
HAL Id: hal-00664786
https://hal.science/hal-00664786v1

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assistance System for OCL Constraints Adaptation
during Metamodel Evolution.

Kahina Hassam, Salah Sadou, Vincent Le Gloahec, Régis Fleurquin

To cite this version:
Kahina Hassam, Salah Sadou, Vincent Le Gloahec, Régis Fleurquin. Assistance System for OCL
Constraints Adaptation during Metamodel Evolution.. 15th European Conference on Software
Maintenance and Reengineering (CSMR), 2011, Mar 2011, Oldenburg, Germany. pp.151 - 160,
�10.1109/CSMR.2011.21�. �hal-00664786�

https://hal.science/hal-00664786v1
https://hal.archives-ouvertes.fr


Assistance System for OCL Constraints Adaptation

During Metamodel Evolution

Kahina Hassam

Valoria laboratory,

Université de Bretagne-Sud, France

Email: kahina.hassam@univ-ubs.fr

Salah Sadou

Valoria laboratory,

Université de Bretagne-Sud, France

Email: salah.sadou@univ-ubs.fr

Vincent Le Gloahec

Alkante SAS, France

Email: v.legloahec@alkante.com

Régis Fleurquin

Valoria laboratory,

Université de Bretagne-Sud, France

Email: regis.fleurquin@univ-ubs.fr

Abstract—Metamodels evolve over time, as well as other
artifacts. In most cases, this evolution is performed manually
by stepwise adaptation. In MDE, metamodels are described
using the MOF language. Often OCL constraints are added
to metamodels in order to ensure consistency of their instances
(models). However, during metamodel evolution these constraints
are omitted or manually rewritten, which is time consuming and
error prone.

We propose a tool to help the designer to make a decision
on the constraints attached to a metamodel during its evolution.
Thus, the tool highlights the constraints that should disappear
after evolution and makes suggestions for those which need
adaptation to remain consistent. For the latter case, we formally
describe how the OCL constraints have to be transformed to
preserve their syntactical correctness. Our adaptation rules are
defined using QVT which is the OMG standard language for
specifying model-to-model transformations.

I. INTRODUCTION

Model Driven Engineering (MDE) [1] raises the abstrac-

tion’s level of software development from code to models, with

a great emphasis on focusing the developer concerns on the

problem domain rather than on the underlying technologies.

Metamodels are the definition of abstract syntax of languages.

However, structural constructions of metamodeling languages

do not allow to express completely the syntax of a language

(e.g. context-sensitive properties). In consequence, to get co-

herent models, it is necessary to add constraints expressed

using the Object Constraint Language (OCL) [2].

Moreover, metamodels evolve over time like other software

artifacts [3], [4], due to several reasons: to be consistent with

the evolution of the application domain scope, to improve

or correct the abstract syntax of the language, etc. As a

consequence, these changes may break consistency of related

terminal models. The risks stem from the fact that constraints

attached to metamodels are either omitted or manually rewrit-

ten, which is time consuming and error prone [4], [5].

To address this problem, we propose an approach in order

to assist designers in constraint adaptation during a stepwise

evolution [6] of a metamodel. This approach consists in

identifying the impact of a change, made at the metamodel,

on its associated constraints. After each modification of the

metamodel, the assistance system shows the constraints that

become obsolete or proposes a transformation of the latter,

whenever it is possible. For constraint transformation we use

grammar adaptation. Thus, operations on metamodel are for-

malized using the QVT Relation part of the OMG’s standard

Query/Views/Transformations (QVT). For each QVT Relation,

we propose an adaptation to the constraints (also described

using QVT Relation) that involve artifacts that are modified

by the concerned operation.

In the next section we present an example that highlights

the problem raised by metamodel evolution. we describe our

approach in Section III. In Section IV, we show how to adapt

constraints to a change in their metamodel. We present an

implementation of our solution in Section V. And before

concluding in Section VII, we give some related work in

Section VI.

II. MOTIVATING EXAMPLE

The work presented in this paper was mainly initiated

by several requirements of our industrial partner, Alkante, a

company specialized in the design of Web applications and

Geographical Information Systems. To build their applications,

the company has defined its own Architecture Description

Language (ADL), referred to as AlCoWeb [7]. The abstract

syntax of this ADL is inspired by the UML2 Component

model. Along with this ADL, the company has elaborated

a complete Model-Driven platform, AlCoWeb-Builder, which

allows the graphical definition of AlCoWeb models and the

automatic code generation of corresponding Web applications.

To ensure the quality of produced models, the AlCoWeb

metamodel comes with a large set of OCL constraints that

are checked during the design stage. Due to constant im-

provements of its underlying Web development framework,

the company makes evolve its ADL accordingly, but also has

to deal with the co-evolution of OCL constraints.

The Figure 1 presents two versions of the AlCoWeb ADL

abstract syntax: on the left side, the initial version of the

ADL (AlCoWeb-v1), and on the right side, a revised version

obtained after several stepwise adaptations (AlCoWeb-v2).



