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Abstract

Refactoring is a kind of endogenous model transformation. Its aim is to restructure applications without changing

their external behavior. Several studies have been carried out on the refactoring of UML models specifically on the

refactoring of UML class diagram models. During refactoring, the OCL constraints associated with these UML class

diagram models are omitted or manually rewritten, which often leads the system to an inconsistent state. We propose

an approach to transform, as automatically as possible, these OCL constraints using the transformation model. This

approach uses the used transformation model to find a sequence of basic refactoring operations that once applied to the

initial model leads to the final model. Thus, we can use an already known results for OCL constraint transformations

in case of stepwise model refactoring.

Keywords: UML models, OCL constraints, refactoring, model transformation

1. Introduction

Refactoring is an important activity within the domain of software maintenance [1, 2]. It is an essential activity

for handling software evolution [3]. Refactoring is defined as change to the internal structure of software to improve

certain software quality characteristics (such as understandability, modifiability, reusability, modularity, adaptability)

without changing its observable behavior [4]. In the domain of Model Driven Engineering (MDE), refactoring is

considered as a type of endogenous model transformation [5]. Indeed, the modification of a source model is done by

model transformation to produce a target model so that both models conform to the same metamodel. Several studies

have already been carried out on the refactoring of models, in particular in UML [6] models and especially on the

refactoring of UML class diagram models [7, 8]. Beyond the capabilities of UML graphical diagrams to elaborate

UML models, constraints are added to allow for the precision needed to write executable models [9]. These constraints

are described using the Object Constraint language(OCL) [10]. Current UML model refactoring, especially UML

class diagram refactoring, concentrate on the diagrammatic part, but the OCL constraints are neglected and become

incoherent with the new model [11]. The solution used thus far is to modify them manually, which is very time

consuming and error prone [12].

We propose an approach to transform, as automatically as possible, the OCL constraint invariants associated with

UML models. For this, we use the transformation model that was used to transform the UML model to which the

constraints are associated. Our approach is independent from any model transformation language, because it considers

the transformation model as a “Black Box”. The main aim of our approach is to deduce the list of basic refactoring

operations corresponding to changes made by this “Black Box” on a given model. This list allows us to use the tool

proposed in [11] for the transformation of OCL constraints after each basic refactoring operation (stepwise approach).

The remainder of the paper is organized as follows: the next section gives details of our approach. In Section 3,

we show how to build the mapping table between elements of the initial model and those from the transformed one.
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Figure 1: The Global Approach

Section 4 concerns the extraction of the list of basic refactoring operations from the mapping table. A case study with

the implementation of our approach is presented in Section 5. And finally, before concluding in Section 7, we give an

overview of related work in Section 6.

2. Used Approach

For OCL constraints refactoring, we propose the approach described in Figure 1. The most important task in this

approach is the representation of the transformation model as an ordered set of basic refactoring operations. When

the ordered set is applied to the source model, then it leads to the same target model obtained through model transfor-

mation.

We consider the transformation model as a “Black Box”, thus our approach is independent from a particular transfor-

mation language. The sequence found does not represent the transformation model in its entirety. It represents only

the processing performed by the transformation model on the source model. The refactoring operations considered in

this work are those defined in [11] (Extract Class, Move Attribute, etc.)

To obtain the sequence of basic refactoring operations, we define three principal steps. The first step, as shown in

Figure 1, annotates the source model by adding tags to each element from the source model. The aim of this step is

to trace the source model elements. Then, we execute the model transformation to obtain an annotated target model.

Using the source and target annotated models, we build a mapping table (Step 2 in Figure 1). The mapping table

summarizes for each element from the source model its corresponding element(s) from the target model, if it still

exists.

The third step uses the obtained mapping table to compute the sequence of basic refactoring operations. Once the

sequence of basic refactoring operations is recovered and ordered, we use the approach presented in [11] for OCL

constraints refactoring (Step 4). In [11], the authors describe for each UML refactoring operation its impact on the

OCL constraint invariant associated with UML class diagram source model. The authors also identify which basic
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operations have an impact or not on the OCL constraints. Their approach was implemented as an Eclipse plugin

named Roclet [13]. Thus, by providing the obtained sequence of operations (Step 3) to Roclet, we transform the OCL

constraints of the source model into constraints that conform to the target model.

