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Abstract 

This paper presents an audio-video surveillance system for 
the automatic surveillance in public transport vehicle. The 
system comprises six modules including in particular three 
novel ones: (i) Face Detection and Tracking, (ii) Audio 
Event Detection and (iii) Audio-Video Scenario 
Recognition. The Face Detection and Tracking module is 
responsible for detecting and tracking faces of people in front 
of cameras. The Audio Event Detection module detects 
abnormal audio events which are precursor for detecting 
scenarios which have been predefined by end-users. The 
Audio-Video Scenario Recognition module performs high 
level interpretation of the observed objects by combining 
audio and video events based on spatio-temporal reasoning. 
The performance of the system is evaluated for a series of 
pre-defined audio, video and audio-video events specified 
using an audio-video event ontology. 

1 Introduction 

The French project SAMSIT (Système d’Analyse de Médias 
pour une Sécurité Intelligente dans les Transports publics) 
aims at conceiving solutions for the automatic surveillance in 
public transport vehicle (e.g. trains and metros) by analyzing 
human behaviors based on audio-video stream interpretation. 
Its goal is to take into account the characteristics of mobile 
spaces and the limitation of bandwidth of available 
communication systems for designing efficient embedded 
surveillance systems. The design of audio-video surveillance 
systems dedicated to mobile spaces implies developing and 
adapting audio-video processing algorithms and equipment 
for handling new types of environment. These algorithms 
have to be endowed with the ability of performing efficient 
pre-processing to transfer only pertinent information to higher 
level processes running at a distant operational headquarter 
for handling alert messages.  
Many video understanding systems have already been 
developed in the computer vision community. Haritaoglu et 

al. [7] use shape analysis and tracking to locate people and 
their parts (e.g., head, feet) in image sequences. Oliver et al. 
[12] use Bayesian analysis to identify human interactions 
using trajectories obtained from a monocular image. Johnson 
and Hogg [9] have defined an efficient people tracker based 
on B-spline corresponding to people shape models. 
Nevertheless, few video understanding systems have been 
able to successfully combine audio-video interpretations in 
real world applications due to a large variety of video 
understanding issues. First, typical video processing 
challenges come from shadows, illumination changes, over-
segmentations or miss-detections. Second, the tracking 
process remains a major issue since the loss of a tracked 
object prevents the analysis of its behavior. In addition, only 
few systems provide a true semantic video understanding. 
Figure 1 shows a near real-time intelligent audio-video 
surveillance system based on a generic platform called 
SAMSIT. Such a system is composed of a knowledge base 
containing a priori knowledge and six main modules: (1) 
Object Detection and Tracking, (2) Face Detection and 
Tracking, (3) Temporal Multi-Camera Analysis, (4) Primitive 
Audio Event Detection, (5) Primitive Video Event Detection 
and (6) Audio-Video Event Recognition. Among these six 
modules, three of them are novel (i.e. Face Detection and 
Tracking, Audio Event Detection and Audio-Video Event 
Recognition) and are described in the following sections. 

2 The Knowledge Base 
The knowledge base contains all the information needed by 
the SAMSIT platform for recognizing efficiently behaviors of 
interest predefined by end-users (e.g. security operators of 
train companies). This knowledge base needs to be specified 
for each video surveillance system constructed from the 
SAMSIT platform. There are typically three types of a priori 
knowledge contained in this knowledge base: the 3D context 
of the observed scene, the calibration matrices of cameras 
and the models of scenarios of interest. 
The 3D context of the observed scene describes the geometry 
and the semantics associated to the empty scene. These 
information includes: 



+ the geometric descriptions (e.g. position, surface or 
volume) of zones of interest (e.g. a forbidden zone, an 
entrance zone) and of static objects of the empty scene 
(e.g. walls, doors, equipment). 

+ the semantic properties associated to contextual objects 
including both their physical properties (e.g. transparency, 
reflexion) and functionnalities (e.g. seat, door). 

The calibration matrices of the cameras allow the SAMSIT 
platform to calculate for all detected mobile objects their 3D 
positions in the real world from their 2D positions in the 
images. Combining the calculated 3D positions with the 

geometric information defined in the 3D context, the 
SAMSIT platform can determine how detected mobile objects 
interact with the observed scene. 
The models of scenarios of interest are the scenarios 
specified by the end-users. The models of scenarios are 
defined using a description language designed in a generic 
framework [15] which has been conceived for other types of 
video understanding applications. These scenario models are 
then used by the SAMSIT platform for interpreting audio-
video streams. 