AlCoWeb-V1 AlCoWeb-V2

subcomponent

Envelop
title

AbstractComponent
name
id
stereotype
level
order
xp
yp
width
height

Component

Property
name
id
type
value
call
order
visibility

Operation
name
id
type
parameters
call
order
visibility

Connector
name
id
stereotype
type

Port
name
id
stereotype
type
xp
yp

Importable
imported

property

0..*

component
0..*

0..*

binding

0..*

port
0..*

operation
0..*

end2

required 0..* provided0..*

reqPort provPort

Envelop
title

Importable
imported

AbstractComponent
name
id
level
order
xp
yp
width
height

Property
name
id
type
value
call
order
visibility

Operation
name
id
type
parameters
call
order
visibility

Connector
name
id
type

Port
name
id
type
xp
yp

RequiredInterface ProvidedInterface

Component

InstanceSpecification
stereotype

property0..*

binding
0..*

end
2

port
0..*

requiredOp
0..*

providedOp
0..*

required 1 provided1

subcomponent

0..*

component
0..*

operation

0..*

port port

reqPort provPort

ownedReqOp ownedProvOp

Fig. 1. Evolution of AlCoWeb Metamodel Over Time

OCL constraints defined on the initial version of the Al-

CoWeb metamodel allow to ensure the respect of common

component model rules and those specific to AlCoWeb mod-

els. Here are some examples of OCL constraints attached to

the initial AlCoWeb-v1 metamodel:

−−( 1 ) P r o v i d e d o p e r a t i o n s must have

−− a p u b l i c v i s i b i l i t y

c o n t e x t : P o r t

inv : s e l f . p r ov ided−>f o r A l l ( o | o . v i s i b i l i t y = ’ p u b l i c ’ )

−−( 2 ) An e n v e l o p e s h o u l d n o t c o n t a i n components

−− w i t h t h e same name

c o n t e x t : Envelop

inv : s e l f . component−>f o r A l l ( c1 , c2 | c1 <> c2

i m p l i e s c1 . name <> c2 . name )

−−( 3 ) A p o r t has e i t h e r p r o v i d e d o p e r a t i o n s ,

−− or r e q u i r e d o p e r a t i o n s , b u t n o t bo th

c o n t e x t : P o r t

inv : s e l f . r e q u i r e d −>notEmpty ( ) i m p l i e s

s e l f . p rov i ded−>isEmpty ( )

and

s e l f . p rov i ded−>notEmpty ( )

i m p l i e s s e l f . r e q u i r e d −>isEmpty ( )

Here, below, an example of changes that were made to get

the latest version of the AlCoWeb metamodel:

(i) Transform the association between metaclasses Envelop

and Component in an association between metaclasses Envelop

and AbstractComponent.

(ii) From the association between metaclasses Port and

operation, introduce a new metaclass (RequiredInterface),

(iii) From the association between metaclasses Port and

process, introduce a new metaclass (ProvidedInterface),

(iv) Extraction of a super metaclass named InstanceSpecifi-

cation from the metaclasses (AbstractComponent, Connector

and Port),

(v) Pull-up attribute stereotype, from AbstractComponent,

to the previously created metaclass InstanceSpecification,

(vi) Eliminate a stereotype property from the metaclasses

Port and Connector,

The set of consistency rules defined on the AlCoWeb

metamodel is about 30 OCL constraints. For the company,

identifying and transforming manually each constraint affected

by the evolutions of the metamodel is a tedious and time

consuming task. Although the number of constraints is not par-

ticularly huge, the complexity of some constraints makes them

difficult to maintain. The manual maintenance of constraints is

an error-prone task, which could even lead maintainers to miss

some modifications. For example, consider the constraint (3)

attached to the initial metamodel. The designer in charge of the

evolution of the metamodel, and its constraints, unfortunately

made a mistake. In this particular example, the adaptation of

the expressions self.provided->notEmpty() and self.required-

>notEmpty() had been forgotten. The constraint is still syntac-

tically valid on the new version of the AlCoWeb metamodel.

Indeed, the provided and required properties still exist. But

unfortunately, the meaning of the constraint has changed and

its application requirements are not satisfied anymore. The

problem was detected during the construction of a model

and after several attempts to circumvent it. At the end, it

became necessary to return to the metamodel and to check

the consistency of its constraints.

Such mistakes often occur, and are very time consuming for

the maintainers. That is why the evolution of constraints have

to be automated as much as possible.

III. APPROACH

Our approach is to provide i) a set of basic operations to

modify a metamodel, ii) assistance in order to adapt constraints

according to changes operated on their associated metamodel.

These basic operations are a synthesis made from those

proposed in [8], [9], [6], [10], [11].

In our approach, a metamodel evolution consists of a

sequence of basic operations. Thus, after each basic operation

we check the status of all constraints in order to identify those

which are impacted. For each impacted constraint, we can

either just point out that it becomes inconsistent, or propose

an adaptation in accordance with the performed operation.

In all cases, an inconsistent constraint is not removed until

the evolution is not completed and that the designer did not

validate its withdrawal. In other words, the set of constraints

may be inconsistent in the middle of an evolution, but it must

be consistent at the end.

A constraint is said to be consistent if its syntax is cor-

rect (accepted by an OCL compiler) and its semantic is in

agreement with the intent of the designer. If the designer does



Constraint
ID

Constraint
Context

Involved Elements Valid Adaptation

(1) Port (Port,provided,Ref),
(provided,visibility,Prop)

No No

(1’) Port (Port,provided,Ref),
(provided,providedOp,Ref),
(providedOp,visibility,Prop)

No Yes

(2) Envelop (Envelop,Component,Ref),
(Component,name,Prop)

Yes No

. . . . . . . . . . . .

TABLE I
INTERMEDIATE CONSTRAINT STATE.

not change her/his intent (as in a case of refactoring), the

adapted constraints preserve the semantics according to the

criteria proposed by Markovic [9]. But, since we can not know

whether the designer has changed or not her/his intent, adapted

constraints must be validated by the latter.

Our approach is based on the one hand, on the ability

to detect that a constraint becomes inconsistent and on the

other hand on the ability to propose an adaptation. For this,

we manage the state of the constraints associated with a

metamodel through the following data:

• Constraint ID: identifier of the constraint in the meta-

model.

