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Shortfall risk minimization in discrete time financial market models

Noufel Frikha
∗

January 31, 2012

Abstract

In this paper, we study theoretical and computational aspects of risk minimization in finan-
cial market models operating in discrete time. To define the risk, we consider a class of convex
risk measures defined on Lp(P) in terms of shortfall risk. Under simple assumptions, namely
the absence of arbitrage opportunity and the non-degeneracy of the price process, we prove the
existence of an optimal strategy by performing a dynamic programming argument in a non-
Markovian framework. Optimal strategies are shown to satisfy a first order condition involving
the constructed Bellman functions. In a Markovian framework, we propose and analyze several
algorithms based on Monte Carlo simulations to estimate the shortfall risk and optimal dynamic
strategies. Finally, we illustrate our approach by considering several shortfall risk measures and
portfolios inspired by energy and financial markets.

Keywords: Convex risk measure, shortfall risk measures, risk minimization, dynamic program-

ming principle, stochastic approximation algorithm, vector quantization, Monte Carlo simulation.

1 Introduction

In an arbitrage-free and complete financial market model, an investor endowed with a contingent
claim can remove its risk perfectly by using a self-financing strategy on finite horizon time. The
unique cost of replication is the expected value of the contingent claim under the unique equivalent
martingale measure. However, in a more realistic point of view, market models are incomplete.
The no-arbitrage assumption no longer provides a unique equivalent pricing martingale measure.
Hence it leads to an interval of arbitrage-free prices. Pricing and hedging in such context require
new methods. It is still possible to hedge without any risk whenever an agent invests a large enough
initial wealth and uses a super-hedging criterion, see e.g. [15], [28], [44] and [18] among others.
However, the price is often excessively high since the super-hedging strategy reduces to the trivial
buy-and-hold strategy, see e.g. [14], [5] and [8]. For this reason, an investor faced with a contingent
claim can only hedge partially and often has to bear some risk of loss.

Numerous criteria have been proposed to quantify this risk. Hedging by means of a quadratic
criteria consists in minimizing the L2(P)-norm of the difference between the value of the contingent
claim and the terminal value of a self-financing portfolio. This approach has been proposed in
the seminal paper [11] and then studied in [43], [45], [46],[32],[38], [30], among others. The main
criticism opposed to this approach is that the L2(P)-norm is a symetric criteria. Hence, it gives equal
importance to upside and downside values. Hedging strategies which maximize the probability of
successfull hedge without risk are investigated in [19] in a general continuous time semimartingale
model as an alternative to super-hedging strategy which requires a large amount of initial capital.
However, this approach is known to take into account only the probability of a successfull hedge
and not the size of effective losses when they occur.
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In order to take into account the importance of downside values and hence to overcome the
symmetry introduced by a quadratic hedging, several authors proposed to use an asymmetric
criteria in both discrete and continuous time models. For instance in [7], the authors investigated
the following dynamic measures for the risk associated to the contingent claim H

sup
Q∈D

inf
θ∈A

EQ

[

(

H − V x,θ
T

)

+

]

,

where D is a suitable family of probability measures, V x,θ
T is the terminal value of the portfolio

according to the self-financing strategy θ with initial capital x and A is a specific class of admissible

portfolio strategies. In particular, the wealth process
(

V x,θ
t

)

t∈[0,T ]
has to satisfy a lower bound

condition. In [35], the author studies the problem of minimizing the expected Lp-loss, p ∈ (1,+∞),
of the shortfall of a contingent claim H ∈ Lp(P) in a general discrete time financial market model:

inf
θ∈A

E

[

lp

(

(

H − V x,θ
T

)

+

)]

,

where lp(x) = xp/p, x ≥ 0, under cone constraints on trading strategies. In a general semimartingale
setting, this problem has been solved in [20] for a general loss function l using an approach based
on Neyman-pearson lemma.

In this paper, we consider the problem of risk minimization in a general discrete time financial
market model by means of a shortfall risk based convex risk measures criteria defined on Lp(P) (see
below for this notion). The seminal axioms for coherent risk measures were introduced in [1] and
then were further generalized in [21] and [23] to define convex risk measures. However, these risk
measures were only defined for bounded financial positions. This is too restrictive for applications
like stochastic control problem involving risk measures. Moreover, as argued in [17] for instance, it
is natural to consider coherent and convex risk measures in the space Lp(P) which carries a locally
convex topology.

Surprisingly, despite its pratical importance, it seems that risk minimization in discrete time
financial market models has been somewhat neglected both from a theoretical and numerical point
of view. In [4], the authors developped a risk minimization problem to hedge non-tradable risk on
financial market using an approach based on inf-convolution of convex risk measures and BSDE.
In [39], a portfolio optimization method which calculates the Value-at-Risk at level α (VaRα)
and optimizes the Conditional Value-at-Risk (CVaRα) is developped. The numerical procedure is
based on a linear programming algorithm. It first consists in generating loss scenarios and then in
introducing them as constraints in the linear programming problem. The main drawback is that
the dimension (number of constraints) of the linear programming problem to be solved is equal to
the number of simulated scenarios so that this approach turns out to have strong limitations in
practice. Moreover, the authors only focused on static portfolio optimization. The framework they
proposed doesn’t take into account self-financed strategies.

In [3], the authors considered the problem of risk minimization to hedge observable but non-
tradable source of risk by means of a CVaR criteria. In order to prove the existence of an optimal
dynamic strategy for the CVaR minimization problem, a non Markovian dynamic programming
principle is established (see e.g. [16]). The arguments given in [3] relies fundamentally on the
Rockafellar & Uryasev’s static representation of the CVaR as a convex optimization problem. The
optimal strategy is computed by minimizing dynamically the CVaR using three main numerical
probabilistic tools: stochastic approximation algorithm, optimal quantization and variance reduc-
tion techniques. From a numerical point of view, the approach developed in [3] relies on devising
time-consistent risk measures closely connected to the CVaR, based on a new conditional risk mea-
sure (called the F-CVaR, where F is a σ-field representing the information available to investors),
for which efficient and robust optimization procedures can be designed.
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Concerning the risk minimization problem by means of a shortfall risk measure defined on Lp(P),
such arguments do not work. Roughly speaking, this is due to the fact that a shortfall risk measure
does not write as an expectation contrary to the CVaR but appears as the level of a function which
can be written as the expectation of a loss (see below for more details). This induces theoretical and
computational difficulties. However, one of the main contribution of this paper is to prove that a
direct stochastic control approach in two steps, one of which consisting in a dynamic programming
argument, is still possible. Unlike [3], we take full advantage of the dynamic programming backward
induction to deduce first order conditions and use them to derive a completely tractable algorithm
relying on stochastic approximation algorithm and optimal quantization. Let us mention that a
dynamic programming principle in a non-Markovian setting has already been established in the
context of expected utility maximization in discrete time models in [37].

Hence, the contribution of the paper is twofold.
Firstly, our main focus is theoretical. We prove the existence of optimal strategies for the short-

fall risk minimization problem under simple assumptions by performing a dynamic programming
argument in a non Markovian framework. Moreover, we characterize optimal strategies by showing
that they satisfy first order conditions writing as a backward induction. As it will become clear
in the arguments given below, these first order conditions are crucial for devising our numerical
procedures.

Secondly, we are concerned by computational and numerical aspects of shortfall risk minimiza-
tion. We propose robust and tractable numerical procedures for estimating the quantities of interest
and analyze their properties. The first one is obviously the shortfall risk of a risky position. In order
to estimate this quantity, we propose a stochastic approximation algorithm. We study its a.s. con-
vergence and convergence rate. Then, we take advantage of the first order dynamic programming
conditions to propose a procedure based on optimal vector quantization and stochastic gradient
algorithm for estimating optimal dynamic strategies. One interesting consequence of our method-
ology may lie in the computation of shortfall risk based risk indifference prices of a contingent
claim.

The paper is organized as follows: in Section 2, we present the model, definitions and the
properties of shortfall risk measures. We outline the precise formulation of the risk minimization
problem and we prove the existence of an optimal strategy that minimizes the shortfall risk under
simple assumptions namely the absence of arbitrage opportunity and the non-degeneracy of the
underlying price process. We characterize optimal strategies by proving, under some regularity
assumptions, that they satisfy first order conditions involving the constructed Bellman functions.
Section 3 is devoted to computational and numerical aspects of shortfall risk minimization. We
propose a Robbins-Monro algorithm to estimate the risk of a financial position. We establish its a.s.
convergence and convergence rate. We show how to devise a Monte Carlo simulation based Newton-
Raphson’s optimization algorithm to compute optimal one step self-financed strategies, that are
strategies where the holder of the portfolio is allowed to adjust his portfolio only once at time t = 0.
Finally, we present our algorithm to comute optimal dynamic self-financed strategies that minimize
the shortfall risk. In order to approximate conditional expectations and portfolio values at each
time step, we rely on optimal vector quantization. Section 4 is dedicated to numerical examples.
We propose several portfolios with several shortfall risk measures and illustrate the effectiveness of
the proposed methodology.
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2 Theoretical aspects of shortfall risk hedging

2.1 Problem formulation

The discrete time and finite horizon financial market model is described as follows. We consider a
filtered probability space

(

Ω,F , (Ft)0≤t≤N ,P
)

, where FN = F and for convenience we set F0 =

{∅,Ω}. We have d risky assets available for trade with (discounted) price process S = (S1, · · · , Sd),
with for all t, Si

t ≥ 0, i = 1, · · · , d and S is F-adapted, i.e. St is Ft-measurable. A trading strategy
(or portfolio) is an Rd-valued process θ = (θ1t , · · · , θdt )1≤t≤N which is F-predictable, i.e., θt is Ft−1-
measurable, t = 1, · · · , N . In such a strategy, we may regard θt as the number of units of risky
assets held by the investor during (t− 1, t], t = 1, · · · , N . The value at time t of a (self-financed)

portfolio θ starting from initial capital v is given by V v,θ
0 = v and for t = 1, · · · , N ,

V v,θ
t = v +

t
∑

ℓ=1

θℓ.∆Sℓ,

where ∆Sℓ = Sℓ − Sℓ−1. For x, y ∈ Rd, the real number x.y stands for their usual scalar product
and |x| := √

x.x denotes the Euclidean norm of x. In what follows, we denote by Θt the space of
all Ft-measurable and P-a.s. finite random variables with values in Rd. Note that in contrast to
the case of continuous time models, we don’t require admissibility condition on strategies like the
lower boundedness of the portfolio values.

