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SIMULATION OF VESICLE USING LEVEL SET METHOD SOLVED BY HIGH

ORDER FINITE ELEMENT

Vincent Doyeux1, Vincent Chabannes2, Christophe Prud’homme2 and Mourad
Ismail1

Abstract. We present a numerical method to simulate vesicles in fluid flows. This method consists of
writing all the properties of the membrane as interfacial forces between two fluids. The main advantage
of this approach is that the vesicle and the fluid models may be decoupled easily. A level set method has
been implemented to track the interface. Finite element discretization has been used with arbitrarily
high order polynomial approximation. Several polynomial orders have been tested in order to get a
better accuracy. A validation on equilibrium shapes and “tank treading” motion of vesicle have been
presented.

1. Introduction

Simulations of individual biological objects have been of major interest for several years now. Indeed, many
biological fluids follow complex laws due to the behaviors of their individual components. The understanding of
those microscopic behaviors can lead to a better knowledge of the macroscopic behavior of complex biological
fluids. Blood is a good example of such a fluid, red blood cells (RBC) are biological objects with complex
individual behaviors which lead to a complex macroscopic rheology of the blood.

Vesicles are two-layer phospholipidic membrane [1] having the property to mimic some mecanical behaviors
of RBC under flow. They are often used as a simple model for RBC and thus, these objects are studies
experimentally [2, 3], theoretically [4] and numerically [5, 6].

The numerical simulation of vesicles consists of a two-fluid flow simulation (for the inner and outer fluids)
and a fluid-structure interaction (for the membrane-fluids interaction). For these reasons, several methods have
been developped such as lattice Boltzmann methods [7], integral boundary method [8], phase field method [9],
level set method [6, 10, 11] and a numerical method based on a contact algorithm to simulate RBC clusters in
bifurcations [12]. These methods have their own advantages and drawbacks. Many numerical and mathematical
investigations have to be done to explore the large field of vesicle simulation, improving the existing methods
and finding new ones. The following paper takes place in this context. We propose to implement a method close
to the one of [6] using finite element methods (FEM). The main advantage of coupling the level set method
and the FEM is that it allows for more flexibility, simplicity and accuracy in the handling of the geometry
of the computational domains. Even though it is common to use the lowest order continuous finite element
approximation for this type of coupling, we have used various higher order approximations and found a good
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compromise between accuracy and computational cost. Although the FEM has many advantages, several issues
remains to be solved, namely (i) high order derivative (up to fourth order) of the level set function, (ii) storing
the stretching information of the interface. We propose solutions that indeed overcome those issues and validate
our model on existing results and known behaviors of vesicles under flow.

2. Two-fluid flow

Simulation of vesicles always requires to be able to solve a two-fluid flow. Moreover, since the interface
between the two fluids is a complex object (membrane), a special care must be taken to track it accurately. To
reach this goal, level set methods have been studied for several years and it has been proved to give good results
for tracking interfaces, especially in two-fluid or two-phase flows [13, 14]. In this section, we first introduce the
necessary standard vocabulary regarding levelset methods and then we describe the fluid model which we used.

2.1. Level set generalities

Figure 1. Sign of φ according to the position of the interface

Let’s define a bounded domain Ω ⊂ Rp (p = 2, 3) decomposed into two sub-domains Ω1 and Ω2. We denote
Γ the interface between the two partitions. The level set method, as described in [13–15], defines a continuous
scalar function φ (the level set function) in Ω.

• The sub-domains Ω1 and Ω2 and the interface Γ are defined thanks to the level set function (see figure
1) :

Ω1 = {x|φ(x) > 0},
Ω2 = {x|φ(x) < 0},
Γ = {x|φ(x) = 0}.

