1)) ase tends to0.

Then
RT(A™) = (loge)h(y/n) (1 +0(1)) asn tends to+oo.

This theorem tightly characterizes the asymptotic redooglaf small source classes. We shall see that source cldsBesd by
envelopes with finite and non-decreasing hazard rate ark. $Motice that the definition of redundancy uses badegarithms
while e-entropy is usually defined using natural logarithms.

Let us now state some analytic properties that will provefulsghen checking that source classes defined by envelopes
with finite and non-decreasing hazard rate are indeed small.

Proposition 2: Let f be an envelope function with finite and non-decreasing lazate. Then
(i) U. is slowly varying at infinity,
(i) U.oexp is a concave function, ,
(i) The functionh: [1,00) — R, h(t) = jf U;S”)dx is very slowly varying.




) U.(0) nU,(1)

t—+o00 ftU ©) oy =0

Proof: (i) The inverse of the hazard rate. is a positive non increasing function, thus its derivatioaerges to) at
infinity, and (i) follows from Theorem 1.2.6 in de Haan and étex (2006).
(ii) The derivative ofU., o exp is equal toF .(U.(exp(t)))/f.(U.(exp(t))) which is non-increasing as the hazard rate is non-
decreasing.
To prove (iii), notice first that since the hazard rate is @nlt. tends to infinity at infinity.U. is non decreasing, so that for
large enough,

3Int < h(t) < Uy (t?) Int. )
Thus, it is enough to prove that for ajl> 0 andx > 0,
h(kz(h(2))") _
z—to00 h(z)
Let g: R, — R, be defined byy(t) = In(h(exp(t)) (f U.(exp(2z) )d:c) It is enough to check that

Hm g(t+ng(t) +2) — g(t) =0
for z € R,n > 0. But,
gt +ng(t) +z) — g(t)
—In <1 + :Wft)ﬂ Uelexpl2)) dx) .
Jo Ue(exp(2z))da
For large enough, ng(t) + z > 0, and by concavity olJ. o exp,

t+ng(t)
/t Ue(exp(22))de
< (2 +ng(t))Ue (exp (2t +ng(t) + 2))
< (z +ng(t))Ue (exp(2t))

F. (U (exp(21) )
. (O (exp(an)) T 19O)

+

Letting b be the infimum of the hazard rate,

gt +ng(t) +2) —g(t)

1 (2 +ng(t))*
< (z+ g (t) + - —T 2
(z+ng(t))g'(t) + 7 p(()

The second summand tends (oas ¢ tends to infinity. SincegN(t) tends to infinity at infinity, there remains to prove that
g(t)g'(t) tends to0 at infinity, that is to establish thdf,.(u?)In h(u)/e"™ tends to0 at infinity. But asU,(x)/x is regularly
varying with index—1, ¢t — fg (x)/xdx is slowly varying (regularly varying with indef}) (See de Haan and Fereira, 2006,

Proposition B.1.9, Point 4) and sofis— h fO x)/xdz, this follows from Karamata integral representation Tleeor
(de Haan and Fereira, 2006, Theorem B 1 6). So that using (2)

U (u2) In h(u) _ Uew?) In h(u) In(u)
eh(u) - w2 In(u) w
now, by (de Haan and Fereira, 2006, Proposition B.1.9, Phinthe first two factors tend t0 asu tends to infinity, and (iii)

follows.
To prove (iv), note that

/j Uel®) 4 = /OlntUc(exp(s))ds

In(t)
> —=Ue(t)

by concavity ofU.. o exp.