We assume that the holder of the portfolio faced with a contingent claim given by an FN -
measurable random variable H ∈ Lp(P) assesses his risk using a static Lp shortfall risk measure ρ.
It is a classical example of convex risk measure, see [21], [22] for the L∞(P) case and [26], [17] for
the Lp(P) case.

To be more precise about this risk measure, let l : R → R+ be an increasing convex loss function,
not identically constant. For some x0 ∈ R, we define the acceptance set

A := {X ∈ Lp : E [l(−X)] ≤ l(x0)} ,

and the corresponding shortfall convex risk measure ρ : Lp(P) → R ∪ {+∞}

ρ(X) := inf {ξ ∈ R : X + ξ ∈ A} = inf {ξ ∈ R : E [l(−X − ξ)] ≤ l(x0)} , (1)

with the convention inf ∅ = +∞. Actually, we will work under the following assumption on l:

lim
x→−∞

l(x) = l ≤ l(x0) and lim
x→+∞

l(x) = +∞. (2)

Note that Jensen’s inequality implies that

{ξ ∈ R : E [l(−X − ξ)] ≤ l(x0)} ⊂ {ξ ∈ R : l(−E [X]− ξ) ≤ l(x0)} .

Moreover, we clearly have inf {ξ ∈ R : l(−E [X]− ξ) ≤ l(x0)} = −E [X] − x0. Hence, the set
{ξ ∈ R : E [l(−X − ξ)] ≤ l(x0)} is bounded from below. Now, if E [l(−X)] < +∞, Lebesgue’s
dominated convergence theorem implies that

lim
ξ→+∞

E [l(−X − ξ)] = l ≤ l(x0)

so that, if l < l(x0) then {ξ ∈ R : E [l(−X − ξ)] ≤ l(x0)} 6= ∅ hence ρ(X) ∈ R, otherwise ρ(X) =
+∞. Moreover, if we suppose that ∀M > 0, E [l(−X +M)] < ∞, then the function ξ 7→
E [l(−X − ξ)] is continuous and ρ(X) is the lowest solution of the equation:

E [l(−X − ξ)] = l(x0). (3)
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Classical examples are the entropic risk measure defined by setting l(x) = eλx, x ∈ R, λ > 0,
x0 ∈ R, the solution of (3) is unique and given by:

ρ(X) =
1

λ
logE

[

e−λ(X+x0)
]

, (4)

and the lp-shortfall risk measure, defined by setting l(x) = xp1{x≥0}, x ∈ R, p ≥ 1, x0 ≥ 0.

Given an initial wealth v ∈ R and a trading strategy θ, the resulting loss induces by H is just
the difference between the value of the contingent claim and the value of the portfolio at maturity
N : H −V v,θ

N . The basic problem for the holder of the portfolio is to find an optimal (self-financed)
strategy θ∗ which minimizes the risk of the residual loss, i.e. a solution to the following minimization
problem

inf
θ∈AF

ρ
(

H − V v,θ
N

)

= inf
θ∈AF

inf
{

ξ ∈ R : E
[

l(−H + V v,θ
N − ξ)

]

≤ l(x0)
}

, (5)

where AF = {θ = (θt)1≤t≤N : θt ∈ Θt−1, t = 1, · · · , N} is the set of admissible strategies and ρ is
a shortfall risk measure defined by (1). Let us note that the cash invariance property of ρ implies

that for any initial wealth v ∈ R, ρ
(

H − V v,θ
N

)

= ρ
(

H − V 0,θ
N

)

+ v. Hence, a solution of (5) (if

any exists) does not depend on v. Consequently, without loss of generality, we will assume that

the initial wealth v is equal to 0 and we will write V θ
N for V 0,θ

N throughout the rest of the paper.

Remark 2.1. Most of the cited papers consider the case of non-negative contingent claims and,
more generally, impose admissibility condition on the value of the portfolio. Here, though in a
discrete-time context, we consider a more general framework since we allow for contingent claims
with a non-constant sign and we do not introduce admissibility condition on the portfolio so that
the static risk minimization problem (5) can not be solved using Neyman-Pearson lemma.

We will impose the following absence of arbitrage property (NA):

(NA) : ∀θ ∈ AF ,
(

V 0,θ
N ≥ 0 a.s. =⇒ V 0,θ

N = 0 a.s.
)

(6)

There is a well-known duality result between the no-arbitrage property (6) and the existence of
some equivalent martingale measure, it is the so-called fundamental theorem of asset pricing. It
was proved in discrete time financial market models by several authors, see e.g. [42], [40] and [24]
among others. We will denote by P(P) the class of all probability measures on (Ω,F) which are
equivalent to P and under which the (discounted) price process S is a martingale. Hence, (NA)
implies that P(P) 6= ∅.

2.2 A two steps control stochastic problem

Looking at the right hand side of (5), a natural idea in order to solve the shortfall risk minimization
problem (5) is to proceed in two steps as follows:

• the first step consists in solving for every ξ ∈ R, the following stochastic control problem,

inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

(7)

• once computed an optimal solution to (7) (if any), say θ∗(ξ), ξ ∈ R, the second step consists
in finding the lowest solution ξ∗ of the following equation

inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

= E

[

l(−H + V
θ∗(ξ)
N − ξ)

]

= l(x0). (8)
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Next proposition shows that, as expected, proceeding following these two steps provides an
optimal strategy to the risk minimization problem (5).

Proposition 2.1. Let l : R → R+ be a non-decreasing convex function satisfying (2). Suppose

that (NA) is satisfied. Assume that ∀ξ ∈ R, ∃ θ∗(ξ) ∈ AF such that E

[

l(−H + V
θ∗(ξ)
N − ξ)

]

=

infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

< +∞. Then, we have

inf
θ∈AF

ρ(H − V θ
N ) = inf

{

ξ ∈ R : inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

≤ l(x0)

}

= ξ∗

where ξ∗ is the lowest solution of (8).

Proof. First note that for every ξ ∈ R, θ ∈ AF ,

E

[

l(−H + V
θ∗(ξ)
N − ξ)

]

= inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

≤ E

[

l(−H + V θ
N − ξ)

]

,

so that,

{

ξ ∈ R : E
[

l(−H + V θ
N − ξ)

]

≤ l(x0)
}

⊂
{

ξ ∈ R : inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

≤ l(x0)

}

.

Now, let P∗ ∈ P(P) such that dP∗

dP < K a.s. for some deterministic constantK < +∞. The existence
of such probability measure is established in [24], Theorem 3 p.264. Consequently, using Jensen’s
inequality one finds that

E

[

l(−H + V
θ∗(ξ)
N − ξ)

]

= EP∗

[

l(−H + V
θ∗(ξ)
N − ξ)

dP

dP∗

]

>
1

K
l (−EP∗[H]− ξ) ,

and since EP∗ [|H|] < KE [|H|] < +∞, we obtain that limξ→−∞ infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

= +∞,
which finally implies that the set

{

ξ ∈ R : infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

≤ l(x0)
}

is bounded from

below. For ξ ≥ 0, we have l(−H + V
θ∗(0)
N − ξ) ≤ l(−H + V

θ∗(0)
N ) ∈ L1(P), so that Lebesgue’s

dominated convergence theorem implies that

lim
ξ→+∞

inf
θ∈AF

E
[

l(−H + V θ
N − ξ)

]

≤ lim
ξ→+∞

E
[

l(−H + V
θ∗(0)
N − ξ)

]

= l ≤ l(x0).

Hence, we have inf
{

ξ ∈ R : infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

≤ l(x0)
}

∈ R ∪ {+∞}. Consequently, for
all θ ∈ AF , we always have

ρ(H − V θ
N ) ≥ inf

{

ξ ∈ R : inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

≤ l(x0)

}

, (9)

which implies that: infθ∈AF
ρ(H − V θ

N ) ≥ inf
{

ξ ∈ R : infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

≤ l(x0)
}

. Now,
the function ξ 7→ infθ∈AF

E
[

l(−H + V θ
N − ξ)

]

is non-increasing, convex and finite-valued, hence, it
is continuous. Consequently, the infimum in the right-hand side of (9) is reached at some point ξ∗,
which is the lowest solution of the equation

inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

= l(x0).

It is easy to see that the strategy θ∗(ξ∗) ∈ AF satisfies the following inequality

ξ∗ := inf

{

ξ : inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

≤ l(x0)

}

≤ inf
{

ξ : E
[

l(−H + V
θ∗(ξ∗)
N − ξ)

]

≤ l(x0)
}

,
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and it is clear that ξ∗ ∈
{

ξ : E
[

l(−H + V
θ∗(ξ∗)
N − ξ)

]

≤ l(x0)
}

, which implies

ξ∗ = inf
{

ξ : E
[

l(−H + V
θ∗(ξ∗)
N − ξ)

]

≤ l(x0)
}

= ρ(H − V
θ∗(ξ∗)
N ).

Conversely, the strategy θ∗(ξ∗) ∈ AF always satisfies: infθ∈AF
ρ(H − V θ

N ) ≤ ρ(H − V
θ∗(ξ∗)
N ) = ξ∗

which yields the announced equality: infθ∈AF
ρ(H − V θ

N ) = ρ(H − V
θ∗(ξ∗)
N ) = ξ∗.

2.3 Minimizing expected loss: a dynamic programming approach

In this section, we prove the existence of an optimal strategy for the stochastic control problem (7)
using an argument based on a dynamic programming principle in a non Markovian framework (see
[16], [37]). The only result which is not elementary and that will be used is a measurable selection
theorem.

Assumption 2.1. For every ξ ∈ R, ∃θ̄(ξ) ∈ AF such that E
[

l(−H + V
θ̄(ξ)
N − ξ)

]

< +∞.

Working with regular conditional expectations, we will denote by Dt(w) the smallest affine
subspace of Rd containing the support of the regular conditional distribution of ∆St with respect
to Ft−1. Under (NA), one shows that it is an Ft−1-measurable random vector subspace of Rd (see
[24] for more details). We will assume throughout the rest of the paper that Dt 6= {0}, a.s., for
t = 1, · · · , N .

In order to prove the existence of an optimal strategy θ∗(ξ), ξ ∈ R, that minimizes the expected
loss, we introduce the following Bellman’s function:

ϕN (ξ, θ1, · · · , θN ) := l(−H + V θ
N − ξ), a.s.

for all ξ ∈ R, θ ∈ AF ; for 0 ≤ t < N and for all ξ ∈ R, (θ1, · · · , θt) ∈ Θ0 × · · · ×Θt−1,

ϕt(ξ, θ1, · · · , θt) := ess inf
θt+1∈Θt

E [ϕt+1(ξ, θ1, · · · , θt+1)| Ft] , a.s. (10)

We will need the following characterization of (NA) whose statement and proof may be found
in [37], see Proposition 3.3; see also [24]. We recall it here for sake of completeness.