• The evolution of the level set is governed by the following advection equation :

∂φ

∂t
+ u · ∇φ = 0, (1)

where u stands for a given divergence-free velocity field (the fluid velocity in our case).
• Usually, φ is taken as a signed distance function. So that |∇φ| = 1.
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It’s known that the advection equation (1) does not conserve the property |∇φ| = 1. To overcome this
problem, we use a fast marching method (FMM) when |∇φ| goes far from 1. More precisely, FMM resets φ
as a distance function without moving the interface (see [16] more details). We now introduce the definition of
the smoothed delta and Heaviside functions that allow easy computations on the interface Γ without having to
explicitely compute the interface

Hε(φ) =


0, φ ≤ −ε,

1

2

(
1 +

φ

ε
+

sin(πφε )

π

)
, −ε ≤ φ ≤ ε,

1, φ ≥ ε,

δε(φ) =


0, φ ≤ −ε,

1

2ε

(
1 + cos(

πφ

ε
)

)
, −ε ≤ φ ≤ ε,

0, φ ≥ ε,
where ε is a parameter defining a “numerical thickness” of the interface (a typical value of ε is 1.5 times the
mesh size).

Using these two functions allows then to define (e.g. physical) properties having different values in Ω1 and
Ω2. For example we define the viscosities and densities of the inner and outer fluid as follows:

ρφ = ρ2 − (ρ2 − ρ1)Hε

µφ = µ2 − (µ2 − µ1)Hε.

As to the integrals over Γ, they are approximated by integrals over the whole domain Ω as follows:∫
Γ

1 '
∫

Ω

δε

2.2. Navier Stokes equations

We consider that both the internal and the external fluids are governed by incompressible Navier Stokes
equations :

ρφ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (µφD(u)) +∇p = F in Ω, (2)

∇ · u = 0 in Ω, (3)

u = g on ∂Ω (4)

where u is the velocity of the fluid, p its pressure, D(u) = ∇u + (∇u)T , and F some external force and g a
given function related to the boundary conditions.

A validation of our two-fluid model based on Navier-Stokes equations and the level set advection has been
presented in [17] on a bubble simulation benchmark. In this work we also consider the Stokes equations. Indeed,
many blood flow applications are in a very low Reynolds number regime. Thus, we use a stationary Stokes
model for the fluids

−∇ · (µφD(u)) +∇p = F in Ω, (5)

∇ · u = 0 in Ω, (6)

u = g on ∂Ω (7)
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3. Vesicles Model

A vesicle is a system of two fluids separated by a membrane. It has been studied by many previous numerical
studies, see section 1. In this work, we consider a model of membrane with a zero thickness and has three main
properties :

• Constant Volume : as both fluids (inside and outside the vesicle) are incompressibles and as the
membrane is not porous, it results that the total volume (surface in 2D) of the vesicle is constant in
time

• Bending Energy : it costs some energy to bend the membrane. This energy has to be taken into
account in the model.

• Local Inextensibility : the membrane has to keep the same area (perimeter in 2D) during the
simulation time.

We choose to use the model introduced in [6, 18] in which the bending energy and the local inextensibility
are represented by interfacial forces: the membrane is represented by a force distribution along the interface
between inner and outer fluids. In the following section, we briefly describe some details of this model.

3.1. Bending Force

The bending energy has been introduced by Helfrich in [19] as :

Ec =

∫
Γ

kB
2
κ2, (8)

where kB is the bending modulus of the membrane and κ is the local curvature of the interface. By differentiating
the expression (8), Maitre et al [6, 18] found the resulting local force. It reads

Fc =

∫
Γ

kB∇ ·
[
−κ2

2
n +

1

|∇φ|
(I− n⊗ n)∇{|∇φ|κ}

]
, (9)

where I stands for the identity tensor and n stands for the normal unit vector to the interface Γ, i.e. ∇φ
|∇φ| . This

expression can be then rewritten in the level set formulation by replacing the normal vector by its expression
(as a function of φ) and the integral over Γ by an integral in Ω. Thus, we obtain :

Fc =

∫
Ω

kB∇ ·
[
−κ2

2

∇φ
|∇φ|

+
1

|∇φ|

(
I− ∇φ⊗∇φ

|∇φ|2

)
∇{|∇φ|κ}

]
δε(φ). (10)

3.2. Inextensibility Force

In many models, the local area of the vesicle is conserved by adding a Lagrange multiplier which ensures
the membrane inextensibility as in [5, 17, 20, 21]. In [22, 23], the authors show the possibility to get the quasi
inextensibility of the membrane by adding an elastic force using the derivative of an elastic energy. They show
that the stretching of the interface is recorded in the gradient modulus of φ. Indeed, under the assumption that
the flow is incompressible, one can write a constitutive law of the stretching related to |∇φ|. The elastic energy
reads :