The two following sections describe, respectively, Steps 1, 2 and 3. Step 4 is just a use of Roclet and will not be

presented in this paper. For more information on using Roclet, the reader may refer to [13].

3. Tracking Model Elements

Traceability is very important during the model life cycle [14]. In the context of MDE (Model-Driven Engineer-

ing), several definitions were proposed for traceability [15, 16, 17]. According to [16], traceability can be defined as:

The ability to describe and follow the life of a requirement, in both a forwards and backwards direction (i.e., from

its origins, through its development and specification, to its subsequent deployment and use, and through periods of

on-going refinement and iteration in any of these phases).

In MDE, traces are generated through the process of model transformation as it is specified in the QVT (Query|View|

Transformation) standard [18]. Many transformation languages like ATL [19] and Kermeta [20] include the definition

of a traceability metamodel. But traceability models are often omitted when writing the transformation model. More-

over, there are different techniques to calculate differences between models. Some are based on the use of a persistent

identifier [21], while others use approximation approaches [22, 23].

In the context of refactoring, where operations are primarily used to manipulate existing elements, the existence

of a persistent identifier (defined in the metamodel) for each element of the model seems indispensable to us. This

makes the technique of comparing models, based on identifiers, the most appropriate solution. However, if we add

an identifier to each element from the initial model and then we apply the transformation model (as a black box),

there is no guarantee of finding these identifiers in the resulting model. Indeed, the current transformation languages

use internal representations for each model without, necessarily, taking into account identifiers. The problem can be

solved by adding identifiers in metamodels and forbid their modification by transformation models.

Unfortunately, metamodels do not define identifiers. For these metamodels, we propose an annotation mechanism,

which plays the role of an identifier, allowing the traceability of elements after execution of the transformation.

3.1. Source Model Annotation

The annotation mechanism aims at maintaining a traceability link between the source and target elements. The

annotation algorithm adds a tag to each model’s element. Thus, each element’s name in the model should conform to

the following BNF syntax:

NameElement::= {Mark}{Name}{Mark}{Container}{Mark}{MetaClass}{Mark}{Type}{Mark}

Mark::= [#xB-#xC] | [#xE-#x1F] | [#x7F-#x84] | [#x86-#x9F]

Name::=String

Container::= String

MetaClass::= Package | Class | Attribute | Operation

Type::= String | Integer | Boolean | Class

Mark: describes the string used to separate the different information. The choice of the mark is left to the designer

who has a minimal knowledge of the transformation language;

Container: describes the name of the direct parent of each element in the model (e.g., if the element is an attribute

then its container corresponds to the name of the class to which it belongs);

Name: describes the current element’s name;

MetaClass: describes the meta class of the current element (e.g., Package, Class, Attribute, etc.);

Type: describes the type of the current element.
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3.2. Building the Mapping Table

To be productive, traces need an adequate representation and/or visualization. In the literature, several representa-

tions (matrices, cross-references, or graph-based representations) can be found [24].

To keep the traceability link between source elements and target ones, we represent the traces in a mapping table. The

traces will be used to deduce the basic refactoring operations that will enable us subsequently to transform OCL con-

straints. This mapping table is a two dimension matrix (Source Elements, Target Elements). It is intended to simplify

the visualization and representation of the various changes made in the model.

Algorithm 1: Mapping Table Algorithm

Data: Model annotatedSourceModel, annotatedTargetModel;

Result: Table mappingTable;

foreach (sourceElt in annotatedSourceModel) do

if (sourceEl exists in annotatedTargetModel) then
Insert in the mapping table sourceElt as source element and its corresponding one in

annotatedTargetModel with the new information as target element;

else

Insert in the mapping table sourceElt as source element and null as target element;

foreach ( elt in annotatedTargetModel and not associated with an element in annotatedSourceModel) do

Insert in the mapping table null as source element and elt as target element;

To build a mapping table, we propose Algorithm 1, which analyzes the annotated source model to retrieve information

about its elements. Then, for each element, it analyzes the annotated target model to find one or more elements so that

their information matches. If so, it then verifies their current information in the target model: if they are unchanged

they will be inserted as is in the mapping table, otherwise it modifies them with new information before insertion. If

no element corresponds to the source element, then the target element is marked as Null, which means that the element

was either renamed or removed. This case will be handled in collaboration with the designer once the first version of

the table is made by the algorithm (see bellow). If there are elements in the target model without corresponding ones

in the source model (marked as Null), it means that the transformation has either created or renamed elements.