Lemma 2.2. Suppose that (NA) is satisfied. Then, for t = 0, · · · , N−1, there exists Ft-measurable
random variables βt, κt > 0 such that

∀ut+1 ∈ Θt ∩Dt+1, such that |ut+1| = 1 a.s., P (ut+1.∆St+1 > βt| Ft) ≥ κt a.s.

We will also need a measurable selection theorem, see e.g. [9] Theorem 82, p. 252, for a first
version. Actually, we will use a slightly different version that is stated in [24] (see p.266 Lemma 5)
which is more suited for our purposes.

Lemma 2.3. Let G be a polish space (i.e. a complete separable metric space) with its Borel σ-field
G. Let (H,H, µ) be a measure space and let A be an H ⊗ G-measurable subset of H × G, with
H-projection π(A) = {x : ∃y, (x, y) ∈ A}. There exists an G-valued H-measurable function Y such
that (x, Y (x)) ∈ A for µ-almost all x ∈ π(A).

Proposition 2.4. Let l : R → R+ be a non-decreasing convex function satisfying (2). Suppose
that (NA), Assumption 2.1 are satisfied and that the conditional distribution of ∆St+1 given Ft is
continuous (no affine hyperplane has positive mass) for 0 ≤ t < N . The functions

(θt+1, · · · , θN ) 7→ E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)∣

∣

∣

∣

∣

Ft

]

, 0 ≤ t < N,
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are lower semi-continuous (l.s.c.), convex and satisfy

lim
|(θt+1,··· ,θN )|→+∞

(θt+1,··· ,θN )∈Θt×···×ΘN−1

E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)∣

∣

∣

∣

∣

Ft

]

= +∞, a.s.

for any ξ ∈ R and any Ft-measurable R-valued random variable X.

Proof. The convexity follows easily from the convexity of l. Let t ∈ {0, · · · , N − 1} and ξ ∈ R. The
lower semi-continuity of this function is equivalent to its sequential lower semi-continuity. Take
a sequence (θkt+1, · · · , θkN )k≥0 of Θt × · · · × ΘN−1 such that (θkt+1, · · · , θkN ) → (θt+1, · · · , θN ). The
continuity of l and conditional Fatou’s Lemma implies that

lim inf
k
E

[

l

(

−H +

N
∑

ℓ=t+1

θkℓ .∆Sℓ +X − ξ

)∣

∣

∣

∣

∣

Ft

]

≥ E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)∣

∣

∣

∣

∣

Ft

]

a.s.

Hence, (θt+1, · · · , θN ) 7→ E

[

l(−H +
∑N

ℓ=t+1 θℓ.∆Sℓ +X − ξ)
∣

∣

∣
Ft

]

(w) is l.s.c, for P-almost all w.

For the last statement, following the lines of the proof of Proposition 2.1, we consider P∗ ∈ P(P)
such that dP∗

dP < K a.s. for some K < +∞. One may assume that there exists I ⊆ {t+ 1, · · · , N}
such that |θi| → +∞, for all i ∈ I. Denote by i = min I ≥ t+1. Using Baye’s rule and conditional
Jensen’s inequality, we have

E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)∣

∣

∣

∣

∣

Fi

]

= EP∗

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)

dP

dP∗

∣

∣

∣

∣

∣

Fi

]

× E

[

dP∗

dP

∣

∣

∣

∣

Fi

]

≥ 1

K
l

(

−EP∗

[

H| Fi

]

+

i
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)

× E

[

dP∗

dP

∣

∣

∣

∣

Fi

]

,

which leads to the following inequality,

E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)
∣

∣

∣

∣

∣

Fi−1

]

≥ 1

K
E

[

l

(

−EP∗

[

H| Fi

]

+

i
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)

×dP∗

dP

∣

∣

∣

∣

Fi−1

]

.

Now, the convexity of l implies that

2l

(

1

2
θi.∆Si

)

≤ l

(

−EP∗

[

H| Fi

]

+

i
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)

+l

(

EP∗

[

H| Fi

]

−
i−1
∑

ℓ=t+1

θℓ.∆Sℓ −X + ξ

)

,

so that it is sufficient to prove that

lim
|θi|→+∞

E

[

l

(

1

2
θi.∆Si

)

dP∗

dP

∣

∣

∣

∣

Fi−1

]

= +∞, a.s.
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Suppose that |θi| 6= 0, a.s., since l is a non-decreasing and non-negative function, we have

l

(

1

2
θi.∆Si

)

≥ l

(

1

2
|θi|

θi
|θi|

.∆Si

)

1{ θi
|θi|

.∆Si>βi−1

} ≥ l

(

1

2
|θi|βi−1

)

1{ θi
|θi|

.∆Si>βi−1

},

which leads to

E

[

l

(

1

2
θi.∆Si

)

dP∗

dP

∣

∣

∣

∣

Fi−1

]

≥ l

(

1

2
|θi|βi−1

)

P∗
(

θi
|θi|

.∆Si > βi−1

∣

∣

∣

∣

Fi−1

)

E

[

dP∗

dP

∣

∣

∣

∣

Fi−1

]

≥ l

(

1

2
|θi|βi−1

)

ess inf
ui∈Θi∩Di, |ui|=1

P∗ (ui.∆Si > βi−1

∣

∣Fi−1

)

E

[

dP∗

dP

∣

∣

∣

∣

Fi−1

]

.

Since the conditional distribution of ∆Si given Fi−1 is continuous, u 7→ P∗ (u.∆Si > βi−1

∣

∣Fi−1

)

(w)
is continuous on the compact set Sd(0, 1)∩Di(w) for P-almost all w, where Sd(0, 1) :=

{

u ∈ Rd : |u| = 1
}

denotes the (compact) unit sphere. Hence, there exists some ūi ∈ Θi ∩Di such that, |ūi| = 1, a.s.
and

P∗ ( ūi.∆Si > βi−1

∣

∣Fi−1

)

= ess inf
ui∈Θi∩Di, |ui|=1

P∗ (ui.∆Si > βi−1

∣

∣Fi−1

)

a.s.

Now, using Lemma 2.2, we clearly get P
(

ūi.∆Si > βi−1

∣

∣Fi−1

)

> 0, a.s., consequently we have
P∗ ( ūi.∆Si > βi−1

∣

∣Fi−1

)

> 0, a.s. Hence, finally, we get that

lim
|θi|→+∞

E

[

l

(

1

2
θi.∆Si

)

dP∗

dP

∣

∣

∣

∣

Fi−1

]

= +∞, a.s.

which implies,

lim
|θi|→+∞,

θi∈Θi−1,i∈I

E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ +X − ξ

)
∣

∣

∣

∣

∣

Fi−1

]

= +∞, a.s.

One concludes using the tower property of conditional expectation and conditional Fatou’s Lemma.

Now we are in position to state the main result of this paper. We prove the existence of an
optimal strategy to the stochastic control problem (7) (and consequently to the problem (5)) by
means of the dynamic programming backward induction (10). The proof is postponed to appendix
5.1 and relies on classical arguments from stochastic control theory.

Theorem 2.5. Let l : R → R+ be a non-decreasing convex function satisfying (2). Suppose
that (NA), Assumption 2.1 are satisfied and that the conditional distribution of ∆St+1 given Ft is
continuous for 0 ≤ t < N . For all 0 ≤ t < N , ξ ∈ R, (θ1, · · · , θt) ∈ Θ0 × · · · × Θt−1, there exists
(θ∗t+1, · · · , θ∗N ) ∈ Θt × · · · ×ΘN−1 such that

ϕt(ξ, θ1, · · · , θt) = E

[

l(−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ − V θ
t − ξ)

∣

∣

∣

∣

∣

Ft

]

,

= ess inf
(θt+1,··· ,θN )∈Θt×···×ΘN−1

E

[

l(−H + V θ
N − ξ)

∣

∣

∣
Ft

]

,

where θ∗t+1(w) = θ∗t+1(ξ, V
θ
t (w), w) ∈ Θt, for almost all ξ ∈ R, and the Rd-valued function

(ξ, x, w) 7→ θ∗t+1(ξ, x, w) is B(R)⊗ B(R)⊗Ft-measurable.

9



Let us note that since the function ξ 7→ infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

is non-increasing, convex
and finite-valued by assumption 2.1, it is continuous. Hence, the infimum ξ∗ ∈ R ∪ {+∞} of the
set
{

ξ : infθ∈AF
E
[

l(−H + V θ
N − ξ)

]

≤ l(x0)
}

is the lowest solution of

inf
θ∈AF

E

[

l(−H + V θ
N − ξ)

]

= l(x0).

Now set φ∗
1 := θ∗1(ξ

∗, v) and define inductively

φ∗
t+1 := θ∗t+1(ξ

∗, V φ∗

t ), 1 ≤ t ≤ T − 1.

The predictability of the process θ∗ implies that the strategy φ∗ is a F-predictable process. More-
over, using a backward induction it is easy to see that

E

[

l(−H + V φ∗

N − ξ∗)
]

= ϕ0(ξ
∗) = inf

θ∈A
E

[

l(−H + V θ
N − ξ∗)

]

= l(x0).

Hence, φ∗ ∈ A is the optimal strategy for the risk minimization problem (5).

2.4 First order conditions

In this section, we want to find an analytical characterization of the optimal strategy θ∗. We
start by deriving the backward first order conditions associated to the backward dynamic program-
ming equations (10). That will allow us to devise (later on) numerical procedures to estimate the
quantities of interest in a Markovian framework.

In order to derive the backward dynamic programming equations associated to the first order
conditions, we consider a family of regular conditional distributions (Πℓ)0≤ℓ≤N−1 where Πℓ(dy, dx) :=
Πℓ(w, dy, dx) denotes the regular conditional distribution of the N + 1-tuple (H,∆S1, · · · ,∆SN )
given Fℓ. We make the following assumption

Assumption 2.2. (i) The function l is continuously differentiable and satisfies: l′(x)
l(x) ≤ C, when

|x| → +∞.

There exists α > 1 such that for every 0 < t ≤ N the two following properties are satisfied:

(ii) There exists (θ̃t+1, · · · , θ̃N ) ∈ Θt × · · · ×ΘN−1 such that for every R > 0,

sup
(x,θt)∈B̄1(0,R)×B̄d(0,R)

E

[

l2α

(

−H +
N
∑

ℓ=t+1

θ̃ℓ.∆Sℓ + θt.∆St + x− ξ

)
∣

∣

∣

∣

∣

Ft−1

]

< +∞ a.s.

for any ξ ∈ R, where B̄d(0, R) denotes the closed ball of radius R in Rd,

(iii) and, E
[

|∆St|2α
∣

∣

∣
Ft−1

]

< +∞ a.s.