Eel =

∫
Ω

E(|∇φ|)δε,

with E(|∇φ|) a constitutive law of the membrane such that E(1) = 0 (no initial stretching). A simple definition
of E(|∇φ|) is a quadratic law : E(|∇φ|) = Λ

2 (|∇φ| − 1)2 so that E′(∇φ) (the derivative of E) is a linear law :
E′(|∇φ|) = Λ(|∇φ| − 1) as for a spring. In our case, we take E′(|∇φ|) = Λ max(|∇φ| − 1, 0) which ensures that
there is no force when the stretching is not positive (as for a tensile), Λ represents the stiffness of the membrane,
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it has to be taken large enough to keep almost constant area. By differentiating the energy, it has been shown
in [6, 22] that one can write the elastic force as :

Fel =

∫
Ω

{
∇E′(|∇φ|)−∇ ·

[
E′(|∇φ|) ∇φ

|∇φ|

]
∇φ
|∇φ|

}
δε(φ). (11)

Using forces to maintain incompressibility has some clear advantages: (i) we can add complexity to the
model such as changing the constitutive law of E′ (e.g. a more rigid part which could take into account the
cytoskeleton of a red blood cell) or add a new force like a surface tension force, (ii) and the fact that the fluid
solver is used as a “black box”: the vesicle model is seen only through the external forcing terms, the density
and viscosity which allows for easily changing the fluid solver — e.g. use a non-newtonian model. — However
the main drawback is that this technique leads to a larger variation of the surface area than the ones using
Lagrange multipliers. Note also that in this model, we need to keep the information of ∇φ. Reinitialization is
then difficult since it resets |∇φ| = 1 and forgets the stretching information. We explain how to get over this
issue in section 4.3. The conservation of the total surface of the vesicle is better than the conservation of the
local perimeter since it is enforced by the incompressibility of the fluid. Finally, we just have to add forcing
terms Fb and Fel to equation (2) to simulate the presence of the membrane.

4. Implementation

4.1. Discretization

4.1.1. Time Discretization

For stability and accuracy reasons, we choose to use the Crank-Nicolson scheme (CN) to discretize equation
(1). It reads

φn+1 − φn

∆t
+

1

2
(u · ∇φn+1 + u · ∇φn) = 0. (12)

We could use another scheme like backward differencing scheme of order 2, BDF2, but this method needs φn−2

to compute φn and in this case, at reinitialization step, φ changes roughly and breaks the second order of BDF2
scheme.

4.1.2. Space Discretization

Both the advection equation (12) and the Stokes equations (5)- (6) are descretized using the finite element
method. To do that, we use the C++ Finite Element Library Feel++ [24–26] which allows us to use high order
polynomial approximation and work indifferently in 1, 2 or 3 dimensions without changing the code except for
the configuration of the problem.

The advection problem is known to be unstable when solved with finite element method without stabilization.
Thus, we implemented several known methods as StreamLine Upwind Diffusion (SUPG), Galerkin Least Square
(GLS), Subgrid Scale (SGS) [27–29] and Continuous Interior Penalty method (CIP) [30].
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4.1.3. Weak formulation

The problem (1)-(2)-(3) is equivalent to find (u, p, φ) ∈ V × L2
0(Ω) × H1(Ω) which verifies ∀(v, q, ψ) ∈

H1
0 (Ω)2 × L2

0(Ω)×H1(Ω) :

ρφ

∫
Ω

(
∂u

∂t
+ (u · ∇)u

)
· v + µφ

∫
Ω

D(u) : D(v)−
∫

Ω

p∇ · v =

∫
Ω

(Fc(φ) + Fel(φ)) · v, (13)∫
Ω

q∇ · u = 0, (14)

u = g on ∂Ω, (15)∫
Ω

∂tφψ +

∫
Ω

(u · ∇φ)ψ +

∫
Ω

S(φ, ψ) = 0, (16)

where S(φ, ψ) stands for a stabilization term and V = {v ∈ [H1(Ω)]2|v|∂Ω = g}.
As to the discretization, we introduce Un+1

h , Pnh and Qmh the corresponding discrete finite elements spaces
depending on mesh size h and respectively based on Lagrange polynomials of degree n+ 1, n and m. To handle
the fact that the pressure is known up to a constant, we introduce a pseudo compressibility term, εp with
ε ≈ 1e− 6, to the Stokes equations.