The mapping table produced by this algorithm is then proposed to the designer to take a decision about null values

in targeted element. In case of rename, we have to check that the new name is considered by our algorithm as a new

element. Then we associate these elements in the table. This processing corresponds to the collaborative step of our

approach. Indeed, without help from designer, it is impossible to decide if the situation corresponds to a rename or a

suppression .

Figure 2: Example of a mapping table

An example of a produced mapping table is given in Figure 2. The description of this mapping table is given

below:
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• (line 1) class Department is still contained in the same package;

• (line 2) name attribute has moved from class Department to class Party;

• (line 3) creation of a new association end (employeeEND) in the class Category;

• (line 4) creation of a new class (Party) in the package (Package1);

• (line 5) creation of a new class (Category) in the package (Package1);

• (line 6) creation of a new association end (categoryEnd) in the class Employee;

• (line 7) getName() operation has moved from class Department to class Party;

• (line 8) creation of a new attribute (nameCategory) in the class Category;

• (line 9 and 10) The null value at the targeted model part means that the designer has to decide (delete or rename);

• (line 11) possible creation of a new association end between class BankAccount and class Employee.

The designer’s decision may be: line 9 corresponds to a deletion, while line 10 corresponds to a renaming. To

specify the new name, it will be suggested to the designer all the elements of the table that have the same metaclass than

the renamed element and that have null as value in the initial model (supposed created). Thus, after the adjustments

made by the designer, line 9 remains as it is, while lines 10 and 11 will be unified to signify the renaming.

4. Extracting the Basic UML Refactoring Operations

After the approval of the mapping table by the designer, we compute the set of refactoring operations (third

step in Figure 1). These operations allow us to transform the OCL constraint invariants attached to the UML class

diagram source model, according to the approach proposed in [11]. Algorithms used to deduce the different refactoring

operations and the rules defined to ordain them are discussed below.

Figure 3: Property Refactoring Operations

4.1. Property Refactoring Operations

By property, we mean attribute, operation, and association end. Since the computing of basic refactoring opera-

tions is the same for all properties, we show only one algorithm that is synthesized in Figure 3.

There are four types of operations that deal with properties, they are defined as follows:

• The PullUp Property operation moves a property from a subclass to a superclass [4].

• The PushDown Property operation moves a property from a superclass to a subclass [4].
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Figure 4: Class Refactoring Operations

• The Move Property operation moves a property from a source class to target class through an association [4].

• The Rename Property operation renames a property without changing its container [4].

If the containers of both elements differ (in this case, a container is a class), then the relationship between those two

containers is tested. If the source element’s container is a superclass of the target element’s container, one can deduce

that a “PushDown Property” refactoring has occurred. If it is the target element’s container which is a superclass of

the source element’s container, then one can deduce that a “PullUp Property” has been performed.

However, if the source element does not exist, this implies that the target element has been created by the trans-

formation. Finally, if the target element does not exist, then we can deduce that the element has been removed by the

transformation. The creation or removal of properties are not considered refactoring operations. They are considered

atomic operations that contribute to refactoring operations, such as “Extract Class”.

4.2. Extract Class and Extract Superclass Refactoring Operations

According to [4], the Extract Class operation creates a new class and moves the relevant features from the old

class into the new extracted one and connects it with the old class with a new association such as the multiplicity is 1

on both sides. The Extract Superclass operation creates a superclass from two classes with similar features and moves

the common features to the superclass.