Theorem 2.6. Suppose that the assumptions of Theorem 2.5 are satisfied as well as assumption 2.2
above. Then, for every 1 ≤ t < N , for every (θ1, · · · , θt−1) ∈ Θ0 × · · · ×Θt−2, for every ξ ∈ R, the
function θt 7→ E [ϕt(θ1, · · · , θt)| Ft−1] is differentiable with a gradient given by

E

[

∆Stl
′
(

−H +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + V θ
t − ξ

)
∣

∣

∣

∣

∣

Ft−1

]

.

Hence, the optimal strategy at time t, θ∗t ∈ Θt satisfies

E

[

∆Stl
′
(

−H +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ∗t .∆St + V θ
t−1 − ξ

)
∣

∣

∣

∣

∣

Ft−1

]

= 0 a.s. (11)

Once again the proof is postponed to appendix 5.2 and relies on classical arguments from
stochastic control theory.
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3 Computational and numerical aspects of shortfall risk hedging

In this section, we are concerned by the problem of computing the shortfall risk and the optimal
strategy for the risk minimization problem. In a first step, we propose a Robbins-Monro (RM)
stochastic algorithm for estimating the shortfall risk. Then, we propose a method to estimate the
optimal strategy and the shortfall risk for the special case of one-step trading strategies. Finally,
we consider the case of dynamic strategies. We propose a (vector) quantization based dynamic
programming algorithm which intensively relies at each time step on stochastic approximation or
Newton-Raphson optimization algorithms.

3.1 Estimating the shortfall risk: a Robbins-Monro algorithm

In this part, we study the problem of computing the shortfall risk of a financial position X ∈ Lp(P).
We will assume that the function l is strictly increasing and satisfies (2) with l < l(x0) (otherwise
ρ(X) = +∞ for any X ∈ Lp(P)). Moreover, we suppose that for every M > 0, E [l(−X +M)] <
+∞ so that the function ξ 7→ E [l(−X − ξ)] is continuous. Hence, ρ(X) is the unique solution of
the equation:

E [l(−X − ξ)] = l(x0).

We set K(ξ, x) := l(−x−ξ)− l(x0), x ∈ R. Since we are looking for ξ for which E [K(ξ,X)] = 0,
we may rely on the so-called Robbins-Monro algorithm to estimate such quantity. First, we need
the following assumption

Assumption 3.1. There exists a non-negative continuous function ϕ such that:

E
[

l2(−X − ξ)
]

≤ C(1 + ϕ(ξ)), ξ ∈ R,

for some constant C > 0.

Then, we slightly modify the function K by setting H(ξ, x) := 1
(1+ϕ(ξ))1/2

K(ξ, x), x ∈ R, so that

we have
{ξ ∈ R : E [H(ξ, x)] = 0} = {ξ ∈ R : E [K(ξ, x)] = 0} .

Now, we are in position to implement the following RM algorithm to estimate ρ(X):

ξn = ξn−1 + γnH(ξn−1,Xn), n ≥ 1, (12)

where (Xn)n≥1 is an i.i.d. sequence of random variables with the same distribution as X, indepen-
dent of ξ0, with E [|ξ0|] < +∞ and (γn)n≥1 is a positive deterministic sequence (decreasing to 0)
satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞. (13)

Remark 3.1. Assumption 3.1 is satisfied for a wide range of loss functions including the two
classical examples l(x) = eλx, λ > 0 (take ϕ(ξ) := e−2λξ , ξ ∈ R) and l(x) := xp1x≥0 (take
ϕ(ξ) := ξ2p, ξ ∈ R), even if for the exponential case, ρ(X) is explicitly known. This function ϕ
will play the role of a normalization factor with the well-known consequence in practice that if ϕ is
not a sharp upper bound and takes too large values compared to l, the algorithm may eventually
freeze and the “CLT” regime will take place later than it would with a sharper upper bound.

Proposition 3.1. Suppose that Assumption 3.1 is fulfilled and that the step sequence (γn)n≥1

satisfies (13). Then,
ξn

a.s.−→ ρ(X), n → +∞,

where (ξn)n≥0 is the recursive sequence defined by (12).
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Proof. We just have to check that the function H of the algorithm (12) and its mean h(.) :=
E [H(.,X)] satisfies the assumptions of the classical Robbins-Monro Theorem (see e.g. [13] or [29]):

• Mean reverting assumption: since the function l is increasing for every ξ ∈ R, ξ 6= ρ(X), we
have

(ξ − ρ(X))h(ξ) =
1

(1 + ϕ(ξ))1/2
(ξ − ρ(X)) (E [l(−X − ξ)]− l(x0)) < 0.

• Linear growth assumption: thanks to Assumption 3.1, the linear growth assumption of the
function ξ 7→ ‖H(.,X)‖2 is fulfilled since this function is clearly bounded.

Consequently, Robbins-Monro’s Theorem yields ξn
a.s.−→ ρ(X), n → +∞ and in every Lp, p ∈

[1, 2).

As concerns the rate of convergence, once again (12) is a regular stochastic approximation
algorithm that behaves as described in usual Stochastic Approximation Theory textbooks, see e.g.
[6], [12] or [29]. Hence, under standard assumptions, the sequence (ξn)n≥0 satisfies a Central Limit

Theorem (CLT) at rate
√

γ−1
n . It suggests to set γn = α

β+n , n ≥ 1, α, β > 0. If the function l

satisfies E [l′(−X +R)] < +∞, for every R > 0, then one shows that h is differentiable and

h′(ρ(X)) = − 1

(1 + ϕ(ρ(X)))1/2
E
[

l′(−X − ρ(X))
]

.

Now, general results about stochastic approximation algorithm say that if α > 1
−2h′(ρ(X))

then
√
n (ξn − ρ(X))

L−→ N
(

0, σ2
α

)

where σ2
α = Var(H(ρ(X),X)) α2

−2αh
′
(ρ(X))−1

. The function α 7→ σ2
α

reaches its minimum for α∗ = 1
−h′(ρ(X))

leading to the optimal asymptotic variance

σ2
∗ = σ2

α∗ =
Var (H(ρ(X),X))

h′(ρ(X))2
=

E
[

(l(−X − ρ(X)) − l(x0))
2
]

E [l′(−X − ρ(X))]2
(14)

Hence, the optimal rate of convergence is not influenced by the normalizing function ϕ but the
choice of α is difficult since the quantity h′(ρ(X)) is unknown to the user. This will induce a (more
or less) blind choice for the constant α. One solution to overcome this difficulty can be to use a
rough estimate of the quantity h′(ρ(X)) using very few iterations at the beginning of the algorithm.
Actually, we didn’t meet this difficulty in our numerical experiments.

A well-known method to circumvent the difficulties induced by the specification of α, which
are classical in this field, is to add one component to our first algorithm (12) by introducing the
empirical mean of the sequence (ξn)n≥1 implemented with a slowly decreasing step according to
the averaging principle of Ruppert and Polyak (see e.g. [36], [41]). It consists in setting γn = α

nc ,
α > 0, 1

2 < c < 1 and

ξ̄n+1 :=
1

n+ 1

n
∑

k=0

ξk = ξ̄n − 1

n+ 1

(

ξ̄n − ξn
)

, n ≥ 0

where (ξn)n≥0 is the sequence defined by (12) starting at ξ0. The Ruppert and Polyak’s Averaging
Principle says that the sequence (ξ̄n)n≥0 (which converges toward ρ(X)) satisfies a CLT at the
optimal rate

√
n and with the optimal asymptotic variance (14).
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3.2 Shortfall risk minimization using a one step strategy

In this part, we are concerned by the computational aspects of the risk minimization problem in the
special case where the holder of the portfolio faced with the contingent given by the FN -measurable
random variable H ∈ Lp(P) hedges his risk using a one step strategy decided at time t = 0. For
many reasons (transaction costs, difficulties to store energy assets, ...), the holder of a portfolio
may not want to trade every day but may be only interested by a rough hedge to reduce its risk so
it is an interesting case in practice. In energy markets, practitioners may be interested by a rough
hedge of their loss using only few forward contracts (which are the only assets available for hedging
purpose), especially when dealing with physical assets like gas storage or power plant. Moreover,
this rough optimal portfolio will serve as a proxy to build (later on) dynamic hedging strategies.

• The general case: The problem (7) and (8) can be written

inf
θ∈Rd

E [l(−H + θ.X − ξ)] = l(x0), with X := SN − S0,

which amounts, under the assumptions of Theorem 2.6, to the computation of (ξ∗, θ∗(ξ∗)) ∈ R×Rd

solution of the following systems of d+ 1 non-linear equations of d+ 1 unknowns

E [l(−H + θ.X − ξ)] = l(x0) (15)

E
[

Xl′ (−H + θ.X − ξ)
]

= 0 (16)

For sake of simplicity, we assume that l is increasing and strictly convex so that the above
systems of non-linear equations admits an unique solution (ξ∗, θ∗) which will be the target of our
algorithm.