• Constraint Context: name of the meta-class representing

the context of the constraint.

• Involved Elements: involved elements are shown in pairs

in order to represent the link’s type that attaches them.

• Valid: defines the state of a constraint. The constraint is

said to be valid when it is syntactically correct and that

the designer has confirmed it.

• Adaptation: to express that the constraint is an adaptation

of another, which has become inconsistent, and which

requires to be validated by the designer.

Before any change constraints are all considered valid. After

each change on the metamodel the table is updated, but it will

be subject to validation by the designer, only at the end of

evolution.

Table I shows the constraint state after a change in the

metamodel. This change was to create a new meta-class

Interface between meta-classes Port and Operation.

The value of attribute ’Valid’ for constraint (1) is ’No’ to

indicate that it was affected by the change. The cause of the

invalidity is the loss of a relationship that existed between

two elements involved in the constraint (relationship in bold

in the table). The identifier of the constraint (1’), by itself,

indicates that its origin is the constraint (1). The ’Yes’ value

for its ’Adaptation’ attribute indicates that it is a coherent

adaptation. The ’No’ value for its ’Valid’ attribute means that

it has not yet been validated by the designer. At the end of

evolution, adaptation will be proposed to the designer. If it is

validated, as it is or with some corrections, it will permanently

replace the constraint (1) (i.e. it takes its identifier and ’Yes’

for ’Valid’ and ’No’ for ’Adaptation’). If not, the constraint

(1’) will be removed and the designer will have to take a

decision on constraint (1): either remove it or modify it and

validate it. The designer is also required to take a decision on

constraints that become invalid and for which no adaptation

was proposed. Thus, after an evolution all constraints of the

metamodel become consistent again.

In the next section, we show how to build an adaptation to

a constraint affected by a change in the metamodel.

IV. CONSTRAINTS ADAPTATION

We have already seen that in some cases the assistance

system proposes an adaptation to constraints impacted by a

change in the metamodel. For this aim we have identified

operations for which it is possible to propose the way to adapt

the impacted constraints. Thus, we found very interesting the

use of QVT Relation in order to define not only the different

possible operations on the metamodel, but also transformations

they induce on the involved constraints.

A. Concerned Operations

We did not define rules for all possible operations on a

metamodel. Indeed, some of them have already been done

by other works. Thus, we have reused results from mainly

two works: the first one concerns the metamodel and models

coevolution [6] and the second one concerns UML models

and OCL constraints corefactoring [9]. From the first work,

we reused the QVT Relation rules defined for metamodel

adaptation and from the second one, we reused and adapted

QVT Relation rules defined for constraint adaptation. Indeed,

for the latter some rules require adaptation because they were

written for the model level and could not be applied as such

onto the metamodel level. Moreover, rules that were defined

in [9] do not cover all possible operations on a metamodel,

because the context was refactoring. Table II summarizes the

different operations of refactoring, creation and suppression

that may occur during the evolution of a metamodel.

The meaning of the different columns of the table is as

follows:

• Operations: lists the different types of evolution opera-

tions;

• Influence: indicates if the operation may affect the syntax

of OCL constraints associated to the metamodel;

• QVT for MOF: indicates whether an operation has been

formalized in the literature, using QVT Relation at the

MOF level;

• QVT for UML/OCL: indicates whether an adaptation of

OCL constraints was formalized using QVT Relation, in

order to fit a refactoring of their associated UML class

diagram;

• QVT for MOF/OCL: indicates if, for a given operation,

some work deals with the coevolution of metamodels and

their constraints.

Operations presented in the first column come from [6]

and were inspired by work on refactoring [8], [11], work on

grammar adaptation [12], and also on [10] which identifies

concrete operations for metamodel evolution. The second

column highlights operations that have an influence on the

syntax of constraint. The "Yes" with a white background are

those which have already been identified by [9]. Those whose



Operations Influence QVT

for

MOF

QVT

for UM-

L/OCL

QVT for

MOF/OCL

RenameElement Yes Yes Yes Yes

MoveProperty Yes Yes Yes Yes

ExtractClass No Yes Yes Yes

InlineClass No No No No

ExtractSuperClass No Yes No No

FlattenHierarchy No No No No

Introduce property No Yes No No

eliminate property Yes Yes No No

PullUpProperty Yes Yes No No

PushDownProperty Yes Yes No No

AssociationToClass Yes Yes No No

ClassToAssociation Yes No No No

IntroduceClass (in a pack-

age)

No Yes No No

EliminateClass (in a pack-

age)

No No No No

IntroduceProperty No Yes No No

GeneralizeProperty Yes Yes No No

RestrictProperty No No No No

Eliminate property No No No No

InheritanceToCompostion Yes No No No

TABLE II
SYNTHESIS OF MOF/OCL ADAPTATION RULES

background is gray are operations that we believe have an

influence on the constraint and we will deal with in the fol-

lowing. An operation with a "Yes" in the third column means

that its formalization in the QVT already exists for the meta-

metamodel MOF. These formalizations are from [6]. Thus, we

propose to formalize, using QVT, operations with a "No" value

in the table. In the fourth column we have identified operations

for which rules for OCL constraint adaptation were formalized

in [9] to fit with UML class diagram refactoring. Finally,

the "Yes" set in the last column of the table corresponds to

operations resulting from [9] that can be easily extended to

the MOF meta-metamodel.

The rows whose value is "No" at the last column and "Yes" at

the second column (the gray lines in the table) correspond

to operations for which we propose a formalization with

QVT in order to adapt OCL constraints to the corresponding

metamodel evolution.