 
Figure 1: An intelligent audio-video surveillance system based on the SAMSIT platform: by using a priori knowledge and 

processing audio-video streams, the system triggers the alerts corresponding to the recognized scenarios. 

3 Object Detection and Tracking 
This first task consists in detecting and tracking mobile 
objects. The goal of the Object Detector is to detect for each 
frame the moving regions in the scene and classify them into 
a list of mobile objects with labels corresponding to their type 
based on their 3D size and their shape, such as PERSON. 
This task can be divided into three sub-tasks: detection of 
mobile objects, extraction of features and classification of 
mobile objects. A list of mobile objects is obtained at each 
frame. Each mobile object is described by 3D numerical 
parameters (center of gravity, position, height, width,...) and 
by a semantic class (PERSON, OCCLUDED PERSON, 
GROUP, CROWD, METRO TRAIN, SCENE OBJECT, 
NOISE or UNKNOWN). Several hard issues arise in this 
module. Surprisingly, the vibration of the train did not add too 
much noise in the detection. However, the strong changes in 
lighting conditions (e.g. train entering a tunnel) prevent 

SAMSIT system to correctly detect people inside the train at 
several occasions. 
The goal of the frame to frame tracker (F2F Tracker) is to 
link from one frame to the next frame the list of mobile 
objects computed by the object detector. The output of the 
frame to frame tracker is a graph of mobile objects. This 
graph provides all the possible trajectories that a mobile 
object may have. The link between a new mobile object and 
an old one is computed depending on three criteria: the 
similitude between their semantic class, their 2D (in the 
image) and 3D (in the real world) distance. 

4 Face Detection and Tracking 

The face detection and tracking module is intended to 
complement the first module and provide inputs to the Video 
Event Detection module. Most of the time, faces can be seen 
in the field of view of one of the cameras in the sensors 
network, while the other body parts are often occluded, 
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especially by the seats. To accommodate the wide variety of 
face appearances, complex backgrounds, possible occlusions, 
multiple scales, and unpredictable motion, we developed a 
face detector based on a statistical modelling of face features. 
The detector was then combined to a particle filter to increase 
the temporal consistency of the detection. 

4.1 Face Descriptors 

The face features are captured by a set of local descriptors 
based on histograms of the gradient orientation, and weighted 
by the local gradient magnitude, computed in small 
rectangular areas inside the region of interest (Figure 2). 
These descriptors have already proven to be efficient for 
shape recognition tasks such as hand gesture recognition [5] 
and more recently for human detection [4]. They are in 
particular less sensitive to lighting conditions than intensity 
based methods.  

 
Figure 2: Local gradient orientation histograms. 

4.2 Learning Faces 

The face descriptors are used as classifiers. The most 
discriminative descriptors are searched by training with the 
Adaboost algorithm [6] on a large database containing face 
and non-face samples. In the training algorithm, a decision 
stump is associated to each histogram component, and the 
classifiers are cascaded as in [16]. Each stage of the cascade 
was trained to perform 99.9% of positive detection and 50% 
of false alarm.  

4.3 Detection Step 

The detection algorithm scans the entire image in a sliding 
window, at different scales and evaluates the classification 
cascade in the window. The cascade structure enables to 
drastically speed up the process, as it progressively rejects 
sub-images at each stage (Figure 3). Only a small number of 
feature evaluations are required on average. 

 
Figure 3: Detection based on a cascade of classifiers. 

4.4 Tracking Faces with a Particle Filter 

In order to temporally associate the detection results, a 
tracking module filter based on a color particle filter was 
implemented. The Particle filter, also known as the 
Condensation algorithm [8], is a powerful probabilistic 

method to estimate complex multimodal density distributions. 
Our particle filter is similar to [13], it computes the likelihood 
from the Bhattacharyya distance between color histograms in 
the HSV color space, and estimates state vectors in 5 
dimensions (two for the position, two for the scale, and one 
for the angle to the horizontal direction). 