We set h(ξ, θ) := (E [l(−H + θ.X − ξ)]− l(x0),E [Xl′ (−H + θ.X − ξ)]), (ξ, θ) ∈ R × Rd. We
assume that l is twice differentiable and that for every R > 0,

E

[

∣

∣XXT
∣

∣ sup
θ∈B̄d(0,R)

l′′(−H + θ.X +R)

]

< +∞, E
[

|X| l′(−H +R |X|+R)
]

< +∞. (17)

Under these assumptions, using Lebesgue’s dominated convergence theorem, one shows that h is
differentiable and that Dh is given by

Dh(ξ, θ) =

(

−E [l′(−H + θ.X − ξ)] E [Xl′(−H + θ.X − ξ)]
−E [Xl′′(−H + θ.X − ξ)] E

[

XXT l′′(−H + θ.X − ξ)
]

)

(18)

One can approximate h and Dh using Monte Carlo simulation with n samples

hn(ξ, θ) =

(

1

n

n
∑

k=1

l(−Hk + θ.Xk − ξ)− l(x0),
1

n

n
∑

k=1

Xkl
′ (−Hk + θ.Xk − ξ)

)

(19)

and

Dhn(ξ, θ) =

(

− 1
n

∑n
k=1 l

′(−Hk + θ.Xk − ξ) 1
n

∑n
k=1Xkl

′ (−Hk + θ.Xk − ξ)
− 1

n

∑n
k=1Xkl

′′(−Hk + θ.Xk − ξ) 1
n

∑n
k=1XkX

T
k l

′′ (−Hk + θ.Xk − ξ)

)

. (20)

where (Hk,Xk)1≤k≤n is an i.i.d. sequence of d+1 random vectors having the distribution of (H,X).
If P (X 6= 0) > 0 and (17) is satisfied, then for n large enough there is an index k ∈ {1, · · · , n} such
that Xk 6= 0 so that the system of d+1 non-linear equations of d+1 unknowns hn(ξ, θ) = 0 admits
a unique solution (ξ∗n, θ

∗
n) and the matrix Dhn(ξ

∗
n, θ

∗
n) writes

Dhn(ξ
∗
n, θ

∗
n) =

(

− 1
n

∑n
k=1 l

′(−Hk + θ∗n.Xk − ξ∗n) 0
− 1

n

∑n
k=1Xkl

′′(−Hk + θ∗n.Xk − ξ∗n)
1
n

∑n
k=1XkX

T
k l

′′ (−Hk + θ∗n.Xk − ξ∗n)

)

.
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and is invertible. As a consequence, by storing the random variables (Hk,Xk)1≤k≤n in the computer
memory, the solution (ξ∗n, θ

∗
n) can be computed with very good accuracy using few steps (usually

5 are enough) of Newton-Raphson’s optimization algorithm. If z0 := (ξ0, θ0) is sufficiently close to
(ξ∗n, θ

∗
n) then if we set zk = (ξk, θk) the recursive algorithm

zk+1 = zk −Dhn(zk)
−1hn(zk), zk := (ξk, θk), k ≥ 0, (21)

is known to converge toward (ξ∗n, θ
∗
n).

Though this procedure is only locally convergent, Newton-Raphsons algorithm is attractive
because it converges rapidly from any sufficiently good initial guess under standard assumptions.
Our numerical results indicates that (21) converges quickly in few iterations and we didn’t observe
the failure of convergence in our examples. In order to obtain a globally convergent algorithm, one
may devise the method of steepest descent as the Armijo rule as explained in classical Non-linear
Optimization textbooks like [10], [31]. However, these methods requires more computational efforts
than the classical Newton-Raphson’s algorithm. Hence, in this paper, we only considered (21).
This kind of Newton-Raphson’s algorithm combined with Monte Carlo simulation has already been
investigated in [25] as an alternative method to stochastic approximation algorithm to estimate the
optimal change of measure in the context of variance reduction technique by importance sampling
for normal random vectors. We will not enter into technicalities at this stage but it is possible
to prove that (ξ∗n, θ

∗
n) a.s. converges toward (ξ∗, θ∗), n → +∞, the unique solution of (15) and

(16) following an easy adaptation of Proposition 1.2 in [25] which follows from the local uniform
convergence of hn to the continuous function h under the assumptions introduced above.

• The case of exponential loss function: Let us note that in the case of the exponential loss
function l(x) := eλx, λ > 0, x ∈ R the system (15), (16) can be greatly simplified:

ξ∗ =
1

λ
log
(

E

[

eλ(−H+θ∗.X−x0)
])

, x0 ∈ R, (22)

where θ∗ is the unique solution of E
[

Xeλ(−H+θ.X)
]

= 0. This optimal one step strategy can
be estimated using a classical stochastic gradient algorithm derived from the Lyapunov function

L : θ 7→ E
[

eλ(−H+θ.X)
]

. We suppose that E
[

|X|2e−2λH+λ|X|2
]

< +∞, so that by setting

K1(θ, h, x) := φ(θ)xeλ(−h+θ.x), with φ(θ) :=
1

(

1 + e2λ|θ|2
)1/2

we have {θ : E[K1(θ,H,X)] = 0} =
{

θ : E[eλ(−H+θ.X)] = 0
}

and one may devise the following re-
cursive scheme

θn+1 = θn − γn+1K1(θn,Hn+1,Xn+1), n ≥ 0, (23)

where (Hn,Xn)n≥1 is an i.i.d. sequence of random vectors with the same distribution as (H,X),
independent of θ0, with E [|θ0|] < +∞ and (γn)n≥1 is a positive deterministic sequence (decreasing
to 0) satisfying (13). A straightforward application of Robbins-Monro’s theorem yields the a.s.
convergence of the sequence (θn)n≥0 toward θ∗ as n → +∞. A natural idea in order to estimate ξ∗

given by (22) is to devise an averaging compagnon procedure derived from (23) namely, ξ0 = 0 and
for n = 1, 2, · · · ,

ξn+1 :=
1

λ
log(Cn+1) with Cn+1 :=

1

n+ 1

n
∑

k=0

eλ(−Hk+1+θk.Xk+1) = Cn−
1

n+ 1
K2 (θn, Cn,Hn+1,Xn+1)

(24)
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where K2(θ,C, h, x) := C − eλ(−h+θ.x). One can also consider a slight modification of (24) which
consists in using both procedure with the same step size (γn)n≥1 satisfying (13), as proposed in [2]
for the recursive estimation of the Value-at-Risk and the Conditional Value-at-Risk. This leads to
the more consistent procedure which can be written as for n ≥ 0







θn+1 = θn − γn+1K1(θn,Hn+1,Xn+1), θ0 ∈ Rd

Cn+1 = Cn − γn+1K2 (θn, Cn,Hn+1,Xn+1) , C0 = 0,
ξn+1 = 1

λ log(Cn+1).

Using similar argumentation as those used in [2] for the convergence of the VaR-CVaR procedure,
one shows that the above recursive procedure satisfies (θn, Cn)

a.s.−→ (θ∗, C∗) as n → +∞, where
C∗ = eλξ

∗
and that the sequence of interest (θn, ξn)n≥1 satisfies a CLT under standard assumptions.

Hence, our numerical results for the exponential case will be built on the procedure (3.2) instead
of (21).

3.3 Dynamic shortfall risk minimization in a Markovian framework

In practical example, the R-valued random variable H can be written as a function of a process
(St, Zt)1≤t≤N , i.e. H = φ(S,Z), where S is the underlying prices process and Z is a hidden Rq-
valued and F-measurable process. Typically, in the electricity market, Z can be considered as
the temperature process or some consumption process and H may modelize the loss suffered by
an energy company due to an anormal annual electricity (or gas) consumption. In this kind of
modelization, Z is the source of incompleteness of the financial market. We suppose that Ft :=
σ((Ss, Zs), s ≤ t), t = 1, · · · , N .

For simplicity’s and clarity’s sake, we will only consider the case of European contingent claim,
i.e. the case where H does not depend of the whole trajectory of the process (S,Z) but only of
its value at maturity N so that we can write H = φ(SN , ZN ). In order to simplify the numeri-
cal computation of conditional expectations that appear in the first order dynamic programming
conditions (11), we will suppose that the process (S,Z) is a Markov chain, as it is the case if it
is a stochastic differential equation discretized using the Euler-Maruyama scheme, for instance.
More specifically, we will suppose that for every t = 1, · · · , N there exists two measurable functions
Gt : R

d × Rq × Rrt → Rd, Ft : R
d ×Rq × Rrt → R such that

St − St−1 = Gt(St−1, Zt−1, Ut) and H = Ft(St−1, Zt−1, Ut), (S0, Z0) ∈ Rd ×Rq

where Ut is an rt-dimensional random variable independent of Ft−1. Under this markovian frame-
work, we introduce the following functions:

Vt(θ, v, st−1, zt−1) := E [vt(θ, v, st−1, zt−1)] ,

where

vt(θ, v, st−1, zt−1) := Gt (st−1, zt−1, Ut)

× l′
(

−Ft(st−1, zt−1, Ut) +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ.Gt(st−1, zt−1, Ut) + v

)

with θ ∈ Rd, v ∈ R, st−1 ∈ Rd, zt−1 ∈ Rq. With these notations, the first order condition (11) at
time t ∈ {1, · · · , N} can be written a.s.

E

[

∆Stl
′
(

−H +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ∗t .∆St + V θ
t−1 − ξ

)
∣

∣

∣

∣

∣

Ft−1

]

= Vt(θ
∗
t , V

θ
t−1 − ξ, St−1, Zt−1) = 0.

(25)
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Consequently, in order to compute θ∗t , we need to solve the local optimization problem (25) for
each V θ

t−1 − ξ and (St−1(w), Zt−1(w)), w ∈ Ω. This highlights the numerical complexity in solving
(25). In practice, one must discretize the values taken by V θ

t−1 − ξ, (St−1, Zt−1) and is led to make
some approximations.

When the dimension of the random vector to be generated (St−1, Zt−1), which is equal to d+ q,
is large (greater than 10 in practice), one can only rely on Monte Carlo simulations and solves (25)
using n samples

Vt(θ
∗,k
t , V θ

t−1 − ξ, Sk
t−1, Z

k
t−1) = 0, k = 1, · · · , n

where
(

Sk
t−1, Z

k
t−1

)

1≤k≤n
are i.i.d. random vectors having the distribution of (St−1, Zt−1). The

problem amounts to solving n systems of d non-linear equations of d unknowns θ∗,kt .
When the dimension (St−1, Zt−1) is small, one may use an integration cubature formula based

for instance on a spatial discretization of (St−1, Zt−1). A commonly used method in such context
is optimal vector quantization. Thus, we consider an (possibly non optimal) Mt-quantization
(Ŝt−1, Ẑt−1) of the random vector (St−1, Zt−1), where for t = 1, · · · , N , Mt is a positive integer,

based on a quantization grid Γt :=
(

(s1t−1, z
1
t−1), · · · , (sMt

t−1, z
Mt
t−1)

)

. Then, one solves Mt systems of

d non-linear equations of d unknowns

Vt(θ
∗,j
t , V θ

t−1 − ξ, sjt−1, z
j
t−1) = 0, j = 1, · · · ,Mt. (26)

For more details about optimal vector quantization, including error bounds for cubature formulas,
we refer to [34]. This first form (26) is not satisfactory from an algorithmic point of view. Indeed,
in order to devise a fully implementable numerical procedure one has to discretize the real-valued
Ft−1-measurable random variable V θ

t−1 − ξ. This is clearly impossible in all generality since we do
not have access to its law and we don’t know the value of (θℓ)1≤ℓ≤t−1. Hence, we are naturally led
to make an approximation which consists in supposing that V θ

t−1 − ξ takes values in a prespecified
(sufficiently large) interval [vt−1, vt−1]. Then, we consider a discrete grid (vit−1)1≤i≤It of It points
of [vt−1, vt−1] and then for each vit−1, we solve the above equation. Finally, this leads us to solve
Mt × It systems of d non-linear equations of d unknowns:

Vt(θ
∗,i,j
t , vit−1, s

j
t−1, z

j
t−1) = 0, i = 1, · · · , It, j = 1, · · · ,Mt. (27)

For the sake of simplicity, we will temporarily drop (sjt−1, z
j
t−1) in the above notations and try

to emphasize how this system can be solved at each time step and for each nodes. Hence, we will
denote Gt(U) for Gt(s

j
t−1, z

j
t−1, Ut), Ft(U) for Ft(s

j
t−1, z

j
t−1, U) and by v the value of the portfolio

vit−1. The local system (27) writes

E

[

Gt(U)l′
(

−Ft(U) +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ∗t .Gt(U) + v

)]

= 0. (28)

A natural method to estimate the (local) zero θ∗t in (28) is to use a stochastic gradient algorithm

derived from the (local) Lyapunov function θ 7→ E

[

l
(

−Ft(U) +
∑N

ℓ=t+1 θ
∗
ℓ .∆Sℓ + θ.Gt(U) + v∗

)]

.