B. PullUpProperty Operation

In the MOF meta-metamodel, a property refers to either

an attribute or an association end. Pulling a property into a

super-class is a well known object-oriented refactoring [11],

[8]. Figure 2 shows an example of a PullUpProperty operation.

MM represents a part of a metamodel concerned with the

PullUpProperty operation. On the other side, MM’ represents

the evolution of MM after application of the operation.

Fig. 2. PullUpProperty Operation Example

In [13], authors proposed a formalization of this operation

in the context of UML class diagrams refactoring. As both the

UML metamodel and the MOF meta-metamodel are concep-

tually close, QVT rules defined on the UML metamodel can

be easily adapted to the MOF meta-metamodel as shown in

Figure 3.

Fig. 3. QVT Rules for PullUpProperty Operation

Figure 3 is composed of an upper part, which represents

the transformation rule corresponding to the operation applied

on the metamodel and a bottom part, which represents the

transformation rule to apply on constraints impacted by the

operation. The upper part is itself divided into two parts:

the left hand side (LHS) represents the pattern on which the

operation can be applied. And if an instance of this pattern is

found in the current metamodel, it will be transformed so that

it matches to the pattern given in the right hand side (RHS). If

the operation is completed, the constraint transformation rule

(bottom part) will be applied. Thus, the constraints that contain

parts that match with the LHS pattern will be considered as

impacted by the operation. Therefore the proposed adaptation

will be built thanks to the RHS pattern.

Sometimes, some conditions are associated with transfor-

mation rules. For example, the "when" clause of the rule from

Figure 3, states that it should not already exist an association

of the same name between C and Father metaclasses.

In [13], authors did not propose a rule to deal with the OCL

constraints attached to UML class diagrams in case of PullUp-

Property. This is true if constraints that use this property have

to be applied on all the other son of the metaclass Father.

But sometimes, the need is to pull up only the property and

leave constraints applying only on the metaclass Son1. Thus,

in our metamodel evolution assistance system, we propose

two distinct operations: FullPullUpProperty for the first case

and PartialPullUpProperty for the second case. In case of

FullPullUpProperty operation constraints remain consistent,

while in case of PartialPullUpProperty operation constraints

are impacted. In the latter case we propose the following.

Impacted constraints are of the form:



oclExpression.p2[RestExp]

so we propose to transform the constraint as follows:

oclExpression.p2 → select(v | v.oclIsTypeOf(Son1)) →
forAll(s | s[RestExp])

Thus, the transformed constraint will apply only on in-

stances of the meta-class. This transformation is formalized

with QVT in the bottom part of Figure 3. In RHS of the QVT

rule we add an instance of metaclass PropertyCallExpression

which introduces the select operator and an instance of Type-

Exp to introduce the oclIsTypeOf.

C. PushDownProperty Operation

PushDownProperty is a refactoring operation [8], [11]. This

operation moves an attribute from the parent to a selected

subclass, as it is described in Figure 4. In this example, we

consider the property value equal to an attribute.

Fig. 4. PushDownProperty Operation Example

The formalization of PushDownProperty operation to MOF

metamodels is given in the upper part of Figure 5. This formal-

ization was initially given in [13], but Authors did not propose

to transform the constraints which have oclExpression.p, such

as oclExpression is type of Father. To check for non-existence

of constraints attached to the property p whose contextual

metaclass is Father, they added a condition into the When-

clause of QVT rule.

To address these constraints, we have removed this con-

dition, and we keep only the condition that ensures that the

property p does not exist in metaclass Son before applying the

operation. Moreover, contrary to rule given in [13], we con-

sider the constraints of the form of oclExpression.p[RestExp]

to take into account the rest of the constraint. As stated

earlier, oclExpression is type of Father. So, OCL constraints

with expression oclExpression.p[RestExp] will be transformed

into:

oclExpression →select(v| v.oclIsTypeOf(Son))

→forAll(v1| v1.p[RestExp])

Thus, the constraint will apply on all instances of the

metaclass Son.

The bottom part of Figure 5 formalizes the adaptation to

be applied on impacted constraints after a PushDownProperty

operation on a metamodel.

D. AssociationToClass Operation

The AssociationToClass operation is a kind of generic

refactoring [14]. It consists of extracting a metaclass from an

existing association between two metaclasses, and to affect 1-1

cardinalities to their containers as shown in Figure 6.

Fig. 5. QVT Rules for PushDownProperty Operation

Fig. 6. AssociationToClass Operation Example

The upper part of Figure 7 represents the QVT formalization

of the AssociationToClass operation for MOF meta-metamodel

that was proposed in [6].

Fig. 7. QVT Rules for AssociationToClass Operation

Applying an AssociationToClass operation on a metamodel

may impact the attached OCL constraints. These can be

defined either in the context of C1 or either in the context

of C2. Suppose a constraint defined in the context of C1, with

the following form:

oclExpression.p2[RestExp]

Such a constraint is syntactically correct after the meta-

model evolution, but its meaning has completely changed.

Indeed, the constraint will no longer be evaluated on the in-

stances of C2 but on the instances of C3. To solve this problem

we propose the following transformation whose formalization

is given in the bottom part of Figure 7:

oclExpression.p2.p4[RestExp]

In the new form of the constraint, we added a simple

navigation through the property p4. In the case of constraints

defined in the context C2, the problem is symmetric to that

raised by the constraints defined in the context C1. The

solution is also symmetric. The formalization of this solution

is, of course, written for the assistance system, but it provides



no new information to the reader.