Let (uh, ph, φh) ∈ Un+1
h × Pnh × Qmh be the discretization of (u, p, φ). The discrete version of problem (13)-

(14)-(16) becomes : find (uh, ph, φh) ∈ Un+1
h × Pnh ×Qmh which verifies ∀(vh, qh, ψh) ∈ Un+1

h × Pnh ×Qmh :

ρφ

∫
Ω

(
∂uh
∂t

+ (uh · ∇)uh

)
· vh + µφ

∫
Ω

D(uh) : D(vh)−
∫

Ω

ph∇ · vh =

∫
Ω

(Fc(φh) + Fel(φh)) · vh, (17)∫
Ω

qh∇ · uh + εphqh = 0, (18)

uh = g on ∂Ω, (19)∫
Ω

∂tφhψh +

∫
Ω

(uh · ∇φh)ψh +

∫
Ω

S(φh, ψh) = 0. (20)

4.2. High order derivative

The formulations of bending and elastic forces given by equations (10) and (11) could be problematic when
using finite element approximation. Indeed, Fel needs a second order derivative of the level set. Moreover,
recalling that κ is of second order derivative, Fc needs some 4th order derivative of φ. Differentiating several
times φ leads to oscillations, especially when low order polynomials are used to approximate it.

In [11] the authors introduced two mixed variables ( ψ̃ = κ|∇φ| and γ̃ = ∇|∇φ| ) and two new equations to
lower the degree of the derivatives. In [10], the authors used an augmented level set (as described in [31]) in
which they solve by finite difference schemes an advection equation for φ and an other one for ∇φ. Moreover,
three equations are solved at reinitialization step to take into account the higher derivatives of φ.
We choose to solve an additional advection equation to calculate the gradient modulus of φ. Let’s introduce a
scalar function e = |∇φ| which verifies

∂te+ u · ∇e = −e∇φ⊗∇φ
|∇φ|2

: D(u). (21)

Note that using this equation, we lower the degree of derivative of one.
Another motivation to introduce the variable e as an independent parameter was that, as one can see from

the expression (11), we need to keep the gradient modulus information during all the simulation time to compute
properly the elastic force. Consequently, re-initializing the level set to a distance function would reset |∇φ| to
1 and thus artificially vanishing the elastic force. Using e as an independently advected variable allows us to
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reinitialize the level set without introducing errors in the calculation of Fel. However, there is still a problem
to achieve 4th order derivative smoothly.

In order to solve this issue, one can do a L2 projection of the gradient of any function to derive, which mean,
having a gradient ∇f ∈ [L2(Ω)]2, find f ′ ∈ [L2(Ω)]2 such that ∀g ∈ [L2(Ω)]2∫

Ω

f ′ · g =

∫
Ω

∇f · g. (22)

This L2 projection can lead to oscillations, but we can add a smoothing term proportional to a parameter εs
which has to be small enough so that it does not perturb the accuracy of the projection. This projection leads
to the following formulation : find f ′ ∈ [H1(Ω)]2, such that ∀g ∈ [H1(Ω)]2,∫

Ω

f ′ · g + εs

∫
Ω

∇f ′ : ∇g − εs
∫
∂Ω

(∇f ′ · n) · g =

∫
Ω

∇f · g. (23)

Figure 2 shows the iso line κ = 1 when φ = 0 is a circle of radius 1. One can see that the projected curvature
without smoothing (figure 2(a)) leads to oscillations, whereas the smoothed curvature (figure 2(b)) leads to the
expected result.