We make the following growth control of l′, typically, |l′(x)| ≤ C(1 + eax), x ∈ R, a,C > 0 and we

suppose that E
[

Gt(U)4e−4aFt(U)+4a
∑N

ℓ=t+1 θ
∗
ℓ .∆Sℓ

]

< +∞ and that there exists a function φ such

that E
[

e4aθ.Gt(U)
]

≤ φ(θ), θ ∈ Rd. These assumptions are satisfied if the price process S is given
by a discretized stochastic differential equation using an Euler scheme, so that in this case Gt(U)
is normally distributed. Now, one sets

K(θ, U,∆St+1, · · · ,∆SN ) :=
1

1 + φ(θ)
Gt(U)l′

(

−Ft(U) +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ.Gt(U) + v

)
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so that one may devise the following recursive scheme

θn+1 = θn − γn+1K(θn, Un+1,∆Sn+1
t+1 , · · · ,∆Sn+1

N ), n ≥ 0 (29)

where (Un+1,∆Sn+1
t+1 , · · · ,∆Sn+1

N ) is an i.i.d. sequence of random vectors with the same distribution
as (U,∆St+1, · · · ,∆SN ), and (γn)n≥1 is a positive deterministic sequence (decreasing to 0) satisfying
(13). A straightforward application of Robbins-Monro’s theorem yields the a.s. convergence of the
sequence (θn)n≥1 toward the local θ∗t , as n → +∞.

As proposed in Section 3.2, one can also consider the deterministic counterpart of (29), i.e. a
Newton-Raphson’s algorithm built with n samples, namely

θi+1 = θi −Dkn(θi)
−1kn(θi), i ≥ 0 (30)

where for θ ∈ Rd,

kn(θ) :=
1

n

n
∑

j=1

Gt(Uj)l
′
(

−Ft(Uj) +

N
∑

ℓ=t+1

θ∗ℓ .∆Sj
ℓ + θ.Gt(Uj) + v

)

Dkn(θ) :=
1

n

n
∑

j=1

Gt(Uj)Gt(Uj)
T l′′
(

−Ft(Uj) +

N
∑

ℓ=t+1

θ∗ℓ .∆Sj
ℓ + θ.Gt(Uj) + v

)

.

The main disavantage of Newton-Raphson’s algorithm (30) compared to (29) is that it is known
to converge only locally. However, in our numerical results, we observed that few steps of (30) are
needed to estimate θ∗t with a very good precision.

Remark 3.2. Let us note that in the case of the exponential loss l(x) := eλx, λ > 0, x ∈ R, we
don’t need to discretize the value of V θ

t−1 − ξ since the system (25) greatly simplifies and becomes:

E

[

∆Ste
λ(−H+

∑N
ℓ=t+1 θ

∗
ℓ .∆Sℓ+θ∗t .∆St)

∣

∣

∣
Ft−1

]

= 0, a.s.

which can be written

E
[

Gt(st−1, zt−1, Ut)e
λ(−Ft−1(st−1,zt−1,Ut)+

∑N
ℓ=t+1 θ

∗
ℓ .∆Sℓ+θ∗t .Gt(st−1,zt−1,Ut))

]

|(st−1,zt−1)=(St−1,Zt−1)
= 0 a.s.

so that, one only needs to discretize the random vector (St−1, Zt−1) using Monte Carlo simulation
or optimal vector quantization as presented above.

4 Numerical tests

In the examples below, we consider four different loss functions:

• lexp(x) = ex/50, x ∈ R and x0 = 0 which corresponds to the entropy risk measure with
λ = 1/50. Note that in this case, the shortfall risk can be computed by a classical Monte
Carlo method using (4).

• lp(x) = xp1{x≥0}, x ∈ R, x0 = 1 and we take p = 2, 3, 4. For those risk measures, the risk is
estimated using the Robbins-Monro algorithm described in section 3.1.

Using these loss functions, we will be interested in estimating the associated shortfall risks, a
one step risk minimizing strategy and dynamic self-financed strategies.
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l No hedging One step hedging θ∗

lexp -18.68 ±0.0241 -21.32 ±0.02121 -14.70
l2 -1.95 ±0.00178 -3.98 ±0.00768 -4.25
l3 -1.56 ±0.00098 -2.65 ±0.00483 -2.32
l4 -1.40 ±0.00067 -2.09 ±0.00324 -1.45

Table 1: Shortfall risk estimation and One Step risk hedging of Spark Spread option

4.1 Shortfall hedging of Spark Spread Option

We consider a portfolio composed of an exchange option between gas and electricity (called Spark
Spread) of maturity T = 1 year. Since Electricity has very limited storage possibilities, the holder
of this option hedges by trading only a gas forward contract of maturity T . The process Z can be
considered as the electricity spot price since it is observable on the energy market but cannot be used
to set up hedging strategies. We choose to model the price (Se

t )0≤t≤T of the electricity spot contract
and the price (F g

t,T )0≤t≤T of the gas forward contract of maturity T by two independent geometric
Brownian motions. Given that the price of the gas forward at maturity T is F g(T, T ) = Sg(T ), the
payoff H of this contingent claim can be written

H =
(

Se
T − hRS

g
T − C

)

+
,

where the heat rate hR = 4BTU/kWh (BTU: British Thermal Unit), the generation costs C =
3$/MWh, the two volatilities σg = 0.4, σe = 0.8 and the electricity and gas initial spot prices are
Se
0 = 40$/MWh, Sg

0 = 3$/MMBTU.

• Shortfall risk and One step hedging: A crude Monte Carlo gives E [L] = 27.35 ± 0.0436
(±0.0436 corresponds to the width of the confidence interval at level 95%) with a variance of 1487
after 3 000 000 trials. Concerning the Robbins-Monro algorithm (12), we define the step sequence
by γn = 1

np+100 , with p = 3
4 . Note that for each case, the shortfall risk and optimal strategies are

computed using the same pseudo-random number generator initialized with the same seed. Results
about shortfall risk estimations and one step hedging are summarized in Table 1. The first column
corresponds to the loss function. The second column corresponds to the risk without any hedging
using the Robbins-Monro algorithm developed in section 3.1 with its confidence interval at level
95%. The third column is the estimate of the shortfall risk with a one step risk minimization
strategy and the fourth is the estimate of the optimal strategy θ∗. Both estimates are obtained
using the procedure developed in section 3.2. We observed that few steps are needed for the
Newton-Raphson’s algorithm (21) to converge, usually less than 10 steps is enough to estimate
(ξ∗, θ∗) with a very good precision.

• Dynamic hedging: To complete this example, we experiment our algorithms to compute the
optimal self-financed dynamic strategy. We consider three different values for the number of trading
dates: N = 2 (one trade per semester), N = 4 (one trade per trimester) and N = 6 (one trade
each two months). All layers in the quantization tree of the random vector (Se

t , F
g
t,T ) have the same

size, i.e. M = M1 = · · · = MN , taking three possible values M = 5, 10, 20. Note that actually at
time step t, we consider an M -quantization grid of N (0, I2):

{

(g11 , g
1
2), · · · , (gM1 , gM2 )

}

. A sharply
optimized database of quantizers of standard univariate and multivariate Gaussian distributions is
available on the web site www.quantize.maths-fi.com for download. Hence, we obtain a (non-
optimal) quantization grid of (Se

t , S
g
t ), namely, for j = 1, · · · ,M ,

se,jt = Se
0e

−σ2
e
2
t+σe

√
tgj1 , f g,j

t,T = F g
0,T e

−σ2
g
2
t+σg

√
tgj2 .
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To determine the interval [vt, vt], a natural idea is to replace the random variable V θ
t − ξ by

θ∗.(St − S0) − ξ∗ where (ξ∗, θ∗) is the solution of the one step risk hedging problem and to fix a
(possibly non uniform) grid for this random variable. Hence in this example, we consider identical
intervals [vt, vt] = [v, v], t = 2, · · · , N − 1 and we set v = −15, v = 15 with a uniform grid of 40
points. At each node of this grid (i.e. for each node of the quantization grid and each discrete point
of the interval), we devise a Newton-Raphson’s algorithm to estimate the optimal local strategy.
We observed that few steps (less than five) are needed for this local optimization algorithm to
converge. The results are summarized in Table 2. We can see that dynamic hedging significantly
reduces the risk compared to one step hedging. However, one step hedging appears as a good
”rough” hedge for an investor who does not want to hedge regularly. At each node of the dynamic
programming backward algorithm, we observe that few iterations are needed to estimate the local
strategy.