Plugging this upper bound leads to:
Uc(t) In(Uc(t)) - 2Uc(t) In(U.(t)) _ 2ln(Uc(t))
flf Ue@) g = Ue(t)In(t) In(t)

x

which tend to0 ast tends to infinity (Again by de Haan and Fereira, 2006, PrdjmrsB.1.9, Point 1). [ |
Proposition 3: (Entropy of envelope classes with finite and non-decredsargrd rate.) Lef be an envelope function with
finite and non-decreasing hazard rate, then

1/62
M (Ap) = (1+ 0(1))/ Uel@) 4,
0 2z
ase tends to0.
The proof follows the approach of (Bontemps, 2011). It igestan the appendix.
The characterization oR*(A"%) follows from a direct application of Theorem 2 and Propasit? (iii):
Proposition 4: (Minimax redundancy of envelope classes with finite and deoreasing hazard rate.) Lgtbe an envelope

function with finite and non-decreasing hazard rate, then

R*(A?) = (1+o(1))(loge) /1n Uc_(:c)

T

dx

asn tends to+oc.
A concrete corollary follows easily.
Proposition 5: The minimax redundancy of the sub-exponential envelopgsahdth parametergy, 3, ) satisfies

R (A" (0, 3,7))
= 5y @) (logm) 17 (1 0(1)
asn tends to+oo.

Proof: Indeed, if f is a sub-exponential envelope function with parameters3, ) one has, for > 1,
B (In (v))/* =1 < Ue(t) < B (In (wyt)) /" — 1 3

wherex = 1/(1 — exp(—a/8%)).
The lower bound follows fron' (k) < f(k+1) = vexp(—((k+1)/6)*) which entailsF (k) < 1/t = k+1 > B(In(yt))"/*.

The upper bound follows from
P < Y vewn (~(452)" — jater™)
k

1) _fkt1)
+ 1)a—l/ﬁo¢) - K ’
for o > 1. [ |

VI. REDUNDANCY OF AC-CODE

The length of theac-encoding ofz;.,,, is the sum of the length of the Elias encodifig of the sequence of differences
between recordsn and of the length of the mixture encodirigy, of the censored sequenag.,0. In order to establish
Theorem 1, we first establish an upper bound on the averagéhleh Cr (Proposition 9).

A. Maximal inequalities

Bounds on the codeword length of Elias encoding and on thenaahcy of the mixture code essentially rely on bounds on
the expectation of the largest symhohx(X, ..., X,,) collected in the next propositions. In the sequé), denotes the)"
harmonic number

"1
1 <H,= - <1 1.
n(n) < Hy=3 5 <hnim) +
Proposition 6: Let Y1, ...,Y, be independently identically distributed according to &sautely continuous distribution
function F' with density f = F’ and non-decreasing hazard rgteF'. Let b be the infimum of the hazard rate. LEt(t) =
inf{z: F(z) >1—-1/t} andY;; <...<Y,, be the order statistics. Then,

E[Ynn] < U(eXp(Hn))
E[Y;2,] < E[Y,.)* +2/b°

n,n

E[Yo.nn(Ynn)] < (BY,.,) In(EY, ) +2/b% if Y; > 1 as.

)



Note that if the hazard rate is strictly increasing,,, — U(n) satisfies a law of large numbers (See Anderson, 1970).

The proof of proposition 6 relies on a quantile coupling angat and on a sequence of computational steps inspired by
extreme value theory (de Haan and Fereira, 2006) and caatientof measure theory (Ledoux, 2001). The proof alsogake
advantage of the Rényi representation of order statisiies fle Haan and Fereira, 2006, Chapter 2). The next theoptmases
this classical result.

Theorem 3:(RENYI’S REPRESENTATION Let (X7 ,, ..., X, ,) denote the order statistics of an independent sample picked
according to a distribution functio#’. Then (X ..., X, ,,) is distributed as(U(exp(F1,)),.-.,U(exp(Enn))) Where
U: (1,00) — R is defined byU(t) = inf{x: F(z) > 1—1/t} and (E1 ,,..., FE, ) are the order statistics of anrsample
of the exponential distribution with scale parameterAgreeing onEy,, = 0, (E;, — Ei—1,,)1<i<n are independent and
exponentially distributed with scale parametg(n + 1 — ).

We will also use the following general relations on momerftsnaxima of independent random variables.