(a) projected curvature without smoothing (b) projected curvature with smoothing

Figure 2. Iso line 1 of curvature of the level set when the iso line φ = 0 is a circle of radius 1

4.3. Reinitialization

When |∇φ| is too different from 1, the support of the Heaviside and Dirac functions (which are defined
according to φ) are not symmetric with respect to the interface. Indeed, they are narrowed on the side where

|∇φ| > 1 and enlarged on the side where |∇φ| < 1. It has been shown in [22] that φ̃ =
φ

|∇φ|
is a first order

approximation of a distance function close to the interface. Thus by replacing φ by φ̃ in the definition of Hε
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and δε, we keep the constant size of the interface and avoid the need of very frequent reinitialization. This
projection is called Interface Local Projection (ILP).

Nevertheless, for long time simulation, the gradient of φ can become really high so that, at some point, φ̃
vanishes and creates new artificial interfaces. To overcome this issue, some reinitializations are needed at a low
frequency. The method used to reinitialize φ is a Fast Marching Method described in [16].

5. Validation

5.1. Equilibrium Shape

The first system on which we validate our model is the equilibrium shape of a vesicle in a fluid at rest. Indeed,
if we consider a vesicle in a shape which is not the one minimizing its energy, the curvature force makes the
membrane move as the fluid around it. This dynamic stops when the vesicle reaches its equilibrium state. In
our simulations, we initialize the vesicles as ellipses of perimeter p (which does not correspond to the equilibrium
shape).

We solve the Navier-Stokes equations in a rectangular domain containing the vesicle with homogeneous
Dirichlet boundary conditions and the external forces modeling the vesicle behavior discussed in the previous
section.

To analyze the results of the simulations, we need to define a dimensionless number representing the relative

strength of the involved forces : Rf =
R2

0Λ

kB
, with R0 =

p

2π
the radius of a circle having the same area of the

vesicle. Note that Rf has to be large enough so that the incompressibility force keeps the perimeter of the
vesicle almost constant. In practice we choose Rf = 5 × 104 which gives a variation of the total perimeter of
the order of 5% and we use (U2

h × P1
h ×Q1

h) as Finite Element Space approximation.
The parameter which controls the final shape that takes a vesicle is the reduced area α. It is defined as the

ratio between the area of the vesicle (A) and the area of a disk having the same perimeter, i.e. α =
4πA

P 2
. It

can be shown that for a reduced area of 1, the shape minimizing the Helfrich energy is a circle. Then decreasing
α leads to attain a biconcave shape which is also a characteristic of red blood cells (see figure 3(d)). Figure 3
shows our results (blue dots) plotted vs the one obtained in [7] (red line) with a Lattice Boltzmann method.
We see a good agreement between the two models. We reported on the graphs the final values of the reduced
volume, which has moved from the initial state since we do not conserve exactly the perimeter during all the
simulation. This difference in the reduced area can explain the small differences which can be seen between our
shapes and the one from [7].

5.2. “Tank Treading”

5.2.1. Description

The second benchmark that we use to validate our model is the so called tank treading regime. In a shear
flow, if the ratio µ2

µ1
between the inner and the outer fluid viscosities is smaller than a certain critical value

(around 5 [32]), the vesicle takes a steady angle with respect to the horizontal axis and the fluid inside the
vesicle starts to rotate like a chain of a tank.

Figure 4 shows a vesicle in a tank treading regime at different times. In this simulation, we set Rf = 2×103.
The simulation was run on 104 elements with a time step ∆t = 3 × 10−3. On figures 4(a), 4(b), membrane
forces are not compensating yet the hydrodynamical forces, it is a transient state. From figure 4(d) to the end
(t = 4.5), the vesicle is at steady state.

5.2.2. Order of approximation

As expected, increasing the order of approximation of fluid solver does not lead to gain much accuracy on the
vesicle behavior. This is due to the fact that the pressure is not smooth enough to use higher order polynomials.
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(a) α = 1 (b) α = 0.9

(c) α = 0.8 (d) α = 0.6

Figure 3. Equilibrium shape of vesicles in a fluid at rest for different reduced areas

Figure 5(a) shows the relative variation of perimeter p of the vesicle ∆p = 100× p− p0

p0
as a function of time for

two different polynomial approximations : U2
h × P1

h ×Q1
h and U4

h × P3
h ×Q1

h. The small jumps in the perimeter
are due to the reinitializations of level set function.