E. ClassToAssociation Operation

The ClassToAssociation operation is the inverse operation

of the AssociationToClass operation. It consists of removing

a metaclass related with two other metaclasses, and whose

associations have a 1-1 cardinality. Figure 6 describes this

evolution from MM’ to MM. We propose a formalization of

this operation in QVT at the MOF meta-metamodel level, as

shown in the upper part of Figure 8. The ClassToAssocia-

tion operation need three metaclasses and two associations

as parameters. To apply this operation on a metamodel, it

requires the property cardinality to be 1-1 on both sides of the

removed class and there is no other association with the same

properties in the two remaining classes. These two conditions

are expressed through the When-clause of the QVT rule.

Fig. 8. QVT Rules for ClassToAssociation Operation

When ClassToAssociation operation is applied the con-

straints attached to the involved metaclasses may be affected.

Thus, we propose the transformation of these constraints by

using the rule defined in the bottom part of Figure 8. In other

words, a constraint in the form oclExpression.p2.p4[RestExp],

such as oclExpression is of type C1, will be transformed into

oclExpression.p2[RestExp]. Thus the property p4 has been

removed.

We also defined a transformation rule for the case where the

type of oclExpression is C1. As with the previous operation,

this rule is symmetrical to the one shown in Figure 8. Thus,

we do not describe it in this paper.

F. GeneralizeProperty Operation

A property can be generalized or restricted in terms of its

multiplicity and its type. The case of restriction does not lead

to constraint transformation. This will be discussed at the end

of this sub-section. GeneralizeProperty operation consists in

generalizing the cardinality of an association end so that the

old cardinality is included in the new one. An example of

such operation is illustrated in Figure 9. The lower bound of

the cardinality remains unchanged while the upper bound is

affected by the generalization.

In [6], the author proposes a QVT formalization of this rule

at the MOF meta-metamodel level. This rule is described in

the upper part of Figure 10.

Fig. 9. GeneralizeProperty Operation Example

Fig. 10. QVT Rules for GeneralizeProperty Operation

This kind of operation implies some modifications on OCL

constraints attached to the metamodel. Suppose a constraint

defined with an expression whose form is:

oclExpression.p[Rest], where oclExpression is of type C1.

After the generalization of the cardinalities, instances of

the metaclass C1 can be linked to several instances of the

metaclass C2. To apply this constraint on all the instances of

the metaclass C2, it is necessary to transform it by adding the

OCL collection operator forAll. Thus, the previous expression

is rewritten as follows:

oclExpression→forAll(v | v.p[RestExp]).

The QVT formalization of the adaptation on the OCL

metamodel is described in Figure 10.

The RestrictProperty operation is the inverse operation of

GeneralizeProperty. This operation has no impact on the

constraint, because by definition in the OCL language, a

collection operator can be applied to either a set full of

elements or to a set with only one element. Thus, it is not

necessary to transform the constraint. This can be dealt with

in the case of constraint optimization.

G. InheritanceToComposition Operation

The InheritanceToComposition Operation consists in the

conversion of an inheritance relationship into a composition

relationship as shown in Figure 11. This is a refactoring

operation described in [11] which is usually performed in the

context of metamodels evolution [10].

Fig. 11. InheritanceToComposition Operation example

The upper part of Figure 12 shows the formalization of

the InheritanceToComposition operation at the MOF meta-

metamodel level that we propose. This operation needs three



parameters: a super-class, a sub-class, and the inheritance

relationship between them. The inheritance relationship is

transformed as a composition relationship: two properties are

created with a 1-1 cardinality. If another cardinality associated

with the Son metaclass is needed, we can use the Genarl-

izeProperty operation.

Fig. 12. QVT Rules for inheritanceToComposition Operation

To explain how to adapt OCL constraints impacted by this

operation, we must consider separately those whose context is

the metaclass Father and those whose context is the metaclass

Son. In the case of the Father context, impacted constraints

are those that conform to the following form:

oclExpression→select(v|v.oclIsTypeOf(Son))[RestExp]

This expression allows to restrict the application of the

defined constraint to instances of the Son metaclass. After

applying the InheritanceToComposition operation, Son has not

the same type than Father In MM’. Thus, we need to transform

the constraint as follows:

oclExpression.son[RestExp]

The formalization of this transformation is illustrated in the

middle part of Figure 12.

In case of Son context, impacted constraints are those that

conform to the following form:

oclExpression.p[RestExp]

It is obvious that the property p can not be accessed in this

manner after the change resulting from the operation. What

makes the constraint syntactically incorrect. Thus, we propose

the following transformation:

oclExpression.father.p[RestExp]

This transformation is formalized in QVT in the bottom part

of Figure 12.

H. Example of rule application

Consider the example presented in Section II. In this

example we presented three constraints associated with the

metamodel AlCoWeb. To evolve this metamodel from its

version 1 to version 2, the following basic operations have

been applied:

• PullUpProperty(Component, AbsractComponent, compo-

nent)

• AssociationToClass(ownedReqOp, RequiredInterface,

port, ReqInt)

• AssociationToClass(ownedProOp, ProvidedInterface,

port, ProvInt)

• ExtractSuperClass(setAbstractComponent, Connector,

Port, InstanceSpecification)

• PullUpProperty(AbstractComponent, InstanceSpecifica-

tion, stereotype)

• EleminateProperty(Connector, stereotype)

• EleminateProperty(Port, stereotype)

This sequence of operations is considered by the designer

as an evolution. So it was only at the end of this sequence

of operations that the assistance system provides the designer

with an adaptation for each of the three constraints.