N M lexp l2 l3 l4

2 5 -21.88 ±0.0211 -4.65 ±0.0167 -2.98 ±0.0174 -2.26 ±0.0149
10 -22.09 ±0.0208 -4.76 ±0.0197 -3.12 ±0.0184 -2.34 ±0.0169
20 -22.15 ±0.0205 -4.78 ±0.0197 -3.15 ±0.0172 -2.38 ±0.0178

4 5 -22.20 ±0.0212 -5.21 ±0.0203 -3.25 ±0.0192 -2.52 ±0.0197
10 -22.58 ±0.0201 -5.50 ±0.0233 -3.56 ±0.0154 -2.65 ±0.0205
20 -22.68 ±0.0198 -5.54 ±0.0211 -3.64 ±0.0142 -2.71 ±0.0188

6 5 -22.31 ±0.0197 -5.61 ±0.0189 -3.59 ±0.0166 -2.58 ±0.0208
10 -22.76 ±0.0203 -5.81 ±0.0224 -3.76 ±0.0176 -2.74 ±0.0208
20 -22.85 ±0.0196 -5.84 ±0.0194 -3.84 ±0.0194 -2.77 ±0.0212

Table 2: Dynamic risk hedging of Spark Spread option

A natural application of our approach consists in the pricing of contingent claims in incomplete
discrete time markets using the risk indifference principle. This recent approach has been proposed
by [27], [47] and [33] among others. The buyer’s (shortfall) risk indifference price pb is the initial
payment that makes a person at time 0 risk indifferent between buying the contract with payoff
H and not buying the contract, with no initial payment. Hence, it is given by

inf
θ∈AF

ρ(H − pb − V θ
N ) = inf

θ∈AF

ρ(−V θ
N ),

so that, using the invariance by translation property of ρ, we have

pb = inf
θ∈AF

ρ(−V θ
N )− inf

θ∈AF

ρ(H − V θ
N ). (31)

Consequently, we see that using the algorithm proposed in section 3.3, we are in position to fully
characterize the buyer’s risk indifference price pb since we are able to estimate pb and the corre-
sponding minimizing strategies for each prices. Note that in this example, since the price of the gas
forward contract is a (F ,P)-martingale we have infθ∈AF

ρ(−V θ
N ) = ρ(0) in our four cases. Hence,

given that for l = lexp, ρ(0) = 0 and for l = l2, l3, l4, ρ(0) = −1, the computation of the buyer’s
price is straightforward. Results are summarized in Table 3.

Remark 4.1. Let us note that we can do the same for the seller’s (shortfall) risk indifference price
ps which is the initial payment that makes a person at time 0 risk indifferent between selling the
contract with payoff H and not selling the contract, with no initial payment. Hence, it is clear that
ps is given by

ps = inf
θ∈AF

ρ(V θ
N −H)− inf

θ∈AF

ρ(V θ
N ). (32)
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Prices lexp l2 l3 l4
pb 22.8 4.8 2.8 1.8

Table 3: Buyer’s risk indifference price of spark spread option with M = 10 and N = 6.

No hedging One step hedging

l d = 2 d = 3 (d, d′) = (2, 1) (d, d′) = (3, 1) (d, d′) = (3, 2)

lexp -2.15 ±0.0167 -1.55 ±0.0128 -2.23 ±0.0145 -1.58 ±0.0157 -1.61 ±0.0105
l2 -1.18 ±0.00130 -1.15 ±0.00117 -1.29 ±0.0324 -1.21 ±0.0254 -1.28 ±0.0204
l3 -1.12 ±0.00083 -1.10 ±0.00076 -1.18 ±0.0254 -1.13 ±0.0230 -1.17 ±0.0196
l4 -1.09 ±0.00061 -1.08 ±0.00056 -1.13 ±0.0232 -1.10 ±0.0198 -1.12 ±0.0155

Table 4: Shortfall risk estimation and One Step risk hedging of Basket options with d = 2, 3,
d′ = 1, 2, T = 1, Si

0 = 50, σi = 0.3, wi = 1/d, i = 1, · · · , d, K = 55.

Hence, we see that the seller’s risk indifference price can also be computed using the procedures
developed in 3.3.

4.2 Shortfall hedging of Basket option

We consider basket options with payoffs given by
(

∑d
i wiS

i
T −K

)

+
where (w1, · · · , wd) is the

vector of weights, K denotes the strike, T is the maturity and Si
T is the price at maturity of the

ith asset. We assume that each of the d assets has a price given by a Black-Scholes model driven
by the vector of independent Brownian motions W =

(

W 1
t , · · · ,W d

t , t ≥ 0
)

,

Si
t = Si

0e
(r−σ2

i
2
)t+σiW i

t
L
= Si

0e
(r−σ2

i
2
)t+σi

√
tZi , S0 =

(

S1
0 , · · · , Sd

0

)

,

where Z = (Z1, · · · , Zd) is a Gaussian vector of size d. The source of incompleteness of the market
comes from the fact that there are some assets that are observable but not available for trade. This
situation may happen if the transaction costs of some assets which appear in the basket option are
too high. We suppose that the investor trades only the first d′(< d) assets, i.e. he uses them to build
our optimal risk minimizing strategies. We compute the shortfall risks and the optimal dynamic
strategies for different values of d and d′. The (non-optimal) quantization grids of (Si

t)1≤i≤d are
calculated from the optimal quantization grid of (Zi)1≤i≤d and have the same size M = 10. The
number of trading dates N = 4 is fixed and the number of Monte Carlo simulations is 300,000
in every case. Following the idea proposed in 4.1, we consider identical intervals [vt, vt] = [v, v],
t = 2, · · · , N − 1 and we set v = −5 and v = 5 with a uniform grid of 10 points. Note that for each
case, the shortfall risk and optimal strategies are computed using the same pseudo-random number
generator initialized with the same seed. Results are summarized in Table 4 for the shortfall risk
computation and the one step hedging. Results are summarized in Table 5 for the dynamic case.
One deduces easily the buyer’s risk indifference prices of each Basket option using those results.
Once again, we observe that a one step hedging is a good hedge and dynamic hedging refines this
first result. As expected, using 2 assets rather than one provides a better reduction of the risk.

4.3 Shortfall hedging of gas consumption

At time T = 1 (year), an energy provider buys on the gas market a quantity CT of gas at price
F g
T,T = Sg

T and sells it to consumers at a fixed price K = 11e/MWh. The quantity CT denotes the
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Dynamic hedging

l (d, d′) = (2, 1) (d, d′) = (3, 1) (d, d′) = (3, 2)

lexp -2.26 ±0.0072 -1.60 ±0.0113 -1.63 ±0.0052
l2 -1.41 ±0.0039 -1.25 ±0.0026 -1.40 ±0.0037
l3 -1.24 ±0.0024 -1.15 ±0.0016 -1.23 ±0.0026
l4 -1.16 ±0.0018 -1.12 ±0.0011 -1.15 ±0.0021

Table 5: Dynamic risk hedging of Basket options with d = 2, 3, d′ = 1, 2, T = 1, Si
0 = 50, σi = 0.3,

wi = 1/d, i = 1, · · · , d, K = 55, M = 10, N = 4.

consumption at time T and is equal to CT = a−bZT , where a = 10 Mwh and b = 0.3 MWh/ ◦Cand
ZT is the temperature at time T . The temperature is modeled by a Gaussian Ornstein-Uhlenbeck
process so that it is given by

ZT = e−λTZ0 +m(1− e−λT ) + σZ

√

1− e−2λT

2λ
G1,

with Z0 = 11◦C, λ = 0.02, m = 11◦C, σZ = 6◦C and G1 ∼ N (0, 1). The gas forward price of
maturity T is modeled as a geometric Brownian motion with F g

0,T = 11 e/MWh and the Brownian
motion of gas spot price is correlated with the one of the temperature, ρ = −0.2, namely

F g
t,T = F g

0,T e
−σ2

T
2

t+σT

√
t
(

ρG1+
√

1−ρ2G2

)

,

where σT = 0.4, G2 ∼ N (0, 1), and is independent of G1. Consequently, the loss suffered by the
energy provider at time T is given by

L = (F g
T,T −K)CT .

The energy provider uses a self-financed static strategy based on the gas forward price of maturity
T in order to reduce its shortfall risk at time t0 = 0 and wants to compare the shortfall risk
and the shortfall (one-step and dynamic) hedges. A crude Monte Carlo gives E[L] = 1.57 ± 0.12
with a variance of 1088 after 300 000 trials. The number of Monte Carlo simulations used in all
procedures is set to 300 000 and the pseudo-random number generator is initialized with the same
seed. Concerning dynamic hedging strategies, the number of trading dates N = 4 is fixed. We
obtain a (non-optimal) quantization grid of (F g

t,T , Zt) of size M = 10, namely, for j = 1, · · · ,M ,

f g,j
t,T = F g

0,T e
−σ2

T
2

t+σT

√
t
(

ρgj1+
√

1−ρ2gj2

)

, zjt = e−λtZ0 +m(1− e−λt) + σZ

√

1− e−2λt

2λ
gj1.

Concerning the discretization of the portfolio values, as explained before we consider identical
intervals [vt, vt] = [v, v], t = 2, · · · , N − 1 and we set v = −50 and v = 50 with a uniform grid of
10 points. Results are summarized in Table 6. Surprisingly, we see that the entropy risk becomes
negative when we use a one step or a dynamic hedging strategy. In this example, one step hedging
greatly reduces the risk of this position and a dynamic hedges significantly improves this rough
hedge. For power risk measures, dynamic strategies are able to divide the risk by a factor between
2 and 3.
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5 Appendix

5.1 Proof of Theorem 2.5

We proceed by backward induction.
Step 1: At step N − 1, we solve the following stochastic control problem

ϕN−1(ξ, θ1, · · · , θN−1) := ess inf
θN∈ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣FN−1

]

, a.s.

Let w ∈ Ω and (θ1, · · · , θN−1) ∈ Θ0 × · · · × ΘN−2. By virtue of Proposition 2.4, the function defined by
θN (w) 7→ E

[

l(−H + θN .∆SN + V θ
N−1 − ξ)

∣

∣FN−1

]

(w) = f(ξ, V θ
N−1(w), θN (w), w), where f is the associated

regular conditional expectation, is l.s.c., convex and coercive. Consequently, there always exists θ̄ ∈ Rd such
that f(ξ, V θ

N−1(w), θ̄, w) = infφ∈Rd f(ξ, V θ
N−1(w), φ, w). It is clear that (ξ, x, θ, w) 7→ f(ξ, x, θ, w) is an

B(R)⊗B(R)⊗B(Rd)⊗FN−1-measurable function and (ξ, x, w) 7→ infφ∈Rd f(ξ, x, φ, w) is an B(R)⊗B(R)⊗
FN−1-measurable function. Hence, the set

A =

{

(w, ξ, x, θ) ∈ Ω× R× R× Rd : f(ξ, x, θ, w) = inf
φ∈Rd

f(ξ, x, φ, w)

}

is FN−1 ⊗ B(R) ⊗ B(R) ⊗ B(Rd)-measurable. Its projection on Ω × R × R is equal to Ω × R × R. Then
Lemma 2.3 yields an B(R)⊗ B(R)⊗FN−1 measurable vector θ∗N such that

f(ξ, x, θ∗N (ξ, x, w), w) = inf
φ∈Rd

f(ξ, x, φ, w)

for P-almost all w ∈ Ω, λ-almost all ξ ∈ R and λ-almost all x ∈ R. Consequently, the random variable
θ∗N (ξ, V θ

N−1(.), .) : Ω → Rd is FN−1-measurable and provides the optimal strategy at step N − 1 satisfying

ϕN−1(ξ, θ1, · · · , θN−1) = E
[

l(−H + θ∗N .∆SN + V θ
N−1 − ξ)

∣

∣FN−1

]

, a.s.