Rename Class is a refactoring operation [11] that consists in changing the class’s name. To deduce if a model

transformation has performed operations on classes, we have defined an algorithm, whose functioning is synthesized

in Figure 4.

The algorithm scans the mapping table, and for each source element whose metaclass is “Class”, its name is

compared to the target element’s name. If the latter has changed, then we can deduce that a “Rename Class” refactoring

operation has been performed.

If a source element does not exist, this means that a new class has been created. In the context of UML models

refactoring, a creation can be spawned by refactoring operations such as “Extract Class“ or ”Extract SuperClass“.

To distinguish which one of these refactoring operations has been performed, we rely on the operations realized on

properties. If a ”Move Property“ refactoring has been performed from the source class towards the target class, then

we can deduce that the refactoring is of kind ”Extract Class“. On the contrary, if a ”PullUp Property“ operation has

been performed from a source class towards a target class, this implies a refactoring of kind ”Extract SuperClass“.

Those two kind of refactoring operating on class’s properties cannot co-exist. If such a case occurs, this implies

inconsistencies during model transformation.

4.3. Ordering the Basic Refactoring Operations

The application of the previous algorithms returns a set of refactoring operations, in an undetermined order. Nev-

ertheless, as the Roclet tool is used to perform the actual refactoring (of both the model and its constraints), these

operations must be executed in a particular order so that the refactoring is properly applied. It is easily understand-

able, for example, that it is impossible to move an attribute in a class if this class has not yet been created. Besides, if

the operations are not well ordered, the model obtained after applying the refactoring operations will not be necessary

the same as the target model that results from the initial “Black Box” transformation. Therefore, the transformed OCL

constraints will not conform to the target model.

Thus, we have defined some rules for defining the order of refactoring operations:
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• Apply the operations that concern the container before the content, and so, deal with classes before properties

(attribute, operation and association ends). Indeed, as stated in the OCL metamodel [10], a constraint requires

a class as a valid context.

• Do not extract a class or a superclass from a class that has not yet been created. For example, given these two

operations:

1. ExtractClass(class2:Class, class3:Class, role1:String, role2:String);

2. ExtractSuperClass(class1:Class, class2:Class, newName:String);

One must apply the operation (2) before applying (1), because when executing the first operation, the class

class2 does not yet exist.

• Do not make operations that concern properties (Move, PullUp or PushDown) on a class that has not yet been

created. For example, if we have these two operations:

1. MoveProperty(a:Property, class1:Class, class2:Class, ae: Association End);

2. ExtractClass(class1:Class, class2:Class, role1:String, role2:String);

One must apply the operation (2) before applying (1), because, when executing the first operation, the class

class2 and the association end ae do not yet exist.

5. Illustrative Example

Figure 5 describes an example of an endogenous model transformation, the aim of which is the refactoring of a

UML model. The UML class diagram source model (left part of Figure 5) specifies information about the depart-

ments, their projects, their employees and bank accounts that are associated with both departments and employees.

Eight OCL constraints are attached to this model. The first one is the (MinSalary) constraint, it ensures that in the de-

partment no employee has a salary lower than the minSalary. The others ensure that the office number is different from

the area code (OfficeNumbDIFFoffAreaCode), that all projects have at least two project managers (AtLeastTwoPro-

jectManagers), that the project id is unique (UniqueId), that an employee is not associated to more than two projects
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Figure 6: Mapping Table and the Set of Refactoring Operations

(MaxTwoProject), that the balance of any account associated to an employee is positive (BalancePositif), that in the de-

partment there is a manager (DepartManager), that the employee name category is not empty. These OCL constraints

are described below:

c o n t e x t Depar tment inv MinSa la ry :

s e l f . employees−> s e l e c t ( e | e . s a l a r y <= s e l f . m i n S a l a r y )−> s i z e ( )=0

c o n t e x t Employee inv OfficeNumbDIFFoffAreaCode :

s e l f . o f f i ceNumber <> s e l f . o f f i c e A r e a C o d e

c o n t e x t P r o j e c t inv AtLeas tTwoP ro j ec tManage r s :

s e l f . depa r t m en t −> f o r A l l ( d | d . employees−> s e l e c t ( e | e . nameCategory= ’PM’)−> s i z e () >=2)