The proposals of the assistance system are the following:

−−( 1 ) P r o v i d e d o p e r a t i o n s must have

−− a p u b l i c v i s i b i l i t y

c o n t e x t : P o r t

inv : s e l f . p r o v i d e d . providedOp−>f o r A l l ( o | o . v i s i b i l i t y = ’ p u b l i c ’ )

−−( 2 ) An e n v e l o p e s h o u l d n o t c o n t a i n components

−− w i t h t h e same name

c o n t e x t : Envelop

inv : s e l f . component−> s e l e c t ( v | v . o c l I s T y p e O f ( Component ) )

−>f o r A l l ( c1 , c2 | c1 <> c2 i m p l i e s c1 . name <> c2 . name )

−−( 3 ) A p o r t has e i t h e r p r o v i d e d o p e r a t i o n s ,

−− or r e q u i r e d o p e r a t i o n s , b u t n o t bo th

c o n t e x t : P o r t

inv : s e l f . r e q u i r e d . r equ i r edOp−>notEmpty ( ) i m p l i e s

s e l f . p r o v i d e d . providedOp−>isEmpty ( )

and

s e l f . p r o v i d e d . providedOp−>notEmpty ( ) i m p l i e s

s e l f . r e q u i r e d . r equ i r edOp−>isEmpty ( )

Even if this proposal appears to be correct, the designer

does not necessarily validate them because some change may

be accompanied by a change in semantics. Thus, the role

of semantic validation of adapted constraints is left to the

designer.

V. IMPLEMENTATION

To implement all adaptation rules related to the evolution

of metamodels and their attached OCL constraints, we have

developed our own tool, named METAEVOL. This tool has

been designed to provide assistance to designers when they

make evolve their metamodels and associated constraints. In

this way, our tool consists in a set of plug-ins that contribute

to the Eclipse platform, providing extensions to the standard

Ecore Diagram metamodel editor and OCL editor. The ar-

chitecture of this tool is inspired by an existing tool named

Roclet [15]. Roclet proposes its own UML Class diagram

editor and a collection of refactoring operations (operations



marked as ’Yes’ in the column "QVT Rule for UML/OCL"

in Table II), and when applying a refactoring operation on an

UML model element, the OCL constraints are automatically

adapted. Our tool works in a similar way to Roclet. However,

it supports the adaptation of OCL constraints to metamodel

evolution, whereas Roclet works at the model level only. The

general architecture of the METAEVOL tool is depicted in

Figure 13.

MetaEvol

Eclipse

<<component>>

MetaEvol

<<component>>

EcoreDiagram Editor

<<component>>

QVT Engine

<<component>>

OCL Editor

updates

trigger request

extends

Fig. 13. Architecture of the METAEVOL tool

A. Tool Architecture

As described in Figure 13, the architecture of the tool is

separated in two distinct layers. The bottom layer is composed

of standard editors offered in the Eclipse platform:

• The EcoreDiagram Editor is a graphic editor used to

design Ecore models. Ecore being an implementation of

the EMOF part the MOF meta-metamodel, Ecore and the

Eclipse EMF framework [16] allow to define metamodels.

This is the tool used by designers to built and make evolve

their metamodels;

• The OCL editor is also provided by the MDT-OCL

project [17] of the Eclipse platform. This textual editor

allows designers to describe OCL constraints attached to

metamodels.

Our contribution lies in the top layer of the presented

architecture. In this layer, its components work as follows:

• The METAEVOL component extends the behavior of the

Ecore Diagram editor, so that it offers both features

to apply the refactoring operations, and the automatic

adaptation of attached OCL constraints.

• The QVT Engine is responsible of the adaptation of

OCL constraints. This engine consists in the collection

of the adaptation rules, implemented in QVT. Based on

the set of graphical rules listed in Section IV, we have

transformed each refactoring operation in a QVT textual

syntax. For this, we used Together Architect 2008 [18], a

tool which offers a concrete graphical syntax for QVT

Relation. This tool allows to define QVT rules in a

graphical way, and to generate their corresponding textual

syntax. Once the additional refactoring rules have been

transformed in a set of Java classes, we integrated them

in our QVT Engine.

B. Adaptation of OCL Constraints

METAEVOL proposes an implementation of the approach

presented in Section III. Indeed, the assisted adaptation of

OCL constraints relies on a table which stores all constraints

associated to a metamodel, and which also contains, for each

constraint, its validity state and a field that tells if an adaptation

has been proposed (see Table II in Section IV). This table

allows to trace all adaptations realized by the designer during

the evolution process of metamodels.

When a designer starts making evolve a metamodel with

METAEVOL, the tool’s first task is to initialize the table of

constraints. Of course, in this step, each constraint is marked

as syntactically valid, and no adaptation is yet proposed.

METAEVOL also makes a copy of the initial OCL constraints.

Actually, all OCL constraints transformed by the application of

adaptation rules are stored in this copy. This copy and the table

of OCL constraints are always kept in sync, so that they reflect

the current state of modifications performed on metamodels

and their constraints. For each modification performed on a

metamodel, METAEVOL launches an update process. Those

modifications correspond to the application of an operation of

evolution (those presented in Table II), which are provided

in a contextual menu of the editor. At each modification of

the metamodel, the update process performs the following

operations:

• A parsing of all initial OCL constraints, to tell which of

them are still syntactically valid on the current state of

the metamodel. This test updates the “validity” field of

the table of constraints;

• If an operation of evolution (i.e., operations presented

in this paper) is requested, METAEVOL will forward the

request to the QVT Engine, that will then adapt OCL

constraints impacted by the requested adaptation. Those

adaptations are stored in the copy of the initial OCL

constraints. The table of constraints is also updated to

indicate if, for each constraint, an adaptation has been

proposed or not by the METAEVOL tool.