Proposition 7: Let (Y1 ,,,...,Y, ) denote the order statistics of an independent sample piakedrding to a common
probability distribution, then

E[Y;?,] < (EYy0)® +E [(Yam — Ya-10)?]

and if the random variable§’;);<,, are non-negative,

Yn n - Ynf n 2
E[Y,,InY, ] <EY,,(EY,,)+E (i = Yoo1n)”

Yn—l,n
In the proof of this propositiorE(") denotes conditional expectation with respec¥1o. .., Y;_1,Yi,1,...,Y, and for each
Z; denotes the maximum dfy,...,Y;—1,Yiy1,...,Y,, thatisY, ,, if ¥; <Y, , andY,,_,, otherwise. Order statistics are

functions of independent random variables. The next theptlke proof of which can be found in (Ledoux, 2001) has proved
to be a powerful tool when investigating the fluctuationsrafépendent random variables (See for example Efron and, Stei
1981; Massart, 2007) .

Theorem 4:(SUB-ADDITIVITY OF VARIANCE AND ENTROPY.) Let X4,..., X,, be independent random variables and let
Z = f(X) be a square-integrable function &f = (X;,...,X,,). For eachl < i < n, let Z; be a square-integrable function
of X(l) = (Xl, R ,Xl',l, Xi+17Xn) . Then

Var (Z) < Zn:E [(z - E(i)Z)Q]

n

and if Z and all Z;,1 < i < n, are positive,
E[ZIn(Z)] —EZIn(EZ)

< zn: E []E@ (ZIn(Z)] —~EDZ 1n(1E<i>Z)}

<Sa[rn(Z) -],

Proof of Proposition 7:As E[Y,?, ] = Var(Y;, )+ (EY, )?, itis enough to boun&ar(Y,, ,,). As Z = Y, ,, is a function
of n independent random variablés, ..., Y,,, choosing theZ; as max(X(i)), Z; = Z except possibly whelX; = Z, and
thenZ; =Y,,_1 . The sub-additivity property of the variance imply that

Var(Yyn) <E[(Yan — Ya10)?] -
Using the sub-additivity of entropy with the convention abd;,
E[Y,,InY, ] — EY, , n(EY, )
Fon iy, yn_ljn)]

n—1n

Yn n - Yn— n
<E|Ypnln (1 + Yil) — (Yo — Yn_l,n)}
n—1n

- o 2
<FE (Yn,n nfl.,n) :|
- L Yn—l,n
asln(l +u) <wu foru > —1. [

<E|Y,.In




Proof of Proposition 6: Thanks to Rényi’s representation of order statisti€g;, ,,| = E[U(exp(Ey »))], the proof of
the first statement follows from the concavity iof> U (exp(t)), that is from Proposition 2 ii).
By the Efron-Stein inequality (See Proposition 7),

Var(ymn) < E [(Yn,n - Yn—l,n)z} .

Thanks again to Rényi's representatiaf,,, — Y,,—1 ,, is distributed likeU (exp(E,,.,)) — U(exp(En—1,,)). Thanks to the
concavity ofU o exp, this difference is upper-bounded by
U(eXP(En,n)) - U(eXP(Enflyn))

F(U(exp(En_1.))) B
o f(U(exp(En_lm))) (En,n Enfl,n) )

The two factors are independent. Whité(E,, ,, — E,,—1.,)?] = 2,

F(U(exp(En—1,n))) <
f(U(exP(Enfl,n))) -

By Proposition 7,

E[Y,n In(Ysn)]

Yo — Yn-1n)?
< (EYnn) IH(EYnn)) + E M

Yn—l,n
2
< (EY,,n) In(EY,, ) + R
]
When handling subexponential envelopes classes, PrapoSitprovides a handy way to upper bound the various seisti
that are used to characterize the redundancy ofatheode. If the source belongs th(«, 5,7v), let Yi,...,Y,, be iden-

tically independently distributed according to the prabgbdistribution with tail function F(u) = 1 A > ksu f(E) where
f(u) = vexp(—(u/B)*). The quantile coupling argument ensures that there existslzapility space with random variables
(X1,..., X)) distributed like(X1, ..., X,) and random variableg?,...,Y;) distributed like(Y7,...,Y,) and X! <Y/ for
all i < n almost surely.