4.5 Results 

The database used in the learning process was composed of 
3959 faces under various pose and lighting conditions. At 
each stage of the training process, 10000 negative samples 
were randomly selected from classification errors at the 
previous stage. The resulting cascade of classifiers contains 
10 stages. The false positive rate after training was 1.1e-9. On 
a test sequence of 500 frames, we obtained a false positive 
rate equal to 1.7e-7 and a detection rate superior to 94%. 
Moreover, the false positive detections can be partly filtered 
out with the tracking algorithm. The face detection and 
tracking results are illustrated in Figure 4 and Figure 5.  

 
Figure 4: Face detection results. 

 
Figure 5: Face tracking results. 

 

5 Temporal Multi-Camera Analysis 

This module is composed of three steps: mobile object and 
face combination, multi-camera fusion and long-term 
tracking.  
The first step aims at fusing the information coming from 
several cameras including both mobile object detection 
[section 3] and face detection results [section 4]. The first step 
of this task consists in computing the correspondences 
between mobile objects and faces. When a face is detected 
without corresponding mobile object in cases where people 
are motionless (e.g. sitting) for a long time, a mobile object is 
built based on the face information. In the same way, when a 
mobile object is detected without corresponding face in cases, 
for instance, when the person is not facing the camera, the 
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mobile object is still considered as valid. Therefore, after this 
process, most of the people present in the train are detected.  

 

Figure 6: the tracked individuals keep the same identifier 
during all frames. 

To discard erroneously detected mobile objects which 
correspond to noise, the video understanding process relies 
either on the combination of multi-camera information or on 
the verification of the temporal coherency on a temporal 
window. In order to take advantage of all the calibrated 
cameras viewing the same scene (cameras with overlapping 
field of views), we combine all the graphs of mobile objects 
computed by the previous tasks for each camera into a global 
one that we called the Combined Graph. As a result, the 
features (the 3D positions and the dimensions) of the mobile 
objects computed in the Combined Graph give a better 
estimation of the positions and the dimensions of the real 
persons evolving in the scene. 
Another process consists in tracking individuals on a long 
period of time. This tracker performs a temporal analysis on 
the Combined Graph. This Long-term Tracker computes and 
selects the trajectories of mobile objects which can 
correspond to a real person thanks to an explicit model of 
person trajectory.  
 Figure 6 shows four individuals correctly tracked (i.e. they 
have the same identifier) during the whole video sequence. 

6 Primitive Audio Event Detection  

In this section, we present an intelligent microphone that aims 
at detecting and indentfying sounds inside the vehicle. We use 
a classical learning/classification method based on a Gaussian 
Mixture Model. We focus on the following sound classes: 
shouts, tag and noise events. Each of these sounds is a key 
element of the scenarios the audio-video system has to detect. 
The sound analysis system is divided in two main modules: 
the front-end processing module for activity zones detection 
and the classification module. The first one extracts relevant 
audio samples from the signal before the classification 
module estimates the most probable class to which they 
belong. Both segmentation and classification steps are 
described in the next sections. In the last part, cross-validation 
experiments are presented to evaluate the performance of the 
method. 

6.1 Segmentation in Activity Zones 

This task is based on 3 steps: 
1. an automatic audio segmentation, which splits an audio 

signal in several quasi-stationary consecutive zones, 
2. an activity detection algorithm, which aims to skip silence 

and low-level noise zones, out of interest and 

3. a merging step, to gather successive activity segments. 
It is issued from the “Forward-Backward Divergence” (DFB) 
algorithm [2]. The audio signal is described by an autoregressive 
gaussian model and the method consists in detecting the changes 
in the autoregressive models through the prediction errors 
computed on two analysis windows. The distance between the 
two models is obtained by computing the mutual entropy of the 
two corresponding conditional laws. Three kinds of segment are 
obtained, quasi-stationary segments, transient segments and short 
segments. Their lengths vary between 20 and 100 ms. Each 
segment is classify as silence or activity according to its energy. 
To avoid over-segmentation, reduce the computing time and the 
false detection rate, we merge quasi-adjacent segments. Two 
activity segments are quasi adjacent if they are separated by a 
non activity segment which duration is under 300 ms. The 
classification step is applied to each activity zones obtained after 
the merge task. 
 

 
Figure 7: hierarchical classification tree. 