c o n t e x t Depar tment inv UniqueId :

s e l f . p r o j e c t s −> f o r A l l ( p | p . id −> s i z e () <=1)

c o n t e x t Employee inv MaxTwoProject :

s e l f . employer−> f o r A l l ( d | d . p r o j e c t s −> s i z e () <=2)

c o n t e x t Employee inv B a l a n c e P o s i t i f :

s e l f . a c c o u n t s −> f o r A l l ( a | a . b a l a n c e > 0)

c o n t e x t Depar tment inv Depar tManager :

s e l f . employees−> e x i s t s ( e | e . name = ’ Manger ’ )

c o n t e x t Employee inv :

s e l f . nameCategory <> ’ ’

Using a tool that we developed and named Co-refTool, we will transform the previous OCL constraints so that they

conform with the target model. The Co-refTool builds a mapping table, based on the traces between the annotated

source model and the annotated target model. This table is then submitted to the designer for approval. This step

also allows to fix mapping problems that may occur, especially when the rename of attributes or classes cannot be

detected. Once validated, Co-refTool computes the set of basic refactoring operations, and orders them according to

the previously defined ordering rules (see Section 4).

The mapping table and the set of refactoring operations corresponding to the example are summarized in Figure 6.

To produce the list of refactored OCL constraints, we use the Roclet tool [13]. This tool offers the capability of

refactoring both UML models and their associated constraints, by providing support for execution of basic refactoring

operations, as shown in Figure 7. Within Roclet, we execute the set of refactoring operations, obtained by the Co-

refTool, on the source model with its constraints. After executing these operations by stepwise adaptations, both the

source model and the OCL constraints have been refactored. Using model comparison, we can then make sure that

the latter model is the same as the target model, which was transformed using the initial “Black Box” transformation

model. Thus, this result lets us assert that the ordered set of refactoring operations produced by our Co-refTool is
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Figure 7: Using Refactoring Operations in Roclet

correct.

It is also important to note that this ordered set of operations is not the only one that could lead to the same target

model. Indeed, multiple paths can lead to the same result, and this is due to the rules applied to define the order

of operations. As Roclet transforms both a source model and its constraints, here below are the OCL constraints

associated with the target model, automatically transformed thanks to the application of the refactoring operations:

c o n t e x t Depar tment inv MinSa la ry :

s e l f . employees−> s e l e c t ( e | e . s a l a r y <= s e l f . m i n S a l a r y )−> s i z e ( ) = 0

c o n t e x t Employee inv OfficeNumbDIFFoffAreaCode :

s e l f . t e l ephoneNumber . o f f i ceNumber <> s e l f . t e l ephoneNumber . o f f i c e A r e a C o d e

c o n t e x t P r o j e c t inv AtLeas tTwoP ro j ec tManage r s :

s e l f . employee−> f o r A l l ( d | d . c a t e g o r y −> s e l e c t ( e | e . nameCategory = ’PM’)−> s i z e () >=2)

c o n t e x t Depar tment inv UniqueId :

s e l f . employees−> c o l l e c t ( p | p . p r o j e c t s )−> a s S e t ()−> f o r A l l ( p | p . id −> s i z e ()<= 1)

c o n t e x t Employee inv MaxTwoProject :

s e l f . p r o j e c t s −>a s S e t ()−> s i z e ()<= 2

c o n t e x t Employee inv B a l a n c e P o s i t i f :

s e l f . a c c o u n t s −> f o r A l l ( a | a . b a l a n c e > 0)

c o n t e x t Depar tment inv Depar tManager :

s e l f . employees−> e x i s t s ( e | e . name = ’ Manger ’ )

c o n t e x t Employee inv :
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s e l f . c a t e g o r y . nameCategory <> ’ ’

In this case study, we showed how to apply our approach for the co-refactoring of models and their OCL con-

straints. The use of Roclet for the actual refactoring of OCL constraints allows to produce syntactically correct

constraints with a preserved semantic [25].