Let Y;) < ... <Y, denote the order statistics of;,...,Y,, then for any non-decreasing functign E[g(M,,)] <
E[g(Y(n))]. Using (3) one gets the following.

Proposition 8: Let X1, ..., X,, be independently identically distributed accordindt@& A'(«, 3,7), let M,, = max(X, ..., X,),
then,

EM, < B (In (li'yen))l/a .
E[M, log M,] < /3 (In (kyen))**
X <lnﬁ + éln(ln(fﬂ(m))) + 2k2
E[M2] < B2 (In (kyen))® + 212,

It provides a simple refinement of Lemma 4 from (Bontemps,1201

B. Elias encoding

The average length of the Elias encoding for sources fronassallefined by an envelope with non-decreasing hazard rate
is O(U.(n)). It does not grow as fast as the minimax redundancy and as feutzexponential envelope classes are concerned,
it contributes in a negligible way to the total redundancy.

Proposition 9: Let f be an envelope function with associated non-decreasiraythaate. Then, for alP € A, the expected
length of the Elias encoding of the sequence of record inergsnamongst the first symbols is upper-bounded by

E[((Cg)] < (2log(e) + p)(Uc(exp(Hy)) +1) .

wherep is a universal constant (which may be chosem as2).
In general if X4, ..., X,, are independently identically distributed, the followihglds

E[{(CE)] < 2H,(log(2E[M,, + 1]) + p) .

For classes defined by power law envelopks, grows like a power ofn, the last upper bound shows that the length of
the Elias encoding of records remains polylogarithmic wékpect ton while the minimax redundancy grows like a power



of n (Boucheron et al., 2009). However the-code is not likely to achieve the minimax redundancy ovassés defined by
power-law envelopes.

The last statement stems from the fact that the Elias cogtiaa less than a concave function of the encoded value. The

average Elias codelength of record differences should edatger than the Elias codelength of the average recordrdifte
which is the maximum divided by the number of records.

Proof of Proposition 9: The length of the Elias codewords used to encode the seqoéneeord differencesn is readily
upper-bounded:

n()

UCE) < i(Q log (1 +m; — mi—1) + p)
i=1

< " 2log(e) (i — fi—1) + pnf

< 2log(e)M,, + pn?
< (2log(e) + p)Mn
for some universal constapt The bound on the length of the Elias encoding follows frorap®sition 8.
If we were only interested in subexponential envelope elsthis would be enough. The next lines may be used to edtabli
that the length of the Elias encoding remains negligiblég)mtspect to minimax redundancy for larger envelope souesses.
Using the arithmetic-geometric mean inequality (", (M —m,—1) < M, we also have

77,0

L(Cg) < ZZlog (1+m; —mi_1) +np
1=1
< 2n) log(1 + M, /ny) +npp.
The average length af'g satisfies:

E[¢(Cr)]

< E [ny(2log(1 + My /ny) + p)]

< 2 (E [n) log(2M,,)] — En (logEn) — p))
by concavity ofz — —zlogx

<2 ((zn: %)Elog@(Mn + 1)) — En® (log En® — P))

7=

< 2In(en)(log(2E[M,, + 1]) + p) .

The penultimate inequality comes from the following obs#ion. Any integer valued random variable can be repredease
the integer part of a real valued random variable with alisbiucontinuous distribution. For examplé,, ..., X,, may be
represented agY|,...,[Y,| whereYy,... Y, are ii.d. and supported by, cy, [n,n + 1/2]. Any record inXy,..., X,
comes from a record iivy, ..., Y, (but the converse may not be true). LettiRg denote the number of records¥a, ... ,Y,,
we haven! log(M,,) < R, log(max(Yy,...,Y,)). MoreoverR,, andmax(Y1,...,Y,,) are independent, ani,, is a sum of
independent Bernoulli random variables with parametetg2,...,1/n. This entails

E[R, log(max(Y1,...,Y,))]
= ER,E[log(max(Y1,...,Y,))]

1
< Z ; 1og(2E max(Yl, cee aYn))

C. Adaptive mixture coding

The next proposition compares the length of the mixture @imgpC),; with the ideal codeword length of ..
Proposition 10:Let f: N. — [0,1] be an envelope with finite and non-decreasing hazard rate.ekpected difference
between the mixture encoding of the censored sequéngeand its ideal codeword length is upper-bounded by

B [6Can) +1og ()] < togte) [ 28 ar (14001
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asn tends to infinity.