Step 2: Now, suppose that at step t, we have constructed (θ∗t+1, · · · , θ∗N ) ∈ Θt × · · · ×ΘN−1 such that

ϕt(ξ, θ1, · · · , θt) = ess inf
θt+1∈Θt

E [ϕt+1 (ξ, θ1, · · · , θt+1, w)| Ft]

= E

[

l(−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ − V θ
t − ξ)

∣

∣

∣

∣

∣

Ft

]

,

= ess inf
(θt+1,··· ,θN )∈Θt×···×ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣Ft

]

.

Hence, it is clear that the function ϕt−1 satisfies the following equalities

ϕt−1(ξ, θ1, · · · , θt−1) = ess inf
θt∈Θt−1

E [ϕt (ξ, θ1, · · · , θt)| Ft−1]

= ess inf
θt∈Θt−1

E

[

E

[

l(−H +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ − V θ
t − ξ)

∣

∣

∣

∣

∣

Ft

]∣

∣

∣

∣

∣

Ft−1

]

,

= ess inf
(θt,··· ,θN )∈Θt−1×···×ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

.
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Proposition 2.4 implies that the function (θt, · · · , θN) 7→ E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

is l.s.c., convex and
coercive so that for every c < +∞, the following set

{

θt : ess inf
(θt+1,··· ,θN )∈Θt×···×ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

(w) ≤ c

}

=

Proj1
{

(θt, · · · , θN ) : E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

(w) ≤ c
}

is compact, for P-almost all w ∈ Ω, where Proj1 denotes the projection onto the first coordinate. Conse-
quently, the function θt 7→ ess inf(θt+1,··· ,θN )∈Θt×···×ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

is l.s.c. It is clear that
it is a convex function. The coercivity follows using similar arguments than those used in the proof of
Proposition 2.4. Hence, following the arguments used in Step 1 yields an B(R) ⊗ B(R) ⊗ Ft−1 measurable
vector θ∗t := θ∗t (ξ, V

θ
t−1(w), w) such that

ϕt−1(ξ, θ1, · · · , θt−1) = E [ϕt (ξ, θ1, · · · , θ∗t )| Ft−1]

= E

[

l(−H +
N
∑

ℓ=t

θ∗ℓ .∆Sℓ + V θ
t−1 − ξ)

∣

∣

∣

∣

∣

Ft−1

]

= ess inf
(θt,··· ,θN)∈Θt−1×···×ΘN−1

E
[

l(−H + V θ
N − ξ)

∣

∣Ft−1

]

,

for P-almost all w ∈ Ω and λ-almost all ξ ∈ R. This concludes the proof.

5.2 Proof of Theorem 2.6

We proceed by backward induction.
Step 1: For t = N , we want to derive the first order condition associated to the one-step stochastic control
problem

ess inf
θN∈ΘN−1

E
[

l(−H + θN .∆SN + V θ
N−1 − ξ)

∣

∣FN−1

]

.

To this end, we prove that the functionGN−1 : (x, θ) 7→ E [gN (H,∆SN , x, θ, ξ)| FN−1], with gN(H,∆SN , x, θ, ξ) :=
l(−H+θ.∆SN+x−ξ), is differentiable and compute its gradient. In order to justify the formal differentiation,
we compute the local gradient which is clearly given by

∇xgN(H,∆SN , x, θ, ξ) = l′(−H + θ.∆SN + x− ξ)

∇θgN(H,∆SN , x, θ, ξ) = ∆SN l′(−H + θ.∆SN + x− ξ).

Using assumption 2.2 (i), we clearly have

∣

∣∇(x,θ)gN (H,∆SN , x, θ, ξ)
∣

∣ ≤ (|∆SN |+ 1) l′ (−H + θ.∆SN + x− ξ)

≤ C (|∆SN |+ 1) l (−H + θ.∆SN + x− ξ)

consequently, in order to justify the local differentiation under (conditional) expectation, we prove that for
every R > 0, the family of random variables

{

(|∆SN |+ 1) l (−H + θ.∆SN + x− ξ) ; (x, θ) ∈ B̄1(0, R)× B̄d(0, R)
}

is (conditinally) uniformly integrable. This may be justified as follows. Assumption 2.2 (ii), (iii) and
Cauchy-Schwarz’s inequality implies that for α > 1,

sup
(x,θ)∈B̄1(0,R)×B̄d(0,R)

E [ (|∆SN |+ 1)
α
lα (−H + θ.∆SN + x− ξ)| FN−1] ≤ CE

[(

|∆SN |2α + 1
)∣

∣

∣
FN−1

]1/2

× sup
(x,θ)∈B̄1(0,R)×B̄d(0,R)

E
[

l2α (−H + θ.∆SN + x− ξ)
∣

∣FN−1

]1/2
< +∞ a.s.

Hence the function GN−1 is continuously differentiable and we have

∇(x,θN )GN−1(V
θ
N−1, θN) = E

[

∇(x,θ)gN (H,∆SN , V θ
N−1, θN )

∣

∣FN−1

]
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and θ∗N satisfies
E
[

∆SN l′(−H + θ∗N .∆SN + V θ
N−1 − ξ)

∣

∣FN−1

]

= 0, a.s.

In order to complete this first step, we prove that gN−1 : x 7→ ess infθN∈ΘN−1
E [ l(−H + θN .∆SN + x− ξ)| FN−1] =

ess infθN∈ΘN−1
GN−1(x, θN ) is differentiable. This is the so-called envelope theorem. Let x ∈ R and h > 0.

The optimality of θ∗N (x) implies that

gN−1(x± h)− gN−1(x) ≤ GN−1(x± h, θ∗N (x)) −GN−1(x, θ
∗

N (x)),

so that using the convexity of gN−1, we obtain

GN−1(x− h, θ∗N (x))−GN−1(x, θ
∗

N (x))

−h
≤ gN−1(x− h)− gN−1(x)

−h

≤ gN−1(x+ h)− gN−1(x)

h
≤ GN−1(x+ h, θ∗N (x)) −GN−1(x, θ

∗

N (x))

h
.

Hence, letting h → 0 and using the differentiability of GN−1 yields the result. The continuous differentiability
of GN−1 assures that one can plug V θ

N−1 into the gradient of GN−1.

Step 2: At step t, we suppose that the function

x 7→ ess inf
(θt+1,··· ,θN )∈Θt×···×ΘN−1

E

[

l(−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ + x− ξ)

∣

∣

∣

∣

∣

Ft

]

is differentiable with a derivative given by E

[

l′(−H +
∑N

ℓ=t+1 θ
∗

ℓ .∆Sℓ + x− ξ)
∣

∣

∣
Ft

]

and we want to derive

the first order condition associated to the stochastic control problem

ess inf
θt∈Θt−1

E

[

ess inf
(θt+1,··· ,θN)∈Θt×···×ΘN−1

E

[

l(−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ + V θ
t − ξ)

∣

∣

∣

∣

∣

Ft

]∣

∣

∣

∣

∣

Ft−1

]

.

The proof uses similar arguments as those used in Step 1. We introduce the function Gt−1 defined for every
(x, θ) ∈ R× Rd by

Gt−1(x, θ) = E

[

ess inf
(θt+1,··· ,θN )∈Θt×···×ΘN−1

E

[

l

(

−H +

N
∑

ℓ=t+1

θℓ.∆Sℓ + θ.∆St−1 + x− ξ

)
∣

∣

∣

∣

∣

Ft

]
∣

∣

∣

∣

∣

Ft−1

]

.

The local gradient is clearly bounded by

(|∆St−1|+ 1)E

[

l′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ.∆St−1 + x− ξ

)∣

∣

∣

∣

∣

Ft

]

so that, using assumption 2.2 (i), this quantity is bounded by

C (|∆St−1|+ 1)E

[

l

(

−H +
N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ.∆St−1 + x− ξ

)∣

∣

∣

∣

∣

Ft

]

≤ C (|∆St−1|+ 1)E

[

l

(

−H +
N
∑

ℓ=t+1

θ̃ℓ.∆Sℓ + θ.∆St−1 + x− ξ

)∣

∣

∣

∣

∣

Ft

]

.

Consequently, in order to justify the local differentiation under (conditional) expectation, we prove that for
every R > 0, the family of random variables

(

(|∆St−1|+ 1)E

[

l

(

−H +

N
∑

ℓ=t+1

θ̃ℓ.∆Sℓ + θ.∆St−1 + x− ξ

)∣

∣

∣

∣

∣

Ft

]

; (x, θ) ∈ B̄1(0, R)× B̄d(0, R)

)
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is (conditinally) uniformly integrable. Actually, it uses assumptions 2.2 (ii), (iii) and similar arguments as
those used in Step 1. Hence, the function Gt−1 is continuously differentiable and we have

∇θGt−1(V
θ
t−2, θt−1) = E

[

∆St−1E

[

l′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θt−1.∆St−1 + V θ
t−2 − ξ

)
∣

∣

∣

∣

∣

Ft

]
∣

∣

∣

∣

∣

Ft−1

]

= E

[

∆St−1l
′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θt−1.∆St−1 + V θ
t−2 − ξ

)
∣

∣

∣

∣

∣

Ft−1

]

,

and,

∇xGt−1(V
θ
t−2, θt−1) = E

[

E

[

l′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θt−1.∆St−1 + V θ
t−2 − ξ

)∣

∣

∣

∣

∣

Ft

]∣

∣

∣

∣

∣

Ft−1

]

= E

[

l′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θt−1.∆St−1 + V θ
t−2 − ξ

)∣

∣

∣

∣

∣

Ft−1

]

,

so that, θ∗t−1 satisfies

E

[

∆St−1l
′

(

−H +

N
∑

ℓ=t+1

θ∗ℓ .∆Sℓ + θ∗t−1.∆St−1 + V θ
t−2 − ξ

)
∣

∣

∣

∣

∣

Ft−1

]

= 0 a.s.

In order to complete the proof, we have to prove that the function defined by gt−1 : x 7→ ess infθt∈Θt−1
Gt−1(x, θt)

is differentiable. This is again the envelope theorem. It follows easily using similar arguments as those used
in the end of step 1.
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