6.2 Modeling and Classification Framework 

The classification process is achieved according to the 
hierarchical tree described in Figure 7. Each model that 
appears as a component of the tree is computed during a 
training step. It is based on a GMM of a set of acoustical 
parameters extracted from a training data corpus. We have 
decided to extract the Mel Frequency Cepstral Coefficients 
(MFCC) to which we have added a term of energy and all 
first and second derivatives. Finally, the dimension of the 
features vector is 39. 
GMM method supposes that the different classes which are 
represented in the feature space can be modeled with a 
weighted sum of Gaussian distributions. The parameters of 
the Gaussian mixture are estimated using the EM 
(Expectation-Maximisation) algorithm initialised with the 
LBG algorithm ([14] & [10]). 
During the classification phase, all the activity segments 
detected in the test utterance are gathered and parameterised 
with the same features vector. The likelihood of each vector 



according to each model is given by 
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set of activity segments and ( )ij CyP  denotes the likelihood 

of each segment relatively to the class iC . ( )ij CyP  is 
approximated under the Winner Takes All (WTA) assumption [11]. 

6.3 Results of Cross-Validation 

Scenes were recorded using simultaneously 4 microphones in 
regional train and in real condition. Actors were asked to play 
scenarios representative of the public french train operator's 
needs: fight scene, violent robbery scene, mobile snatching and 
spray paint scene. Each scenario is played several times. For 
each kind of scenario, the actors played a scene which is not a 
critical situation but has similar acoustic properties. The scene is 
called the “normal” situation. All files of the corpus have been 
labelled for learning and evaluation steps. 
Cross-validation aims at estimating how well the model we have 
learned from some training data is going to perform on future 
unknown data. We have choosen the Leave-one-out Method. 
This method involves in three steps. Firstly, the model is trained 
on all the training data except for one. Secondly, the learned 
model is evaluated on the remaining data. Both steps are repeated 
such that each data is used once as the validation data. The 
evaluation process we achieved focuses not only on the good or 
bad detection of events, but also on the precision on the time 
scale of the detection. The results are then expressed as correctly 
identified durations and misidentified durations. This procedure 
is repeated for all the files of the corpus and for different number 
of Gaussian laws. 
Results for shouts detection are displayed in Figure 7. In the 
graphics, correct identifications correspond to the white parts 
of bars, wrong classifications are represented by the grey part 
of bars and false alarms are displayed as a curve. 
This graphic shows that the least false error rate is obtained 
using 1024 Gaussian laws in the mixture. For shout class, the 
duration of the false alarms (9.4 seconds) is relatively low 
compared to the total duration of the corpus (approximately 
2540 seconds) and the total duration of shouts to identify 
(approximately 140 seconds). Shout detection rate does not 
seem very good. However, even if “all” shouts or spray paints 
are not always identified on the Scene cases, this GMM 
method performs well in terms of number of “identified 
events”. A critical situation can be composed of several 
shouts or spray paints and the detection of a part of them can 
be sufficient to detect a critical event and to set off an alarm. 

7 Primitive Video Event Detection 
The primitive video event detection module aims at 
recognizing all primitive states corresponding to a stable 
temporal property of a mobile object (e.g. a person is close to 
a door). These primitive states are directly linked to visual 
features of mobile objects. The main difficulty of this module 
is to manage events involving a large number of mobile 
objects. Classical constraint resolution techniques get into a 
combinatorial explosion while coping with this problem. A 
dedicated constraint resolution technique is developed to 
reduce the processing time for obtaining a real-time 
recognition of this type of events [15]. 

 
Figure 8: cross validation results for shout class. 

8 Audio-Video Event Recognition 
The audio-video event recognition aims at recognizing 
complex temporal events that combine both audio and video 
events. Those events are defined in the knowledge base 
[section 2] and correspond to the terminal events (i.e. goals) 
of the application. There are two main issues arising in this 
module: the representation and the real-time recognition of 
complex audio-video events. 

CompositeEvent( vandalism_against_window, 
  PhysicalObjects( (vandal : Person)) 
  Components(  
   (vandalism_against_window_VIDEO :  
    CompositeEvent  
     vandal_close_to_window(vandal)) 
   (vandalism_against_window_AUDIO :  
    CompositeEvent  
     tag_detected_close_to_person(vandal))) 
  Constraints( 
   (i_ of (Interval of 
     vandalism_against_window_VIDEO) <=  
      vandal's AEs's First's AEStartFrame) 
   (_i of Interval of  
     vandalism_against_window_VIDEO >=  
      vandal's AEs's First's AEEndFrame)) 
  Alarm( AText("Vandalism against window") 
       AType("VERYURGENT") 
       APos2D(vandal->Pos2D) 
       APos3D(vandal->Position))) 

Figure 9: an audio-video event that is used in train 
surveillance. 