The proof of Proposition 10 is organized in two steps. The §itsp consists in establishing a pointwise upper bound en th
difference between the ideal codeword length and codewergth of theac-code (Proposition 11 below). This upper-bound
consists of three summands. The expected value of the thremands is then upper-bounded under the assumption that the
source belongs to an envelope class with non-decreasiragcheate.

Proposition 11: (POINTWISE BOUND) Let iy be the random integer defined by:= 1V | M, /4], then,

—InQ™"(X1.) + InP*(X1.,)

- My (In(M,) +10) . Inn

- 2 2
(a.1)

n—1 MZ
+i_z;0<2z'+1)

(A1)

Proof: Let Cj; be the mixture encoding oﬁlm, then ¢(Cy) = —1ogQ"()?1m). The pointwise redundancy can be
decomposed into

—InQ"(X1.) + InP™(X1.)
= —InKTa, 11(X1n) + InP*(X1.0)
(A)
—InQ™(X1m) + InKTas, +1(X1i)
()

whereKkT yy, +1 is the Krichevsky-Trofimov mixture coding probability oven alphabet of cardinality/,, + 1. Summand 4)
may be upper bounded thanks to the next bound the proof ofwddn be found in (Boucheron, Garivier, and Gassiat, 2009),

(A) = —In(KTar, +1(X1:n)) + In(P"(X1.0))
Mot 1y o ain).

<

The second summand (B) is negative, this is the codelengtta¢hcode pockets by progressively enlarging the alphabet
rather than usind0, ..., M, } as the alphabet. Bontemps (2011, in the proof of Propos#tjopoints out a simple and useful
connexion between the coding lengths un@&rand KT, +1:

(B) =—In Qn(iln) +In KTMn,+1(X1:")

”il 2+ 1+ M,
= — n _—— .
T\ 2+ 1+ M;



The difference between the codelengths can be further Upperded.
(2414 M,
- Z I (2L My
; 2i+ 1+ M;
= - Zln 1 Mo = M
N 2i+1+ M;
a Z (22 +1+ M, )
n— 2
T3 Z <22 + 1+ M; )

asln(l —|—:c) > x—:z:2/2 forz >0

n—1 _Mn
:Z 2i+1+Mi)

l:io

(8.1)

5 (et
2_:<2z+1+M)2'

(.111)
The upper bound ona() can be used to build an upper bound @)«(B.1).

(A) + (B.1)

<M ln(n)_ni1 1 +1n_n
T\ 2 & 2+l M 2

=10

n—1 1 1
:Mn e —
(£ (- rt)
=10
In(n) =1 Inn
T _Zzz T
=10
i M;+1 +Hi0+1 +1nn
(20 + 1+ M;)(20) 2 2n 2
n—1

i M+1 Mn(ln(Mn)+2)+1n_n
(2 +1)( 2 2

| /\
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Adding (B.111) to the first summand in the last expression,

n—1

Z +(B 1)
n—1 1
(2i +1 M”; (26 + 1)(24)

Z

n—- M2—|—M2
Z (2i+1)2
Z

>0

1 L M,
2i2ir 12 @ir02) T 2

210)

< 4M,
[ ]
Proof of Proposition 10: The average redundancy of the mixture code is thus upperdeauby
M,(In(M,)+10) Inn — M,
o Lo 10 b ][5 (M |
(A1)
(Aa.n)
We may now use the maximal inequalities from Proposition 6.
n—1
M; c(exp(H;)) +1
<
p Z 2 + 1
(ei) +1
<
Z 2i+1
" Ug(ex) Uc(e)  1In(n)
< = —
< /1 . dx + 3 + 9
Meanwhile, lettingb be the infimum of the hazard rate of the envelope,
M, (In(M,) +10) Inn
E -
3+ 5]
< (Ue(en) +1)(In(U.(en) + 1) + 10) n 2 N Inn
2 b2 2
Now using Proposition 2 (i) and (iv) and the fact that tends to infinity at infinity one gets that
Inn+U.(n)InU.(n) =0 (/ de)
1 2:17
asn tends to infinity and the result follows.
[ ]
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APPENDIX
A. Proof of Proposition 3