6. Related Work

Our work concerns mainly three aspects of model transformations: refactoring of OCL constraints attached to

UML class models, transformation of OCL constraints to simplify them and finally the traceability.

In [11], the authors have presented an approach to transform OCL constraints for each basic operation of refac-

toring. Their approach is complementary to ours because our solution is based on their results. Similarly in [12], the

author proposes a method for transforming constraints that allows for the extension of a mapping defined on a few

model elements, which is called interpretation function. This function is used first to redesign UML class diagram

models. The same function is re-used to automatically translate the OCL constraints. The applicability of the approach

is demonstrated in the case of UML class diagrams models refactoring. Our approach is very similar to this approach.

Indeed, refactoring is a special case of redesign. However, their approach is theoretical and its implementation is not

obvious.

In [26], the authors propose to improve badly structured OCL constraints by identifying OCL bad smells (such

as duplicate code in the constraint). This is done for only very limited extent relationships between OCL constraints

and the underlying class diagram. In [27], the authors propose an approach to assist the designer during the definition

of the constraints by means of automatically transforming the initially defined constraints into equivalent alternatives

by changing the context of the constraints. The proposed approach is formalized as a path problem over a graph

representing the diagram. Each path between two vertices corresponds to a different context to represent the set of

constraints defined over the first vertex. In [28], the authors propose an approach to simplify the OCL constraints

generated in the context of design pattern instantiation templates, i.e., constraints expressing requirements associated

with patterns. They identify various kinds of rules that are needed for OCL simplification and pointed out differences

to usual term rewriting systems. All these work concern the second category defined above. Indeed, the simplification

of constraints is complementary to our work. As we do not insure that the transformed constraint is optimal, a step

for simplification may be very useful.

Our work is also concerned by techniques and frameworks for traceability and model comparison. Concerning

traceability, some related work have been discussed in Section 3. Besides the fact that traceability is an output artifact

of a model transformation, it can also be the result of applying techniques of versioning. The latter is necessary in the

context of MDE [29, 30, 31], because it can help to manage the evolution of models. The use of algorithms developed

for control systems, such as CVS and SVN, is incongruous in the context of MDE because the comparison is made at a

low-level [32]. Concerning model comparison techniques, the UMLDiff approach described in [23] is very interesting

because it can incorporate the semantics of the target language to provide more accurate results. However, this needs

to specify the complete matching algorithm manually, which can be a particularly challenging task and this advantage

comes at a high price [33].

There are other approaches, which can be also used to compare models, like SiDiff [34]. This approach is based

on assigning a weight to each element in the models through a configuration file. The disadvantage of this approach

is the difficulty for establishing and fine-tuning the weights of the features, which needs empirical trials and is an

error-prone process. As such, finding the exact values of weights that deliver the best results for a particular modeling

language can be particularly challenging.

7. Conclusion and Future work

Refactoring is a very important activity in the life cycle of software, because it improves its quality without

changing its external behavior. In the Model Driven Engineering context, refactoring is expressed using endogenous

transformation models. The constraints that annotate the source model, which aim is to reduce the number of valid

instances, are unfortunately omitted or manually rewritten. We have presented an approach to transform OCL con-

straints attached to a model after its refactoring. It is true that our approach applies only with some assumptions.
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Among these assumptions is the assumed knowledge of the transformation language to select a mark that does not

interfere with the latter. However, this assumption is not restrictive because in most cases the designer knows the

used transformation language. The interest of our solution is that it avoids rewriting the transformation model to trace

model elements. And as we have shown, the trace of model elements is not enough to easily translate OCL constraints.

We built our solution based on already approved results [11]. This has advantages as well as disadvantages. The

most important advantage is that part of the problem is already solved. Among disadvantages, the most important one

concerns restrictions for possible extensions given the context of the solution. Indeed, we inherit all the restrictions

of the solution. For example, we had planed to use the proposed approach to transform architectural constraints

as proposed in [35]. However, the context of the transformation is exogenous (different metamodels). But, the

solution proposed in [11] is not applicable for exogenous transformation. So, as future work, we intend to use a graph

representation of the constraint, and using the mapping table, bring the problem to a graph transformation.
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