Three regions can be observed, firstly, the perimeter decreases quickly due to the fact that the vesicle is
initialized like an ellipse and has to relax to its equilibrium shape thanks to the curvature force. Secondly,
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(a) (b)

(c) (d)

Figure 4. Vesicle in shear flow under tank treading regime.

the vesicle is sheared by the flow and moves to its equilibrium angle. During this time the perimeter increases
because the vesicle is stretched. The elastic force increases to minimize the stretching. Finally, the vesicle
attains its equilibrium position and one can see that the perimeter decreases because of the error accumulation
at steady state. This last effect can be controlled by decreasing the mesh size and/or increasing the polynomial
order of the level set approximation.

Moreover, figure 5(b) shows the variation of the angle as a function of time. As we can see on figure 5,
increasing the polynomial order of fluid variables approximation doesn’t lead to better results.

At the opposite, figure 6 shows the same tank treading simulation for three sets of approximation spaces
(U2

h × P1
h × Q1

h), (U2
h × P1

h × Q2
h) and (U2

h × P1
h × Q3

h) in which the perimeter conservation is improved by
increasing the polynomial order of the level set approximation. It can be understood by the fact that the forces
depend strongly on the level set. Thus, increasing the degrees of freedom of the level set approximation leads to
a better approximation of the forces. Moreover, since the forces requires several derivative of φ (or e), increasing
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(a) Relative perimeter of the vesicle (b) Angle from horizontal

Figure 5. Vesicle in tank treading regime for two polynomial approximations : U2
h×P1

h×Q1
h

and U4
h × P3

h ×Q1
h

the polynomial order of φ’s approximation gives a better accuracy in its derivative (up to 4th order) and thus in
the forcing terms. The interesting point to retain from fig 6(a) is that increasing the order of level set function
from 1 to 2 leads to gain a good accuracy (1.5% of the total loss of perimeter in this particular case) and is
not too costly in term of computational time (4 times longer than in order 1). At the opposite, increasing the
order polynomial of φ from 2 to 3 leads to a small gain in accuracy but the computational time starts to be
prohibitive (12 times longer than in order 1). For now we found that U2

h × P1
h × Q2

h is a good compromise
between computational time and accuracy.

(a) Relative perimeter of the vesicle (b) Angle from horizontal

Figure 6. Vesicle in tank treading regime for two polynomial approximations : U2
h×P1

h×Q1
h,

U2
h × P1

h ×Q2
h and U2

h × P1
h ×Q3

h
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Conclusion

We have presented a new finite element implementation of a vesicle model. This model has the advantage
to be independant of the fluid solver used since it is expressed only by external forces applied on the interface
between inner and outer fluids. We tested this model with a Stokes and a Navier-Stokes fluid. It is possible to
add more complexity and use it on a high Reynolds fluid flow or a non Newtonian one. However, this method
needs to have a two-fluid interface localized with a good accuracy. To this aim, we developped a level set
method in which we do not have to reinitialize too often thanks to the interface local projection. Moreover,
when reinitialization is needed we use ILP to initialize a Fast Marching Method. Since the ILP doesn’t move
the position of the interface, we can reinitialize without loss of mass which is usually the main drawback of level
set methods. We also described how to handle high order derivative of the level set function without necessarily
add as much equations and intermediate variables as the highest derivative degree.

We then validated our model on a first benchmark, the equilibrium shape of a vesicle in a fluid at rest. We
compared our results with existing results in litterature and found a good agreement. Finally, we reproduced an
other behavior of vesicle, the tank treading regime, in which the vesicle takes a steady angle and the membrane
rotates around it. We tried different polynomial order approximations to find a good compromise. At the
moment increasing only the polynomial approximation of the fluid variables do not lead to significantly better
results and we found that U2

h × P1
h ×Q2

h, for the various confiugrations we tested, gives the best ratio between
accuracy and computational time. These results have to be confirmed in a near future by rigorous mathematical
analysis and new numerical experimentations. Otherwise we need to explore other directions such as perform
3D simulations, handle complex geometries or use more complex fluid models. FEEL++ already allowed us to
perform 3D simulations without re-coding the 2D programs.
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