In order to alleviate notatiof. is used as a shorthand f’é{rg(A}). Upper and lower bounds fdi. follow by adapting the
“flat concentration argument” in Bontemps (2011). The aaadiiy D. of the smallest partition oj\}c into subsets of diameter
less thare is not larger than the smallest cardinality of a covering WslliHger balls of radius smaller thasy2. Recall that
A} endowed with the Hellinger distance may be considered asbsaesmé?*:

C= {(Ii)i>0: sz = 1}

>0
ﬂ{(wi)i>02 Vi>0,0<a; < \/m}

Let N, = U(i—?) (V. is the 1 — ¢2/16 quantile of the envelop distribution). Lé® be the projection of” on the subspace
generated by the firsy. vectors of the canonical basis. Any elementdfs at distance at most/4 of D. Any e/4-cover for
D is ane/2-cover forC. Now D is included in the intersection of the unit ball of.-dimensional Euclidian space and of
an hyper—rectanglﬂf.\[:‘1 [0,+/f(k)]. An €/4-cover for D can be extracted from any maximagl4-packing of points fromD.
From such a maximal packing, a collection of pairwise dijdialls of radius:/8 can be extracted that fits intg/8-blowup
of D. Let B,, be them-dimensional Euclidean unit ball (MaB,,,) = T'(1/2)"™/T'(m + 1/2) with T'(1/2) = /7). By volume
comparison,

D, x (¢/8)V Vol (By,) < [ (\/f(k) + 6/4) ,
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or

Ne
HeSE:m(vf@y+qQ-anmBM)+Ngn§
et

Leti=U(1) (I =1l;+1). Fork >, f(k) = F(k—1)(1— F(k)/F(k—1)). As the hazard rate of the envelope distribution is
assumed to be non-decreasing, denotlng the essential infofithe hazard rate by, F'(k —1)(1 —e™?) < f(k) < F(k—1).

Hence, forl < k < N, +/f(k) > ¢/4V/1 —e~t. Thus
ls N.
Ho<> I (\/f(k) + 6/4) + Zln(\/f(k))
k=1

N, — lf
— +N ln
vV1—e~
1 64F (k — 1
< Z iln <%> —In\Vol(Buy,)
k=l
(4)

s
Ne =1y 8
"rﬁ—l—lflnz-f—gln (\/f(k)+6/4).

Following Bontemps (2011), a lower bound is derived by aaptolume comparison argument. From any partition into
sets of diameter smaller thanone can extract a covering by balls of radiusThen for any positive integer,

lf-l—m /
D, >

- 6’”V0|( )

—InVol(By,) +

Hence, choosingn = N, — I

I \%

TTMZ TTMZ

Y

1
\/ — In Vol BN 7lf)+(N5—lf)ln—
€
L F(k
2

1 —C )> —InVol(By, 1) (5)

Now,

InVol(By, ) = [N 1n N.J (1 + o(1))

(e (]

ase tends to0. Since N. — oo, we have alsdn Vol(By, —i,) = [NeIn N| (1 4+ 0(1)), ase tends to0.
Now, the termzk <1 5 In ( (’: 1)) n (4) and (5) is treated by (1). The desired result followsrfrine fact that/. and hence
U.In(U.) are slowly varying (Proposition 2 (i)) and from Propositi2r(iv).

B. Proof of equation (1)
Making the change of variablg = U.(z) (z = 1/F.(y), dz = S )

(Fe(y))
t U.(t)
. / ulely >dy
1 2z lp—1 QF(
F Ue(t) Ue( f>1 (Fe(y
lf 1

1

ly—
Ue®) In(F.(y
+/ n( d
0

/ <O In(tF.(x))
——dx
0 2 ’

where the second equation follows by integration by parts.