Finally, when the designer has finished to make evolve

a metamodel, he launches the finalization step. This action

will assist the designer by providing the up-to-date table of

OCL constraints. Depending on the validity state and if an

adaptation have been proposed, the designer is able to decide,

for each constraint, if he wants to either remove the constraint,

keep the automatically adapted constraints transformed by

METAEVOL, or manually modify a constraint if the proposed

adaptation is not satisfactory.

Figure 14 shows the METAEVOL tool. This tool allows to

manage the co-evolution of metamodels (left-side editor) and

their OCL constraints (right-side editor). Metamodels adapta-

tion rules defined in Section IV are present in a contextual

menu.

VI. RELATED WORK

Our work concerns mainly two aspects of MDE, which

are evolution of the metamodels and transformation of OCL

constraints. Thus, this related work focuses only on these two

aspects.



Fig. 14. METAEVOL: assisting metamodels and OCL constraints evolution

A. Constraint Transformation

In [9], the authors have presented an approach to transform

OCL constraints associated with an UML class diagram in the

context of refactoring. Each refactoring operation is formalized

using QVT Relation. As in this work we use a stepwise

adaptation approach. But in our case the operations go beyond

the context of refactoring, where by definition the semantics

is preserved. So we had to define the transformation rules for

operations that are not allowed under refactoring context and

redefine the rule for certain operations, because the assumption

of semantic preservation is no longer valid.

Similarly in [19], author proposed a method, called interpre-

tation function, for transforming constraints which allows for

the extension of a mapping defined on a few model elements.

This function is used first to redesign UML class diagram

models. The same function is re-used to automatically translate

the OCL constraints. The applicability of the approach is

demonstrated in the case of refactoring UML class diagrams

models. This approach can be applied at the metamodel

level, since the MOF meta-metamodel was built on the UML

infrastructure. However, their approach is theoretical and its

implementation is not obvious.

In [20], authors proposed to improve the badly structured

OCL constraints by identifying the OCL bad smells (such

as duplicate code in the constraint). This is done for only

very limited extent relationships between OCL constraints

and the underlying class diagrams. In [21], authors proposed

an approach to assist the designer during the definition of

the constraints by means of automatically transforming the

initially defined constraints into equivalent alternatives by

changing the context of the constraints. The proposed approach

is formalized as a path problem over a graph representing

the diagram. Each path between two vertices corresponds to

a different context to represent the set of constraints defined

over the first vertex. In [22], authors proposed an approach to

simplify the OCL constraints generated in the context of de-

sign pattern instantiation templates, i.e constraints expressing

requirements associated with patterns. They identify various

kinds of rules needed for OCL simplification and pointed

out differences to usual term rewriting systems. All these

works concern the simplification of constraints. Indeed, the

simplification of constraints is complementary to our work. As

we do not insure that the transformed constraint is optimal, a

step for simplification may be very useful.

B. Metamodel Evolution

In [6], authors proposed a transformational approach to

assist metamodel evolution by stepwise adaptation. They adopt

ideas from grammar engineering and model refactoring. They

presented a library of QVT Relations for the stepwise adapta-

tion of MOF compliant metamodels. What we proposed is a

complementary work by providing a library of QVT rules for

automatically transform the OCL constraints attached to the

evolved metamodel.

In [10] authors considered coupled model evolution based

on small evolution steps. They focused on the Eclipse Model-

ing Framework (EMF) [16], in which ECore meta-metamodel

implements a subset of MOF. In their approach, authors

introduced a new language (called COPE) to support the

adaptation of models with respect to metamodel updates. Our

solution overlaps this solution in the sense of considering both

simple and complex changes.

In [23] authors, presented an architecture to automate cou-

pled evolution on an arbitrary software domain. They compute

equivalences and differences between any pair of metamodels

(e.g., representing schemas, UML models, ontologies, gram-

mars) to derive adaptation transformations from them, and they

apply these adaptations as stepwise automatic transactions on

the initial metamodel to obtain the final metamodel. In our

approach, adaptations are defined using QVT Relation, and not

computed from traces, but the adaptation rules are done in the

same way, by stepwise adaptation. In [24], authors used the

Epsilon Transformation Language (ETL) to migrate models

from a metamodel revision to another one. The mechanism for

metamodel evolution representation is not explicitly specified,

even though the problem of change detection is discussed. In

fact, the authors suggest the use of changes trace as opposed to

direct comparison, in order to be able to detect more complex

manipulations like element movements. This approach offers

an alternative way to treat the evolution of metamodel based on



traces. As our approach, authors also consider that the various

adaptations performed on a metamodel are already known.

In [3] authors have presented a work to deal with the

coupled transformation of metamodels and models by using

high-order model transformations which take a difference

model for the metamodel level as input and produce a model

transformation able to co-evolve the involved models as out-

put. In [25] authors proposed refinement of this approach,

present a prototype and demonstrate its applicability in two

case studies. Like our approach a transformational approach

is used, unlike us, the adaptation rules are computed using

metamodel differences.

VII. CONCLUSION AND FUTURE WORK

MDE technologies promotes simpler models with a greater

focus on problem space. Combined with executable semantics,

this elevates the level of possible automation in the software

lifecycle. But to reach this level of abstraction, developers must

create and manipulate new types of artifacts (Domain Specific

Languages) designed for a given company or a given project.

Metamodels, as a convenient way to express the syntax of such

languages, become prevalent and the heart of MDE. Thus,

operations related to them such as the management of the

impact of their evolution must be as automated as possible.

In this paper we have dealt with the problem of constraints

adaptation in order to be conform to the evolution of their

associated metamodel. Because maintaining OCL constraints

can be a tedious task, we propose to assist the developer to

rewrite them after each evolution of their associated metamod-

els. The first aim of this assistance is to identify the impacted

constraints and then to propose for each of them, if possible,

a new form preserving their original semantics. We made

this work in the case of stepwise adaptation of metamodels.