8.1 Audio-Video Event Representation 

The audio-video event representation corresponds to the 
modeling of all the knowledge used by the system to detect 
audio-video events occurring in the scene. To allow security 
operators to easily define and modify the event models, the 
description of the knowledge is declarative and intuitive (in 
natural terms). The proposed model of an audio-video event E 
is composed of five parts: 
+ a set of Physical Object variables corresponding to the 

physical objects involved in E: any contextual object 
including static object (e.g. equipment, zone of interest) 
and mobile object (e.g. person, vehicle, train). The vehicle 
type can be of different subtypes to represent different 
vehicles types (e.g. train, car). 

+ a set of temporal variables corresponding to the 
components (i.e. sub-events) of E. 

+ a set of forbidden variables corresponding to the 
components that are not allowed to occur during E. 

+ a set of constraints (including symbolic, logical, spatial 
and temporal constraints including Allen’s interval 
algebra operators [1]) involving these variables. 



+ a set of decisions corresponding to the tasks predefined by 
experts that need to be executed when E is detected (e.g. 
activating an alarm or displaying a message). 

8.2 Audio-Video Event Recognition 

The audio-video event recognition algorithm recognizes 
which events are occurring using primitive video events 
detected by the primitive video event detection module 
[section 0] and the audio events detected by the audio event 
detection module [section 6]. There are two main difficulties 
arising in this process: (i) the synchronization between audio 
and video events and (ii) the real-time recognition. 
In order to facilitate event recognition, event templates (i.e. 
event models) are generated for each event, the last 
component of which corresponds to a recognized primitive 
event [section 0]. The event template contains the list of 
physical objects involved in the primitive state. These 
physical objects partially instantiate the event template. To 
recognize an event composed of two (or one) sub-events, 
given the event template partially instantiated, the recognition 
algorithm selects (if needed) a set of physical objects 
matching the remaining physical object variables of the event 
model. The algorithm then looks back in the past for any 
previously recognized state/event that matches the first 
component of the event model. If these two recognized 
components verify the event model constraints, the event is 
said to be recognized. In order to facilitate complex event 
recognition, after each event recognition, event templates are 
generated for all composite events, the last component of 
which corresponds to this recognized event. The recognition 
of complex event usually requires a search in a large space 
composed of all the possible combinations of components and 
objects. To avoid this combinatorial explosion, all complex 
events are simplified into events composed of at most 2 
components through a stage of compilation in a preprocessing 
phase. Then the recognition of complex events is performed 
in a similar way to the recognition of events composed of two 
sub-events. The video event recognition algorithm is based on 
the method of Vu et al [15]. 

9 Results 
The SAMSIT system has been tested on two sets of recorded 
audio-video streams. These sets have been realized on a train 
(TER 75700) equipped with four cameras facing each other 
and four microphones installed along the corridor. The first 
set has been done while the train was stopped whereas the 
second set has been recorded with the train in motion. Even if 
all scenes were acted by professionals, half of the scenes did 
not correspond to the end-user specifications (e.g. graffiti on 
seats rather on windows). Among the five scenarios specified 
by end-users four have been recognized in at least one video:  
vandalism against window, group fighting, theft and beggar. 
The scenario that was not recognized (group agitation) has 
been acted in difficult environment conditions: crowded, 
partially visible or strong light changing conditions. Among 
the four recognized scenarios, the scenario “vandalism against 
window” was the most successfully recognized. On the seven 
available videos illustrating this scenario, three were correctly 
recognized, two did not correspond to the specified scenarios, 
two were not showing the individual in action (i.e. the 
individual was out of view). The use of audio events was 

particularly useful in cases of the scenario “vandalism against 
window” where SAMSIT was able to detect out the bomb 
used to paint the window. 

10 Conclusion 

This paper has described an audio-video surveillance platform 
able to automatically recognize high level human behaviors 
involving individuals using both audio and video information. 
Different methods have been developed to compute specific 
types of behaviors under different configurations. These 
methods have been coherently integrated in the proposed 
framework. Despite hard visual conditions, SAMSIT system 
was able to recognize successfully several scenarios. There is 
still much work to be done to obtain a reliable system. On top 
of enhancing audio-video algorithms, a future direction 
consists in improving the lightning conditions by for instant 
increasing artificial lightning in the train. 
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