Indeed, this way of evolution offers a coherent and well-known

framework allowing to reason about the semantics of the

realized evolutions. Based on previous works on metamodel

evolution, we have listed the different operations, with a well

known semantic, that allow the evolution of a metamodel.

We described, using QVT language, rules that transform OCL

constraints after each of these operations. Thus, we developed

an assistance tool based on these rules in order to propose the

adaptation of an impacted OCL constraint after an evolution of

the metamodel. The designer can accept or reject the proposed

adaptation if the intention of its evolution does not preserve

the original semantics of the constraint.

As future work, we will deal with the situation where we

know only the initial and final state of the metamodel. The ap-

proach we will apply is to use tools like EMFCompare [26] to

identify differences between the two models, and thus deduce

a possible list of stepwise operations which allow us to change

the initial metamodel to reach the final metamodel. Based on

these list of ordered operations, we can identify situations

where an adaptation of the associated OCL constraints can

be proposed. Such a result can be extended in the case of

model transformation with attached constraints, provided that

the models are instances of MOF or UML class diagram.

REFERENCES

[1] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, p. 25, 2006.

[2] OMG, Object Constraint Language Specification, version 2.0, Object
Modeling Group, June 2005. [Online]. Available: http://www.omg.org/
spec/OCL/2.0/

[3] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Meta-model
differences for supporting model co-evolution,” in Proc. of the 2nd Int.

Workshop on Model-Driven Software Evolution, MoDSE 2008, Atene
(Greece), 2008.

[4] J. Favre, “Meta-model and model co-evolution within the 3d software
space,” in ELISA’03: Proceedings of the International Workshop on

Evolution of Large-scale Industrial Software Applications, Amsterdam,
The Netherlands, 2003, pp. 98–109.

[5] G. Deng, G. Lenz, and D. Schmidt, “Addressing domain evolution
challenges in software product lines,” in Bruel, J.-M. (ed.) MoDELS

2005, Heidelberg, 2006, pp. 247–261.

[6] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
Proceedings of the 21st European Conference on Object-Oriented

Programming (ECOOP’07), ser. Lecture Notes in Computer Science,
E. Ernst, Ed., vol. 4609. Springer-Verlag, jul 2007, pp. 600–624.

[7] R. Kadri, C. Tibermacine, and V. Le Gloahec, “Building the
presentation-tier of rich web applications with hierarchical components,”
in The 8th International Conference on Web Information Systems Engi-

neering, ser. Lecture Notes in Computer Science, vol. 4831S. Nancy,
France: Springer-Verlag, pp. 123–134.

[8] M. Fowler, Refactoring: Improving the Design of Existing Programs.
Boston, MA, USA: Addison-Wesley, 1999.

[9] S. Markovic and T. Baar, “Refactoring OCL annotated UML class
diagrams,” Software and System Modeling, vol. 7, no. 1, pp. 25–47,
2008.

[10] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Automatability of
coupled evolution of metamodels and models in practice,” in MoDELS

’08: Proceedings of the 11th international conference on Model Driven

Engineering Languages and Systems. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 645–659.

[11] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, 1992.

[12] R. Lämmel, “Grammar adaptation,” in FME ’01: Proceedings of the

International Symposium of Formal Methods Europe on Formal Methods

for Increasing Software Productivity. London, UK: Springer-Verlag,
2001, pp. 550–570.

[13] S. Markovic, “Model refactoring using transformations,” Ph.D. disserta-
tion, 2008.

[14] R. Lämmel, “Towards generic refactoring,” in Proc. of Third ACM

SIGPLAN Workshop on Rule-Based Programming RULE’02, Pittsburgh,
USA, 2002.

[15] RoclET Team, “Roclet project,” http://www.roclet.org/, 2007.

[16] Eclipse, “Eclipse Modeling Framework (EMF),”
http://www.eclipse.org/modeling/emf/, 2009.

[17] ——, “MDT OCL Project,” http://www.eclipse.org/modeling/mdt/,
2007.

[18] Borland, “Together technologies,” www.borland.com/together/, 2008.

[19] P. Kosiuczenko, “Redesign of UML class diagrams: a formal approach,”
Software and System Modeling, vol. 8, no. 2, pp. 165–183, 2009.

[20] A. L. Correa and C. M. L. Werner, “Applying Refactoring Techniques
to UML/OCL Models,” in UML. Springer-Verlag, 2004, pp. 173–187.

[21] J. Cabot and E. Teniente, “Transforming OCL constraints: a context
change approach,” in SAC, 2006, pp. 1196–1201.

[22] M. Giese and D. Larsson, “Simplifying Transformations of OCL Con-
straints,” in MoDELS, 2005, pp. 309–323.

[23] S. Vermolen and E. Visser, “Heterogeneous coupled evolution of soft-
ware languages,” in MoDELS ’08: Proceedings of the 11th international

conference on Model Driven Engineering Languages and Systems.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 630–644.

[24] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards synchronizing
models with evolving metamodels,” in in Proc. Workshop on Model-

Driven Software Evolution (MODSE), 11th European Conference on

Software Maintenance and Reengineering, Amsterdam, the Netherland,
2007.

[25] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing model
adaptation by precise detection of metamodel changes,” in ECMDA-

FA ’09: Proceedings of the 5th European Conference on Model Driven



Architecture - Foundations and Applications. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 34–49.

[26] A. Toulmé, “Presentation of EMF Compare Utility,” in In 10th Eclipse

Modeling Symposium, 2006.


